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Abstract 

Treatment options for end stage lung diseases are limited to stabilizing lung failure, decreasing 

disease progression, and symptom management, but significant reversal of lost lung function 

is often not possible. For well selected patients, lung transplantation may be a viable option 

to improve both longevity and quality of life. Though outcomes for lung transplant recipients 

have improved over several decades, long term survival still lags behind that of other solid 

organ transplant recipients. Longevity after lung transplantation is limited by chronic lung 

allograft dysfunction. Numerous insults to the allograft contribute to chronic rejection, 

alloimmune injuries including acute T-cell mediated and antibody mediated rejection are chief 

among them. Therefore, monitoring for and management of acute cellular and antibody 

mediated rejection are of paramount importance to those caring for lung transplant recipients. 

We provide an up to date and comprehensive review of acute rejection affecting lung 

allografts and attempt to highlight pathophysiology, risk factors, clinical presentation, 

rejection phenotypes, management strategies, as well as related from of acute allograft injury.  
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1. Introduction 

Lung transplantation remains the only definitive restorative therapy for highly selected patients 

with end stage lung diseases who have exhausted options for medical therapy. Despite progress 

overtime as evidenced by an improved long-term survival when comparing earlier to recent eras 

(1996-2001 vs 2002-2007 and 2008-2013), it should be noted that survival over the two most recent 

eras has stagnated with an overall 1 year contingent 5 year survival of approximately 65% in North 

America [1]. Long term survival among lung transplant (LT) recipients significantly lags behind other 

solid organ transplant (SOT) recipients, with the most recent Scientific Registry of Transplant 

Recipients (SRTR) data reporting 5 years survival rates approximating >80%, ~80%, and ~80% for 

kidney, liver, and heart transplant recipients respectively [2-4]. Long term survival post LT is 

primarily limited by chronic lung allograft dysfunction (CLAD) which impacts 50% of recipients 5 

years post-transplant and is the leading cause of death for those who survive the first post-

transplant year [5]. Amongst the numerous allograft insults contributing to the development of 

CLAD overtime, acute alloimmune rejection is at the forefront. Herein, we provide a comprehensive 

clinically focused review of acute cellular and antibody mediated rejection, and attempt to 

characterize histopathologic and clinical sub-phenotypes, and review pathogenesis, risk factors, and 

management.  

2. Acute Cellular Rejection  

2.1 ACR Mechanism, Diagnosis, and Incidence 

Acute cellular rejection (ACR) is characterized by a T-cell dependent alloreactive injury to the 

graft due to recognition of foreign donor major histocompatibility complex (MHC) antigens, and is 

identified histologically by a perivascular and/or peribronchiolar mononuclear cell infiltration [6, 7]. 

Effector T-cells, are recruited to the lung allograft through recognition of donor MHC antigens, 

leading to tissue injury and decreased allograft function. Several pathways of alloimmune 

recognition have been proposed. In the direct pathway, donor dendritic cells in the graft present 

the foreign MHC to the recipient’s T-cells; the indirect pathway involves recipient’s dendritic cells 

presenting processed allograft MHC proteins to the recipient’s T-cells [6]. A semi-indirect pathway 

has also been described in which recipient dendritic cells acquire intact donor MHC molecules which 

may be recognized by recipient T-cells [8]. 

ACR is diagnosed based on histopathology obtained by transbronchial biopsies (TBBx), requiring 

at least 5 pieces of well alveolated lung parenchyma for adequate assessment. Standardized 

histologic classification, severity grading, and reporting nomenclature, have been outlined by an 
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ISHLT working group and last updated in 2007 [7]. The microanatomic location of the lesion defines 

the two histopathologic subtypes which can occur independently or concurrently. Perivascular 

inflammation involving primarily pulmonary venules is defined as acute rejection (AR), and 

peribronchiolar inflammation defines lymphocytic bronchiolitis (LB). Severity is based on the degree 

of extension and cellular composition of the mononuclear infiltrate. Table 1 summarizes AR and LB 

histologic features and grading schema, Figures 1-6 provide histopathology reference examples. AR 

and LB are treated similarly in clinical practice, when referring non-specifically to acute T-cell 

mediated alloimmune injury, we will use the term ACR. Where AR and LB are used, greater 

specificity is implied. Both AR and LB are well recognized risk factors for subsequent development 

of CLAD [9-11]. CLAD is a key limitation to long term success post lung transplantation and is the 

primary driver of mortality after the first post-transplant year [5], as such, timely recognition and 

management of ACR is of utmost importance. 

Table 1 ACR and LB Histologic Features and Grading, adopted from Stewart et al [7]. 

Acute Cellular 

Rejection 
  

A Grade – perivascular 

inflammation 
Severity Histopathology 

A0 None 
Normal pulmonary parenchyma, no mononuclear cell 

infiltration, hemorrhage or necrosis 

A1 Minimal 

Scattered, infrequent, perivascular mononuclear infiltrates. 

Blood vessel lymphocytic cuff 2-3 cells in thickness, no 

eosinophils or endothelialitis 

A2 Mild 

More frequent perivascular infiltrates, eosinophils and 

endothelialitis may be present, no mono-nuclear cell 

infiltration into adjacent alveolar septa 

A3 Moderate 

Dense perivascular infiltrates, frequently with associated 

endothelialitis, eosinophils common, may have neutrophil 

infiltration as well, extension of inflammatory cell infiltrate 

into peribronchiolar and alveolar septa present 

A4 Severe 

Diffuse perivascular and air-space inflammatory infiltrates, 

prominent endothelialitis, epithelial cell necrosis, hyaline 

membranes, hemorrhage/necrosis may be present 

Ax Ungradable Insufficient alveolated tissue 

Lymphocytic 

Bronchiolitis 
  

B Grade – airway 

inflammation 
Severity Histopathology 

B0 None Normal bronchiolar tissue 
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B1R Mild 

Mononuclear cells within bronchiole sub-mucosa, may be 

infrequent, scattered, or forming small circumferential 

bands 

B2R Severe 

Bronchiole submucosal mononuclear cells, increased 

eosinophils, epithelial damage, in most severe form may 

have fibrinopurulent exudate and neutrophils 

BX Ungradable Insufficient bronchiolar tissue 

 

Figure 1 A1 ACR (minimal ACR): Focal perivascular mononuclear cell infiltrate of up to 3 

layers of lymphocytes without endothelialitis or eosinophils (10× magnification).  
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Figure 2 A2 ACR (mild ACR): More conspicuous mononuclear cell infiltrate with 

endothelialitis but no eosinophils. Extension to adjacent alveolar septa is not seen (10× 

magnification). 

 

Figure 3 A3 ACR (moderate ACR): Conspicuous mononuclear cell infiltrate with 

extension into adjacent peribronchiolar alveolar septa and endothelialitis. Aggregates 

of intra-alveolar macrophages and reactive type II pneumocyte hyperplasia are seen 

adjacent to areas of alveolar septal expansion (10× magnification). 
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Figure 4 A4 ACR (severe ACR): Diffuse perivascular, interstitial and intra-alveolar 

aggregates of lymphocytes with diffuse pneumocyte damage and endothelialitis. 

