Encoding, Regression, and Classification of Transcription Factors’ Specificity and Methylation Effects

Abstract
(ISSN 2577-5790)
OBM Genetics is an international Open Access journal published quarterly online by LIDSEN Publishing Inc. It accepts papers addressing basic and medical aspects of genetics and epigenetics and also ethical, legal and social issues. Coverage includes clinical, developmental, diagnostic, evolutionary, genomic, mitochondrial, molecular, oncological, population and reproductive aspects. It publishes research articles, reviews, communications and technical notes, etc. There is no restriction on the length of the papers and we encourage scientists to publish their results in as much detail as possible.
Archiving: full-text archived in CLOCKSS.
Rapid publication: manuscripts are undertaken in 15.0 days from acceptance to publication (median values for papers published in this journal in the second half of 2021, 1-2 days of FREE language polishing time is also included in this period).
Special Issue
Advances in DNA Methylation
Submission Deadline: January 15, 2021 (Open) Submit Now
Guest Editor
Peter Henneman, PhD
Assistant Professor, Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
Research Interests: Systems biology; metabolic syndrome; diabetes; genetics; insulin resistance
About This Topic
DNA methylation is a biological process by which methyl groups are added to the DNA molecule. Methylation can change the activity of a DNA segment without changing the sequence. When located in a gene promoter, DNA methylation typically acts to repress gene transcription. In mammals, DNA methylation is essential for normal development and is associated with a number of key processes including genomic imprinting, X-chromosome inactivation, repression of transposable elements, aging, and carcinogenesis. In recent years, sensitive technologies have been developed that allow the interrogation of DNA methylation patterns from a small number of cells. The use of these technologies has greatly improved our knowledge of DNA methylation dynamics and heterogeneity in embryos and in specific tissues. Combined with genetic analyses, it is increasingly apparent that regulation of DNA methylation erasure and (re-)establishment varies considerably between different developmental stages. In this special issue, we will seek articles that reflect the recent research on DNA methylation. Original research reports, review articles, communications, perspectives, etc., are invited in all areas pertinent to this topic.
Publication
Encoding, Regression, and Classification of Transcription Factors’ Specificity and Methylation Effectsby
![]() Abstract The methylation effects on protein-DNA interactions, which can be perceived as a special kind of specificity of transcription factors, have been successfully quantified in the last years by various methods. In this work, I give a summary about the sequence encoding scheme, the underlying additive model about specificity and meth [...] |
TOP