Multiple intra-alveolar necrotic epithelial cells and hyaline membranes are seen (10× 

magnification). [Images courtesy of Dr. Sergio Pina-Oviedo, Duke University Hospital, 

Division of Pulmonary/Thoracic Pathology]. 

 

Figure 5 B1R (low-grade small airway inflammation): Sparse mononuclear infiltrate with 

rare eosinophils in bronchiolar submucosa with rare intraepithelial lymphocytes. No 

squamous metaplasia or epithelial damage is seen (20× magnification). 
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Figure 6 B2R (high-grade small airway inflammation): There are numerous 

intraepithelial lymphocytes and epithelial damage seen as squamous metaplasia with 

focal epithelial sloughing and early epithelial necrotic changes (10× magnification).  

[Images courtesy of Dr. Sergio Pina-Oviedo, Duke University Hospital, Division of 

Pulmonary/Thoracic Pathology]. 

While ACR is a common complication after LT, the true incidence is unknown. Estimates for the 

rates of ACR have ranged from 17-40% [12-14]. Differences in reported rates are likely explained by 

differenced in data source, ACR definitions used, immunosuppression utilization, and screening 

protocols. ISHLT registry data notes a declining incidence of treated ACR in the first post-transplant 

year overtime, impacting 26.6% of recipients between 2005-2018. The slight decline overtime is 

attributed to increased use of basiliximab induction as well as tacrolimus and mycophenolate for 

maintenance immunosuppression [5]. A recent multicenter prospective study reported 53.3% of 

subjects had at least one episode of AR, and 14.8% had at least one episode of LB, in the first post-

transplant year [15]. 

2.2 ACR Risk Factors 

The risk of ACR is greatest in the first months to one year after transplant and decreases 

thereafter [16, 17]. ACR risk factors may be broadly conceptualized into immunologic, 

donor/recipient, and environmental risks. Numerous risk factors have been implicated and 

summarized exhaustively by Renaud-Picard et al – notable risks are outlined in Table 2 [18]. In a 

prospective multicenter study of 400 patients undergoing surveillance transbronchial biopsies in the 

first-year post-transplant, increased degree of HLA mismatching, single vs. double LT, and decreased 

donor age were associated with increased ACR on univariate analysis. Only HLA mismatching and 

double vs. single LT remained significantly associated on multivariable analysis [15]. 
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Table 2 ACR Risk Factors. 

Immunologic Donor/Recipient Environmental 

Increased degree of HLA mismatch Younger recipient age CMV infection 

Allosensitization/Presence of DSAs Single lung transplant 
Bacterial/fungal infections 

(possible risk factor) 

Genetic polymorphisms of innate 

and cellular immunity components 
Early post-transplant period  CARV infection 

Prior ACR episodes GERD in recipient  

Immunosuppressive strategy Younger donor age  

Subtherapeutic immunosuppression   

2.2.1 Induction and Maintenance Immunosuppression Impact on ACR 

Induction immunosuppression utilization has increased overtime, with over 80% of recipients 

receiving induction therapy, the vast majority (>70%) with an interleukin-2 receptor antibody (IL-

2RA), basiliximab [5], due to the perceived better safety profile in regards to cytokine release 

syndromes, prolonged lymphocyte depletion and infectious risk associated with alemtuzumab and 

antithymocyte globulin (ATG). ISLHT registry data demonstrates a minimal though statistically 

significant overall survival benefit for any induction agent utilization (IL-2RA, ATG, or alemtuzumab) 

vs. none; as well as a small but statistically significant decreased rate of treated ACR in the first post-

transplant year with the use of IL-2RA only compared to alternatives [5]. Retrospective data 

supports decreased rates of early ACR when comparing: IL2-RA or ATG to no-induction (15% vs 22% 

and 17% vs 22% respectively, p < 0.005) [19], and decreased rates of AR with alemtuzumab 

compared to IL2-RA induction (39.1% vs 53.4% p < 0.001) [20]. Comparison of ACR rates between 

IL2-RA and ATG induction have been mixed with some retrospective studies noting no difference 

between the two [19, 21], and others reporting higher rates of AR with the use of IL2-RA [22]. A 

Cochrane meta-analysis published in 2013 that included 6 randomized controlled trials (RCT) found 

no significant differences in rates of ACR between any induction medication (IL2-RA, alemtuzumab, 

ATG, or Muromonab-CD3) or placebo; importantly no differences in adverse events related to 

infection or cancer were found either [23]. In contrast, the most recent published meta-analysis 

reviewing induction strategies in thoracic transplantation found that alemtuzumab was more 

effective at preventing ACR compared to ATG or IL2-RA [24]. Overall, the available data is conflicting 

and there is no consensus as to the optimal induction strategy to prevent ACR. Induction strategies 

continue to be determined by institutional experience and protocols, catered to individualized 

patient needs and risk assessments.  

Triple immunosuppressive therapy with a calcineurin inhibiter (CNI), antimetabolite, and 

corticosteroid is the cornerstone of maintenance immunosuppressive (mIS) therapy. It is a-priori 

understood that maintaining appropriate immunosuppression levels decreases the risk of ACR. 

There is very limited and conflicting data on CNI level variability and ACR outcomes among LT 

recipients [25, 26], though it has been demonstrated that optimizing CNI levels may decrease ACR 

rates [27]. The optimal mIS therapy combination to minimize ACR remains a topic of debate. ISHLT 

registry data suggests a significantly lower rate of treated ACR in the first post-transplant year 

among those on tacrolimus vs cyclosporine-based regimens [5]. Interestingly, two metanalysis 
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published in 2009 and 2013 respectively come to somewhat differing conclusions as to whether a 

tacrolimus vs. cyclosporine-based regimen is associated with different ACR outcomes [28, 29]. Fan 

et al found lower rates of AR and LB with a tacrolimus based regimen; Penninga et al replicated the 

LB findings, but found no significant difference in rates of AR. A recent consensus document 

endorsed by the ISHLT does make a weak recommendation for tacrolimus as first line CNI based on 

moderate evidence supporting decreased rates of ACR and CLAD compared to alternatives [30]. A 

similarly weak recommendation for mycophenolic acid as the first line antimetabolite was made 

based on low level of evidence of better efficacy compared to azathioprine [30]. Whether 

mammalian target of rapamycin inhibitors (mTORi) such as sirolimus or everolimus, have a role in 

minimizing ACR risk is another area for which there is discordant data. Two small RCTs have found 

decreased rates of ACR when an mTORi is utilized in lieu of an antimetabolite [14, 31], though this 

was not a robustly positive result in the study by Glanville et al. Notably, this finding has not been 

replicated in a more recent RCT (“4EVERLUNG”) evaluating mTORi as part of a quadruple mIS 

strategy, which found similar rates of ACR between quadruple and standard triple mIS groups [32]. 

The use of mTORI as part of mIS in LT recipients is best reserved for specific clinical scenarios, 

discussed further below. The optimal mIS to minimize ACR, and achieve other competing 

therapeutic goals, requires individualization on a case-by-case basis. 

2.2.2 Infection and ACR 

Community acquired respiratory viral infections (CARVs) may be concurrent with or antecedent 

to development of ACR. It is postulated that CARVs may lead to acute rejection through upregulation 

of immune mediators by activation of the innate immune system, or through epithelial injury and 

exposure of cryptic antigens [33, 34]. Data supporting the link between CARVs, particularly viral 

infection involving the lower respiratory tract, and increased CLAD risk [35, 36], is more robust than 

that for the association between CARVs and subsequent ACR, for which studies have shown 

inconstant results of association [37]. It is our clinical experience that post-viral ACR is in fact a true 

clinical entity. Though limited by the broad definition of ACR that was employed, a single center 

prospective study reported a 33.3% rate of ACR within three months of respiratory viral infection 

identified by BAL, compared to a 6.5% ACR rate among those without a preceding respiratory viral 

infection in the same time frame [38]. Rhinovirus, parainfluenza, and coronavirus comprised the 

majority of isolated infections. Other studies have reported a 1 year post viral ACR incidence of 3.8% 

and 6.5% after parainfluenza and human metapneumovirus respectively [39]. Dependent upon 

definitions used, organisms of interest, and follow up time considered, post-viral ACR has been 

estimated to impact anywhere between 5-55% of subjects [40]. Unsurprisingly, similar trends have 

been found among LT recipients with the novel SARS-CoV-2 virus. A single center retrospective 

review identified ACR in 10% of subjects who had persistently decreased allograft function 90 days 

post COVID-19 infection, another center reported 2/16 subjects developed ACR within 6 weeks after 

COVID-19 infection [41, 42]. Post COVID-19 ACR has not been a consistent finding, with another 

single center case-controlled study failing to identify any episodes of post COVID-19 ACR among 24 

LT recipients within 90 days of infection [40]. Elucidating the impact of CARVs and COVID-19 on ACR 

and other outcomes of interest among LT recipients remains an active area of investigation. 

Cytomegaly virus (CMV) viremia has also been identified as a risk factor for ACR among lung and 

other SOT recipients, possibly a result of the robust CD8 T-cell response generated to control this 
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pathogen [43, 44]. In fact, retrospective data and a prospective RCT evaluating extended CMV 

prophylaxis among LT recipients have demonstrated a tendency towards decreased rates of ACR 

within the extended prophylaxis groups [45, 46]. Notably, Todd et al failed to identify CMV infection, 

any respiratory infection (viral, bacterial, fungal, or mycobacterial), the use of induction 

immunosuppression, or choice of maintenance immunosuppression (Tacrolimus vs Cyclosporine) as 

significant ACR risk factors [15]. This further demonstrates the difficulties in clearly establishing ACR 

risk factors due to heterogeneity in the data reflecting differences in study design, changes in 

recipient characteristics, immunosuppression and infection prophylaxis strategies over time. 

2.2.3 The Gastrointestinal Tract and ACR 

Gastroesophageal reflux disease (GERD) and micro-aspiration are common problems for those 

with end stage lung disease, particularly IPF. Among LT recipients, its prevalence may even increase 

after transplant surgery due to vagal nerve injury, diminished cough reflex, impaired muco-ciliary 

clearance, and gastroparesis [47]. GERD and micro-aspiration of gastric contents, including bile acids 

and proteolytic enzymes such as pepsin, may lead to allograft injury through several mechanisms. 

Local inflammatory response stimulation due to direct cytotoxic effects of bile acid disruption of cell 

membranes. Loss of type II pneumocytes in this fashion may lead to alterations in surfactant 

homeostasis, all contributing to allograft injury [47]. There is also growing interest on the 

relationship between GERD and the composition of the allograft microbiome which may have 

implications for allograft injury risk [48]. Lung transplant recipients with GERD have been shown to 

have enriched concentrations of the bile acid, taurocholic acid (TCA), along with other inflammatory 

cytokines in BAL samples compared to those without GERD and were more likely to be treated for 

ACR within 3 months post-transplant [49]. Pepsin, another marker of gastric aspiration, has been 

observed to be enriched in the BAL fluid of subjects with A2 rejection or higher compared to 

allografts with lower grades or free from ACR [50]. Additionally, higher concentrations of TCA and 

glycocholic acid (GCA) in BAL samples correlated with increased rates of spirometrically defined 

acute allograft injury early post-transplant [49]. In a subset of GERD patients who underwent Nissen 

fundoplication, BAL fluid concentrations of TCA and other inflammatory cytokines decreased to 

levels comparable to non-GERD subjects [49]. While the association between increased rates of 

early ACR and GERD have been replicated [51], interestingly, in the study by Zhang et al, increased 

BAL concentrations of GCA and TCA (bile acids), rather than GERD itself, were associated with early 

acute allograft injury. This suggests that the presence of micro-aspiration, which may be mediated 

by other post-transplant foregut pathologies such as gastroparesis, esophageal dysmotility, hiatal 

hernias, or dysphagia, is also a key contributor allograft injury risk. 

2.2.4 Optimizing ACR Risk 

A detailed understanding of the risk factors associated with ACR is of key importance in the care 

of LT recipients. Our approach to all patients presenting with ACR, especially those with recurrent 

or refractory ACR, is to not only treat the rejection, but also elucidate if there is a modifiable risk 

factor that may be addressed. Those with recurrent respiratory infections may need additional 

guidance on safety precautions to limit infectious exposures, assessment of vaccination status, or 

testing and treatment for acquired hypogammaglobulinemia. Those with aspiration as a driving 

factor may be referred for further investigation of swallow mechanics and gastric emptying - 
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subsequent dietary modifications, Speech-Language Pathologist care, pyloric dilation with or 

without local botulinum toxin injection, or prokinetic medications may be indicated on a case-by-

case basis. LT recipients with GERD may benefit from surgical reflux therapies such as fundoplication 

[52]. At our institution, all LT recipients undergo reflux and esophageal dysmotility screening with 

the Bravo Capsule pH and Endoflip systems [53, 54] within the first post-transplant year and are 

referred for evaluation of surgical reflux options if indicated. 

Sub-optimal mIS is a key contributor to ACR, and identifying possibilities for optimization is 

critical for decreasing future risk. For those with inexplicably low or variable CNI levels, careful 

medication reconciliation evaluating for patient compliance and food-drug or drug-drug 

interactions that may impact CNI absorption or metabolism should be assessed. As addressed 

earlier, tacrolimus is the preferred CNI for mIS. In a single center RCT comparing tacrolimus vs 

cyclosporine on a background of basiliximab induction and azathioprine/prednisone maintenance, 

the tacrolimus group had a significantly lower burden of AR and LB [13], this finding has been in part 

supported by registry data, meta-analysis, and expert consensus [5, 28, 30]. In our experience, many 

transplant recipients are changed from tacrolimus to cyclosporine early post-operatively due to 

“neurotoxicity” that in retrospect is often difficult to discern from hospital acquired or critical illness 

encephalopathy or delirium. For those with recurrent ACR on cyclosporine, optimizing mIS by a trial 

of re-introducing tacrolimus on a case-by-case basis may be considered. The data supporting a 

change from azathioprine to mycophenolic acid in the setting of ACR or recurrent ACR is even less 

robust, however, this option may be considered as well for mIS optimization [30]. 

For LT recipients being managed with sub-optimal CNI levels, and/or dose reduced or absent 

antimetabolite due chronic kidney disease (CKD), CMV disease, or skin cancer, augmentation of mIS 

with a mTORi may be an option for optimization. In addition to their immunosuppressive effects, 

mTORi may have anti-neoplastic properties. When used as part of mIS in transplant recipients, they 

may have a beneficial impact in regards to incidence, progression and severity of pre-cancerous and 

cancerous skin lesions [55]. Multiple prospective studies have demonstrated decreased rates of 

CMV infection with the use of mTORi in place of an antimetabolite agent [14, 31, 56]. Additionally, 

in an RCT evaluating mTORi as part of a quadruple mIS strategy (“4EVERLUNG”), there was a 

decreased rate of CMV infection in the mTORi group, though the difference did not reach statistical 

significance [32, 57]. A strategy of renal preservation utilizing a quadruple mIS strategy with addition 

of an mTORi to limit CNI induced nephrotoxicity has been employed with some success. Several 

RCTs have demonstrated improved renal function compared to standard triple mIS with short term 

follow up [32, 58, 59]. However, it should be noted that in the 4EVERLUNG trial this benefit was not 

sustained at 5 years of follow up, and in the Nordic Certican Trial in Heart and Lung Transplantation 

(NOCTET) trial - which included both heart and lung thoracic transplant recipients - long term benefit 

beyond 5 years was only sustained among heart transplant recipients [57, 60]. 

Belatacept, a CTLA-4 fusion protein, is a novel mIS agent which works through co-stimulation 

blockade of the CD80/86 and CD28 interaction. It has been deployed with great success amongst 

Epstein Bar Virus (EBV) seropositive kidney transplant recipients as an alternative to, or with dose 

reduced CNI, to prevent long term nephrotoxicity [61, 62]. In clinical trials of kidney transplant 

recipients, when used in lieu of CNI, Belatacept was associated with an increased risk of ACR [63], it 

has also been demonstrated to decrease the rate of development of donor-specific antibodies (DSAs) 

[61]. Unsurprisingly, there has been great interest in the utilization of this agent among LT recipients 

for its renal sparing effects, or for those intolerant of CNIs due to severe complications such as 
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Posterior Reversible Encephalopathy Syndrome (PRES) or Thrombotic Thrombocytopenia Purpura 

(TTP) [64-66]. However, in the only RCT evaluating Belatacept among LT recipients, which 

randomized subjects to Belatacept plus reduced dose tacrolimus as part of a quadruple mIS strategy 

vs standard tacrolimus based triple mIS strategy, the trial was stopped after randomization of only 

27 subjects due to an excess of deaths among the study arm (five vs none) [67]. In all cases of ACR, 

particularly persistent or refractory ACR with sub-optimal mIS, the reasons for poor optimization 

should be investigated and addressed wherever possible. 

2.3 Eosinophilic ACR 

In addition to histologic phenotypes, an eosinophilic phenotype of ACR is increasingly being 

recognized. Both peripheral eosinophilia and eosinophilic alveolitis have been associated with ACR, 

BAL eosinophilia >/= 1% in the first post-transplant year was also found to be a significant predictor 

of CLAD [68, 69]. Other investigators have also demonstrated an association between BAL or serum 

eosinophilia with CLAD, and specifically the restrictive allograft syndrome (RAS) phenotype which 

has a particularly poor prognosis [70, 71]. The presence of eosinophilia is of great interest as a 

predictive biomarker as is the potential for therapeutic trials utilizing already approved biologic 

drugs targeting the Th2/IL-5 pathway. 

2.3.1 Related Forms of Acute Graft Injury 

Azithromycin responsive allograft dysfunction (ARAD), previously referred to as neutrophil 

reversible allograft dysfunction, is a long recognized form of acute allograft injury. ARAD refers to a 

subset of possible or established BOS (bronchiolitis obliterans syndrome) patients who demonstrate 

at least 10% reversal in forced expiratory volume in 1 second (FEV1) decline in response to 

Azithromycin therapy [72]. Neutrophilic alveolitis in the absence of infection has been suggested to 

be a risk for future CLAD. While earlier studies identified BAL neutrophilia as a biomarker predictive 

of Azithromycin responsiveness, the later has not been reliably reproducible, hence the change in 

terminology [72-74]. An 8-week trial of Azithromycin therapy is advocated by the ISHLT guidelines 

as a possible therapeutic trial with new onset CLAD/BOS [75]. 

Acute Fibrinous Organizing Pneumonia (AFOP) is another form of allograft dysfunction that has 

been described histopathologically and may represent a form of acute, subacute, or fulminant 

allograft injury for which the mechanism of alloimmune injury has not yet been uncovered. AFOP 

was initially described in non-transplant setting as a histological variant of acute lung injury (ALI). It 

is characterized by a predominance of interalveolar fibrin conglomerates involving 25-90% of 

sampled air spaces, and must be differentiated from diffuse alveolar damage (DAD), with its hyaline 

membranes, or the classic organizing pneumonia (OP), which has fibroblast predominant 

granulation tissue airspace deposits [76]. In the non-LT setting, the AFOP injury pattern may be 

idiopathic but has been reported in association with infection, connective tissues disease, 

occupational exposures, and drug exposures [76]. AFOP has also been identified in lung allografts 

of recipients with a clinical picture of aggressive and rapidly declining graft dysfunction and hypoxia, 

accelerated CLAD, and progression to death [77, 78]. Later onset of AFOP, occurring over 90 days 

post-transplant, has been associated with worse survival and development of RAS [79]. Notably, 

histopathological examination of lung allografts from recipients with RAS found pathologic evidence 

of AFOP in 50% subjects [80]. The most common radiological corelates reported in association with 
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AFOB include diffuse (often basal predominant) bilateral infiltrates [77] but consolidative, ground 

glass opacities and nodular infiltrates have been reported [81]. The incidence of AFOP after LT is 

unknown, but retrospective studies have reported prevalence ranging from 1.7%-11% [78]. AFOP 

was initially described during histopathological review of non-BOS phenotype CLAD patients, but 

has since been identified in LT recipients after CARVs including H1N1 influenza [82], Adenovirus [83], 

and in the setting of DSAs [79]. Nevertheless, in the LT setting most cases remain idiopathic, and a 

definite causal association remains unknown. The prognosis of AFOP is grim despite attempts at 

treating associated infections, or with augmentation of immunosuppression with steroids or ATG 

[78]. Recently, a case was reported of successful ventilator liberation in an AFOP patient treated 

with tocilizumab and infliximab [83]. Ultimately re-transplantation may be the only option [84].  

2.4 ACR Clinical Presentation 

The clinical spectrum of acute rejection typically ranges from asymptomatic to non-specific 

respiratory and constitutional symptoms such as dyspnea, cough, or low-grade fevers. Crackles or 

wheeze may be heard on pulmonary auscultation, a decline in spirometry may be present as well 

[85, 86]. Higher grades of ACR (>/= A2) are correlated with increased symptom severity, however, 

symptom burden is unlikely to be clinically useful in distinguishing ACR grade, or between ACR and 

respiratory infection [85]. Rarely, those with severe ACR may present in extremis with acute hypoxic 

respiratory failure, though uncommon, we have seen such presentations among patients with very 

low or undetectable CNI troughs. Chest radiographs are frequently unrevealing in ACR, in a small 

single center retrospective study, normal chest radiographs were found in 77% of clinically or 

histologically determined ACR episodes occurring 30 days or later post-transplant [86]. Cross section 

high resolution CT scans may demonstrate ground glass opacites, consolidation, peri-

bronchovascular or septal thickening, volume loss, or pleural effusions. However, all of these 

findings are non-specific abnormalities and have low sensitivity and specificity for detecting ACR 

[87]. Nevertheless, cross section imaging has a role in assessing severity and distribution of the 

disease process, excluding alternative diagnoses, and guiding TBBx targets [88, 89]. While a decline 

in numerous PFT parameters including FEV1, FEV1/FVC, FEF25-75, TLC, and DLCO can be seen with 

ACR, these findings are reasonably sensitive but not specific, and typically signal a need for further 

bronchoscopic investigation [90]. Routine home spirometry is commonly employed for monitoring 

and early detection of graft dysfunction, home spirometers have been shown to correlate well with 

lab spirometry, generally, a decline in FEV1 of 10% from baseline is used to trigger additional 

investigation [91-93]. Donor derived cell free DNA (dd-cfDNA), which are fragments of double-

stranded DNA released from allograft cells undergoing cell death, can be sequenced and measured 

in serum samples and quantitively compared to recipient derived cell free DNA. A relative increase 

of dd-cfDNA fraction (also referred to as %dd-cfDNA) is a novel biomarker of allograft injury [94], 

commercial testing options are currently available. Using a threshold of 1% relative increase to 

detect a composite of ACR and AMR (antibody mediated rejection), sensitivity approaches 100%, 

with a negative predicative value of up to 90% [94]. However, as dd-cfDNA is a general marker of 

graft injury, it lacks specificity. Its role in LT remains to be clarified given the multiple mechanisms 

of lung injury including infections, aspiration, ACR, AMR and BOS that can all cause a spillover of 

ddcfDNA. Further research to determine appropriate cut off values to distinguish between different 
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pathologies, and how best to incorporate this novel non-invasive testing into well-established 

allograft monitoring protocols is ongoing. 

2.5 ACR and Surveillance Bronchoscopy  

Though surveillance bronchoscopy (SB) with TBBx has not been demonstrated in the trial setting 

to be beneficial regarding overall survival or freedom from CLAD in comparison to clinically indicated 

bronchoscopies alone, it remains a frequently employed monitoring strategy [95]. In a survey of 

North American transplant centers published in 2004, 69% reported performing SB, though the 

procedure frequency and length of surveillance was not uniform between centers. Only 8% reported 

continued SB beyond 24 months [96]. Though the efficacy of SB with TBBx remains controversial, it 

has proven quite safe. In the largest published prospective cohort evaluating 1,235 surveillance and 

clinically indicated TBBx procedures, the complication rate was 6.5% - with 4% experience bleeding, 

1.46% developing a pneumothorax, and 0.32% requiring temporary mechanical ventilation, no 

deaths were reported [97]. The advantage of SB with TBBx lies in detecting silent rejection or occult 

infection. Clinically silent A2 or higher rejection has been reported in up to 18.7% of SB procedures 

[98]. Importantly, SB often has therapeutic implications, a recent single center report found that 20% 

of their SB procedures resulted in actionable clinical management in the form of antimicrobial 

therapies, adjustment of mIS, or augmented IS [99]. See Figure 7.  

 

Figure 7 Expert Corner – Surveillance Bronchoscopy. 

Both ACR and LB are well recognized risk factors for CLAD, which is the primary factor limiting 

longevity post LT [5]. Determining patient and graft survival estimates after CLAD onset is 

challenging as earlier reports exploring the natural history of CLAD typically did not differentiate 

between the bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS) 

phenotypes, which were not formalized until the 2019 ISHLT consensus document [75, 100]. For 

example, in 2010, Copeland et al reported a median survival of only 2.5 years after BOS onset with 

earlier BOS onset (<2 years), and more severe obstruction at onset, portending the worse prognosis. 

However, BOS was defined per an earlier iteration of the ISHLT guidelines and therefor the cohort 

included both BOS and RAS subjects [101]. A later retrospective study evaluating survival after CLAD 

onset reported a median survival of 309 days (0.85 years) after RAS, much worse than median 

survival after BOS which was 1070 days (2.9 years) [102]. Significantly worse survival with RAS vs. 

BOS has been a reliably reproducible finding [103, 104]. There are currently no definitively effective 

therapies that significantly alter the natural history of CLAD. Given the poor prognosis, the 

importance of aggressively screening for and treating risk factors, namely ACR, is clear. 
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2.6 Treatment of ACR  

There are no consensus documents to guide treatment of ACR, management is based on limited 

available data, clinical experience, and institutional protocols. There is consensus that higher grades, 

≥A2, requires treatment, while treatment of LB minimal AR (A1), particularly when asymptomatic, 

remains controversial [6, 96, 105]. Most opt to treat clinically apparent rejection regardless of 

histologic severity as well [9, 11, 106]. Compared to clinically silent rejection, ACR with an FEV1 

decline of at least 10% is associated with an increased risk of BOS and death, independent of 

frequency or severity of AR/LB episodes [107]. Initial therapy is typically a course of IV pulse steroids 

(500-1000 mg methylprednisolone over 3 days) followed by a steroid taper, dosing and length of 

treatment vary by center [6]. Repeat bronchoscopy with TBBx is typically performed 4-6 weeks after 

treatment to ensure resolution or identify those with refractory rejection that may require repeat 

or intensified therapy. Persistent >/= A2 rejection has been identified on up to 26% of follow up 

bronchoscopies despite treatment with pulse steroids (it should be noted that 47% had concurrent 

LB on the initial bronchoscopy), and was found to be associated with earlier BOS onset (median time 

to BOS 1.3 years vs 2 years) though no difference in overall survival [108].  

2.6.1 Approach to Minimal AR 

Potential approaches to asymptomatic A1 AR include treatment, monitoring with short interval 

follow up TBBx, or no management changes. However, there are several lines of evidence 

demonstrating the clinical significance of low-grade minimal rejection. When left untreated, A1 

lesions frequently progress, with one study showing among 255 A1 lesions identified by SB, 25.1% 

progressed to >/= A2 and 15.7% developed new LB [11]. In contrast, among the 24 A1 lesions 

identified by clinically indicated bronchoscopy and treated with an oral prednisone burst and taper, 

only two progressed to a higher grade of ACR, and no new LB lesions were found at follow up [11]. 

Additionally, subgroup analysis demonstrated that those with 2 or more occurrences of A1 were 

more likely to develop BOS and had an earlier onset of BOS compared to those with at most one 

occurrence of A1 over the first transplant year (BOS: 68% vs 43%, mean onset: 599 days vs 819 days) 

[11]. Similarly, Khalifah et al demonstrated that A1 minimal rejection is an independent risk factor 

for BOS and that the risk for BOS may be abrogated by treating with augmented IS [9]. Additionally, 

even a single isolated episode of A1 minimal rejection, without recurrence or progression to a higher 

grade, has been identified to increase BOS risk compared to those without any ACR episodes in their 

history, with increased BOS risk remaining present even when asymptomatic and symptomatic A1 

subjects were considered separately [106]. It should be noted that, the association between 

minimal rejection and CLAD risk has not been a universal finding. Biomarkers are emerging tools 

which may help identify which minimal rejection episodes may confer the greatest risk and warrant 

treating. One intriguing option is the chemoattractant CXCL9 which been shown to be elevated in 

BALF and serum in the setting of several underlying allograft injuries and predictive of future CLAD, 

though testing is not yet available in routine clinical practice and further study is needed [105, 109, 

110]. 

Taken together, it seems that “ACR begets ACR.” Or, perhaps more accurately, “ACR begets 

worse ACR.” Though more frequent episodes, worse histologic severity, and greater degree of 

clinically apparent allograft dysfunction all correlate with increased CLAD risk, even a single episode 

of asymptomatic minimal ACR may increase the risk for subsequent CLAD. Augmenting 
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immunosuppression with high dose steroids frequently leads to ACR resolution and decrease the 

risk of persistent or worsening ACR severity. A general approach to ACR management is outlined in 

Figure 8, our institutions approach to minimal AR and LB is outlined in Figure 9. 

 

Figure 8 General approach to ACR management. *Thymoglobulin – rabbit anti-

thymocyte globulin 1.5 mg/kg daily for 3-5 days is preferred. ATGAM – equine anti-

thymocyte globulin 15 mg/kg daily for 3-5 days is an alternative.  
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Figure 9 Expert Corner – Recommended management minimal ACR/LB. 

2.6.2 Refractory ACR 

Refractory rejection (steroid or treatment resistant) is not specifically defined, but generally 

refers to rejection that persists despite two prior attempts at treatment with steroids. This is a 

challenging situation with poor quality of data to support treatment decisions. in one of the largest 

cohort of treatment for refractory ACR reported, 112 subjects were treated with ATG, 60% were 

complete responders with resolution of rejection on follow up bronchoscopies, and 22% were 

partial responders with decreased ACR severity [111]. Response was sustained for 1 year as 

determined by mean A grades over time. Responders had a lower mortality 1 year after therapy 

than non-responders and complete responders had significantly less new onset or progressive CLAD 

than partial responders and numerically less than non-responders [111]. Another cytolytic therapy, 

Alemtuzumab, has also been shown to decrease the total burden of rejection when used in this 

setting [112, 113]. Utilization of cyclophosphamide, inhaled aerosolized cyclosporine preparations, 

total lymphoid irradiation, and extracorporeal photopheresis have been reported as well, though 

experience with these treatment modalities for refractory ACR is even more limited [114-117]. ACR 

also commonly occurs in the setting of ongoing antibody mediated rejection (AMR), in this situation 

patients are much less likely to respond favorably to pulse steroids and the potential for concurrent 

AMR should always be considered and ruled out [118-120]. 

3. Antibody Mediated Rejection 

3.1 AMR Molecular Mechanisms 

AMR refers to acute alloimmune rejection mediated by the humoral arm of the immune system. 

It is only relatively recently that pulmonary AMR has become a well-accepted entity. The potential 

for acute allograft rejection of humoral origin was long postulated to exist based on histopathologic 

findings of endothelial capillaritis associated with severe graft dysfunction, even before the 

availability of modern HLA antibody testing [121]. Subsequent case series reported similarly severe 

graft dysfunction in the setting of complement deposition and later circulating DSAs [122]. The 

modern framework of AMR is activation of alloimmune B-cells and plasma cells resulting in the 

production of circulating DSAs with binding affinity for donor derived MHC molecules (also referred 

to as human leukocyte antigens, HLA); Class I MHC molecules are present on all nucleated cells, 
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Class II MHC molecules are present on antigen presenting cells, and are also found on pulmonary 

epithelial cells [123].  

DSA binding to HLA antigens in the allograft vascular endothelium can promote local 

inflammatory and proliferative pathways through both complement dependent and independent 

mechanisms, which results in a cycle of tissue injury and allograft dysfunction [123]. Complement 

dependent cytotoxicity is thought to be the major mechanism of injury in AMR, and can involve 

classical, lectin or alternate pathways [124]. Additionally, there is ample evidence that humoral 

rejection can be injurious through complement independent pathways as well [125]. Wherein a 

“classic” DSA activates complement with terminal cytotoxicity resulting from assembly of the 

membrane attack complex, DSAs may alternatively result in antibody dependent cell mediated 

cytotoxicity (ADCC) if the crystalline fragment (Fc) portion of the DSA can interact and activate 

immune cells with cytotoxic capability, through Fc receptors [126]. In fact, natural killers (NK) cells 

have been proposed to have this capability through the CD16A-Fc receptor [126]. 

3.2 AMR Histopathology and Diagnostic Criteria 

Histopathological findings in pulmonary AMR are non-specific injury patterns that may be 

supportive of but not specific for an AMR diagnosis. The classic pathologic changes reported in 

association with pulmonary AMR include neutrophilic margination, neutrophilic capillaritis, diffuse 

alveolar damage, persistent or high grade ACR or LB, arteritis, and acute fibrinous organizing 

pneumonia [127]. A consensus definition for diagnosing clinical pulmonary AMR was outlined by 

the ISHLT in 2016, the five criteria include: measurable allograft dysfunction, presence of circulation 

DSA, supporting lung histology, positive C4d staining on lung biopsy, and exclusion of other causes 

[125]. The diagnostic criteria were extrapolated from the Banff criteria for renal AMR [128]. 

Diagnostic certainty is graded based on the number of attributes present; definite AMR with all 5 

attributes present, probable with 4, and possible with 3. A similar diagnostic framework was created 

for subclinical AMR, though excluding allograft dysfunction as these subjects are asymptomatic by 

definition. Though the presence of C4d staining, a marker of complement activation, was initially 

required to make a definitive diagnosis, it should be noted that interpretation of C4d staining in lung 

allografts is known to be difficult due to poor reproducibility, high background staining, and poor 

specificity; C4d+/definite AMR make up a minority of cases in recently reported cohorts [119, 129]. 

Additionally, AMR findings have been recognized in patients without any detectable donor specific 

HLA antibodies. In such cases the pathology is thought to be related to non-HLA allo or 

autoantibodies [130]. Some of these antibodies have been characterized (vimentin, AT1R, collagen 

V, and tubulin), but tests to detect them are not currently available in clinical practice [131, 132]. 

While the vasculopathy seen with AMR in lung and other solid organ allografts is similar, C4d 

staining characteristics, AMR in absence of HLA antibodies, the presence of varied pathological 

findings, as well as lack of clinical response to treatment in many cases, makes pulmonary AMR a 

unique entity. AMR in LT may have unique or additional pathogenetic factors in comparison to other 

solid organ allografts. 

3.3 AMR Incidence and Risk Factors 

The true incidence of pulmonary AMR is unknown, in part because prior to 2016 there were no 

consensus definitions for diagnosis. Additionally, HLA antibody detection technologies have evolved 
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greatly overtime to the highly sensitive, semiquantitative, solid-phase immunoassay platforms with 

optional functional assays for complement fixation (C1q and C4d assays) in current use [133]. A 

recently reported cohort of listed LT candidates found that 35% were allosensitized pre-transplant 

[134]. Sensitized patients experience increased wait times, increase waitlist mortality, and lower 

likelihood of transplant; the degree of allosensitization as determined by increasing calculated 

plasma reactive antibodies (cPRA) directly correlates with worse waitlist outcomes [134]. Higher 

Pre-transplant allosensitization is also associated with worse post-transplant outcomes, including 

decreased short term (30-day) and long-term survival, more post-surgical ventilator days, de-novo 

DSA development, AMR, and BOS [135-138]. In addition to allosensitization, primary graft 

dysfunction >/= grade 2 (PGD), redo transplantation, male sex, ex-vivo lung perfusion (EVLP), 

increased degree of HLA mismatching, high lung allocation score (LAS), and blood product 

transfusion, have been identified as risk factors for de novo DSA development post-transplant [118, 

139-141]. De novo DSA development is quite common early post-transplant, with an incidence 

between 36-47%, the majority developing within 3 months of transplant and have specificity for 

Class II DQ antigens (60-67%) [118, 140]. Numerous studies have demonstrated a strong association 

between de-novo DSAs and subsequent CLAD/BOS, Tikkanen et al reported a two-fold increase in 

CLAD risk [140, 142, 143]. It is also clear that DQ antibody specificity is particularly problematic, 

compared to other de novo DSAs, DQ specificity is an even greater risk factor for CLAD, is more 

frequently the cause of clinical AMR, and results in worse graft survival [140, 144]. Recent 

publications utilizing the 2016 diagnostic criteria have found the rate of AMR development to range 

from 10.5%-28.7% for clinical AMR, and 18.5-40.3% for subclinical AMR [119, 145].  

3.4 Clinical Presentation and Phenotypes of AMR 

In contrast to ACR, which is frequently minimally or completely asymptomatic with benign chest 

imaging, and the risk of death rare with attributed mortality estimated to be low as 1.2% [146], the 

situation with AMR is quite different. Clinical AMR patients frequently present with dyspnea, 

hypoxia, and decline in spirometry, and occasionally hemoptysis [120, 122]. Abnormal imaging 

findings are very common, occurring in approximately 90% of those with definite, probable or 

possible AMR. Cross sectional chest imaging demonstrates ground glass opacities in more than 70% 

of cases, and pleural effusion in about 50% [119]. In small case series, fulminant respiratory failure 

necessitating hospitalization or invasive mechanical ventilation is not uncommon (18%-67%) [120, 

122].  

Hyperacute and subclinical AMR are additional AMR clinical phenotypes. Hyperacute rejection 

refers to nearly immediate and fulminant graft failure after implantation, mediated by pre-formed 

circulating DSA and subsequent complement pathway activity against the graft [147]. Hyperacute 

rejection is exceedingly rare in the modern era due to advances in lab technologies and the shift to 

“virtual cross matching,” which allows for the avoidance of unacceptable antigens in a potential 

donor based on the recipients HLA-antibody profile [148]. Additionally, as the transplant community 

has gained experience with perioperative desensitization strategies, purposefully crossing 

historically unacceptable antigens has increasingly been demonstrated to be feasible for highly 

sensitized patients with acceptable short- and long-term outcomes [149-151]. Identifying which 

antigen/antibody pairs pose the greatest risk and should be avoided, as well as what specific 

therapeutic strategies are most effective, is an ongoing challenge that requires additional research.  
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Subclinical AMR is a common, and challenging, clinical phenotype defined by the presence of 

circulating DSAs in the absence of allograft dysfunction. Per the 2016 ISHLT guidelines, circulating 

DSAs, even without supportive lung histology or C4d staining, are sufficient to make a diagnosis of 

possible subclinical AMR [125]. In a retrospective cohort evaluating outcomes between subjects 

classified as having clinical or subclinical AMR, those with clinical AMR were far more likely to 

develop CLAD over 2 years of follow up (60% vs 11%), more likely to have DQ DSAs (95% vs 61%), a 

greater number of DSA specificities (3.4 vs 1.8), and higher immunodominant DSA mean 

fluorescence intensity (MFI), which semi-quantitative measure of DSA concentration in the serum 

[145]. There is also a growing body of evidence demonstrating the utility of pre-emptively treating 

sub-clinical AMR. However, predicting which patients with asymptomatic circulating DSAs will 

progress to clinical AMR remains a challenge, though the link between DSAs subsequent CLAD/BOS 

and AMR is clear [140, 142-144], the natural history of individual DSAs remains incompletely 

understood. Efforts to further risk stratify circulating DSAs and subclinical AMR is of utmost 

importance. In addition to DSA antigen specificities as seen with DQ antibodies, other DSA molecular 

characteristics such as complement fixing capability [129, 152, 153], MFI value [154], and DSA IgG 

sub-class [155, 156], may ultimately prove to be useful tools in clarifying DSA immunogenicity and 

risk of progression to clinical AMR. Higher %dd-cfDNA may help differentiate between pathologies 

with higher values being observed in AMR than ACR subjects, one study reported a median %dd-

cfDNA of 5.4% vs 1.1% [157]. Similarly, %dd-cfDNA is higher in clinical vs subclinical AMR, with a 

median %dd-cfDNA of 5.4% vs 0.6%. Even more interesting, among those with asymptomatic 

circulating DSAs, a sustained rise in %dd-cfDNA may occurs up to 3 months prior to clinical AMR 

onset [157], and therefore may a be a useful risk stratifying or monitoring tool for those with 

asymptomatic DSAs. Another exciting development is the molecular assessment of rejection 

associated transcripts in lung biopsies to identify patterns consistent with rejection [158]. These 

patterns when used in conjunction with other information including HLA and non-HLA typing will 

provide substrate for machine learning and use of artificial intelligence in risk stratification of DSAs 

and diagnosis of AMR in the future. 

With aggressive treatment more patients are surviving longer but may continue accruing ongoing 

damage from incompletely cleared DSA and ultimately progressing to CLAD. Chronic AMR is a 

phenotype of patients who survive the acute AMR episode but have persistent DSAs with ongoing 

decline including development of radiological or pathological pulmonary fibrosis and scarring after 

meeting CLAD criteria. More research is needed to study this group of patients. 

3.5 AMR Treatment 

3.5.1 Preemptive Treatment Sub Clinical AMR 

Several earlier studies have attempted to evaluate the role of pre-emptive antibody depleting 

therapies with various combinations of intravenous immunoglobulin (IVIG), Rituximab and plasma 

exchange (PLEX). While some success with DSA clearance has been reported, these studies lacked 

appropriate controls making interpretation of results challenging [159, 160]. Additionally, these 

studies did not clearly specify that included subjects were asymptomatic consistent with the recent 

definition of subclinical AMR. One group treated 65 DSA positive patients with IVIG or IVIG and 

Rituximab and compared outcomes to 51 patients who screened negative for DSA. Similar rates of 

ACR, LB, and BOS were found between the two groups, however, as there was no untreated DSA 
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positive control group, the potential treatment effect is difficult to interpret [159]. Pre-emptive 

treatment of early DSAs with PLEX and Rituximab was demonstrated to increase DSA clearance 

compared to untreated DSA positive patients, however no difference in ACR rates, BOS rates, or 

mortality, was found [160]. However, many subjects in the untreated DSA group were selected not 

to be treated due to clinical risk factors, again making interpretation of treatment effect challenging 

[160]. A recent multicenter retrospective study analyzed outcomes between well-defined 

subclinical AMR patients, either treated or not, with non-standardized antibody depleting therapies. 

The most common pre-emptive therapies included IVIG, IVIG + Rituximab, PLEX + IVIG + Rituximab. 

Pre-emptive DSA therapy was protective against a combined endpoint of CLAD or death, and clinical 

AMR [161]. Furthermore, a subset of the untreated DSA positive cohort ultimately went on to 

develop clinical AMR and were treated at that time. Delaying therapy until clinical AMR was 

associated with a 3-fold increased risk of CLAD or death, and a shorter time to CLAD or deat (18.8 

vs 22.9 months) overall suggesting that a preemptive treatment strategy is beneficial [161].  

3.5.2 Treatment and Morbidity of Clinical AMR 

There are no randomized clinical trials to guide treatment of pulmonary AMR, treatment 

modalities have been adopted from experience with other SOTs, as well as from chemotherapeutics 

directed at B-cell malignancies. The goals of treatment are to deplete circulating antibodies, prevent 

further antibody production, and limit ongoing inflammatory insult to the allograft. Multimodal 

therapy is usually employed, the backbone consisting of plasmapheresis, IVIG, and Rituximab. 

Addition of ATG preparations may be beneficial due to indirect effects on B-cell and immunoglobulin 

production stimulation, as well as for concomitant ACR which is common. Newer additions to the 

AMR armamentarium include proteosome inhibitors bortezomib and carfilzomib which specifically 

impact immunoglobulin secreting plasma cells – an important target that is not depleted with anti-

CD20 antibody therapies. Belatacept, as mentioned earlier, has also been shown to decrease DSA 

production in clinical trials of kidney recipients. The existing literature surrounding treatment of 

clinical pulmonary AMR is limited to case series and cohort studies, deciphering therapeutic effect 

of any individual therapy, or regimen, is difficult. Common pitfalls include inadequate or no controls 

for comparison, and a lack of standardization of the therapeutic intervention [122, 129, 162]. It clear 

that pulse steroid monotherapy is insufficient treatment for AMR, with an estimated ~50% clinical 

response rate [120]. Among steroid non-responders’ subsequently treated with PLEX, clinical 

improvement as determined by improvements in symptoms, hypoxia, or spirometry occurred in the 

majority (67%) [120]. However, PLEX itself will not decrease continued DSA production. 16 AMR 

patients were treated with an aggressive standardized protocol including PLEX, steroids, bortezomib, 

rituximab, and IVIG – by 6 months post therapy 5/16 subjects died and 7/16 had decreased allograft 

function from baseline; only 3 of the 11 survivors at 6 months cleared all DSAs [163]. The optimal 

combination of antibody depleting therapeutics and PLEX sessions to reduce DSA burden remains 

unknown [164]. Eculizumab, a compliment inhibitor which prevents C5 cleavage and prevents 

formation of the membrane attack complex, has been demonstrated to be useful for AMR 

treatment in kidney recipients, there is minimal experience reported with this agent in the LT 

literature [165, 166]. Imlifidase, an IgG degrading enzyme, has recently been reported to help 

facilitate HLA antibody depletion in a highly sensitized LT candidate refractory to other therapeutic 

trials [167]. The first series of pulmonary AMR patients treated with Tocilizumab was recently 
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published, there was a signal of greater DSA clearance and improved graft survival compared to 

AMR patients treated without Tocilizumab [168], further evaluation of this therapy in pulmonary 

AMR is warranted.  

AMR treatment regimens are complex and ultimately determined by institutional experience and 

protocols, with adjustments made based on patient specific circumstances and the known risks and 

side effects associated with the individual treatment components, refer to Table 3. In general, more 

aggressive therapy is provided to those with a more severe clinical syndrome.  

Table 3 AMR Therapeutic, Mechanism, Potential Contraindications. 

Treatment Mechanism Concerns and potential Contraindications  Reference 

Corticosteroid  

Inhibition of inflammatory 

response, alteration of 

leukocyte movement, and 

influence leukocyte 

differentiation 

 [169] 

Plasmapheresis  
Removal of circulating 

antibodies  

Coagulopathy, factor depletion, 

electrolyte disturbance 
[164] 

IVIG 

Unclear multifactorial 

mechanism, complement 

modification, Antibody 

neutralization, regulation 

innate and adaptive immunity 

Volume status, rare risk for clotting, 

kidney injury, anaphylaxis  
[170] 

Rituximab 

Immune mediated cell 

destruction via complement 

and antibody cytotoxicity, 

depletion of B cells  

Does not impact DSA secreting plasma 

cells 
[171] 

Bortezomib  

Plasma cell depletion tough 

disruption of proteasome  

Bortezomib – bone marrow suppression, 

thrombocytopenia, severe peripheral 

neuropathy, avoid in those with 

neuropathy or on azoles. 
[172] 

Carfilzomib 

Carfilzomib – bone marrow suppression, 

thrombocytopenia, new on-set or 

worsening heart failure – avoid with low 

EF 

Eculizumab 

Inhibition of membrane-attack 

complex via destruction of 

complement C5 

Increased infectious risk encapsulated 

bacteria, 

Need meningococcal vaccine 

[166] 

Belatacept1 

Selective T cell co-stimulation 

blocker binding CD80 and CD 

86 on APCs 

PTLD risk with EBV seronegative patient, 

infection risk  
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Tocilizumab1 IL-6 antagonist  
Increased GI perforation risk, avoid with 

diverticular disease 
[168] 

Tofacitinib1 JAK 1 inhibition  [173] 

Belimumab1 
B cell activating factor 

antagonist  
 [173] 

Including novel agents1 

Despite aggressive treatment, morbidity and mortality attributed to AMR is very high. In a recent 

study evaluating outcomes among 55 patients treated for AMR in the modern era, >70% required 

ICU care during the course of their AMR therapy, 50% required invasive mechanical ventilation 

(IMV), and 13% received VV ECMO [174]. Death attributed to AMR, complications of treatment, or 

CLAD occurred in 38% of subjects within 1 year of therapy, 10 deaths occurred throughout the 

course of the treatment hospitalization [174]. Similarly poor outcomes were noted in another 

modern cohort of 73 treated clinical AMR patients, where 75% were hospitalized, 38% required IMV, 

26% died within 30 days of AMR therapy [129]. Overall, 84% either died or required re-

transplantation with a median allograft survival time of 246 days from AMR diagnosis [129]. 

4. Conclusion 

The screening, timely diagnosis, and management of ACR and AMR is the cornerstone of post LT 

management. In addition to timely treatment of ACR, every effort should be made to assess patients 

for risk factors that predispose to ACR given the risk of CLAD, which is the most important factor in 

predicting long term survival of LT recipients. AMR is not only a risk for CLAD but is highly morbid 

entity for which reliable and successful treatment options are needed, early aggressive antibody 

directed treatments may be warranted even in cases of subclinical AMR for patients who can 

reasonably tolerate augmented immunosuppression.  
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