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Abstract

One of the major hurdles still facing the field of transplantation is the management of 

immunosuppression and the morbidity that results from treatment. Due to toxicity and 

complications from a maintenance immunosuppression therapies, a necessary improvement 

in post-transplant immunosuppressive therapies must be the development of a low-side 

effect therapy. Cell-based therapies as an emerging candidate offer a novel approach to 

generating graft tolerance, and when utilized within a combination therapeutic strategy, 

they may allow for targeted allograft protection with higher safety. In this review, the results 

and advances of these cell-based approaches including regulatory T cells, IL-10 producing Tr1 

cells, tolerogenic dendritic cells and mesenchymal stem cells in animal studies and clinical 

trials will be discussed and compared.
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1. Introduction

Solid organ transplantation (SOT) and hematopoietic stem cell transplantation (HSCT) have 

become widely utilized procedures in today’s clinical environment, and this is due to a variety of 

factors. First, in recent years significant progress has been made in the investigation of the 

mechanisms of allograft rejection [1]. Second, the development and application of numerous 

immunosuppression agents such as Tacrolimus have dramatically improved graft survival rates in 

organ transplantation [2]. Although the development of modern immunosuppression agents has 

resulted in dramatic improvement of short-term graft survival, however, the long-term survival 

rates remain a challenge [3]. Furthermore, toxicities of conventional immunosuppression, 

including susceptibility to a wide variety of pathogens, nephrotoxicity, diabetes mellitus, anemia, 

and many others [4-6]   have now become major roadblocks in today’s clinical transplantation 

setting.

As a result of the challenges associated with pharmacologic immunosuppression, research 

groups across the world have begun focusing on generating allograft tolerance as a mechanism to 

promote long-term graft survival. One of the most exciting movements within this research field, 

that of cell-based therapies, offers a novel approach to generating graft tolerance, and when 

utilized within a combination therapeutic strategy, these cell-based strategies may allow for 

targeted allograft protection without compromising the host’s overall protective immunity. Within 

this framework of cell-based therapies, protocols that utilize regulatory T cells (CD4+ Treg, CD8+ 

Treg), IL-10 producing Tr1 cells [7], regulatory macrophages (Mreg) [8, 9], tolerogenic dendritic 

cells (tol-DCs) [10, 11], and Mesenchymal stem cells (MSCs) have emerged as the most promising 

approaches. In this review, the results and advances of cell-based immunosuppressive approaches 

in animal studies and clinical trials will be discussed and compared.

2. CD4+ Regulatory T Cells

Regulatory T cells (Tregs) are an important element in the development of transplant tolerance, 

and they are commonly utilized in cell-based immunosuppressive protocols. The rationale behind 

using Tregs is that they will shift the host’s inflammatory environment from a Th1 effector 

response to regulatory response, thereby lowering the risk of rejection and reducing the required 

conventional immunosuppression. There is a wide spectrum of heterogeneity among the cells 

grouped as “Tregs,” and each of the subsets carries out a unique tolerance-promoting function 

[12]. However, the most important Treg subset is the class of conventional Treg cells that are 

CD4+CD25hiFoxp3+CD127low, within which Foxp3 is a transcription factor that plays a critical role in 

Treg development and function [13-16]. There are multiple mechanisms by which these 

CD4+CD25hiFoxp3+CD127low Tregs exert their inhibitory effects and limit T cell activation, including 

cytotoxicity, secretion of IL-10 [17, 18], disruption of IL-2 signaling [19], disruption of antigen 

presenting cell (APC) signalling [20, 21], and induction of T cell anergy [22]. While many properties 

and characteristics of human Tregs remain to be studied, critical advances have been made in 

identifying specific types and subtypes of Tregs based on their markers, in expanding Tregs in ex 

vivo cultures, and in elucidating the pathways by which Tregs promote immunosuppression. As a
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result of these advances, Tregs are becoming easier to culture and study, and research centers 

around the world are exploring new therapeutic applications of Tregs. 

2.1 Animal Models 

Within the realm of transplantation there is evidence of a useful array of Treg functions, and 

recent animal studies show that Tregs may interact with Calcineurin inhibitors (CNI) to control 

memory T cells and promote long-term graft survival [23]. It is well-established that regulatory T 

cells are critical for inducing and maintaining tolerance in the transplant setting, and previous 

animal transplantation studies have indicated that Treg-based therapy can control allograft 

rejection and potentially induce tolerance through a pathway involving anti-CD4 antibodies [24]. 

In one such study, the recipient and donor-derived Tregs  proved to be effective in inhibiting 

alloreactivity both in vitro and in vivo; although interestingly the effect of donor-derived Tregs 

could be countered by exogenous IL-12 [25]. Furthermore, within the field of bone marrow 

transplantation, regulatory T cells are proving to play an important role in containing graft-versus-

host disease [26].  In particular, ex vivo expanded CD4+CD25+ regulatory T cells have the ability to 

inhibit graft-versus-host disease while at the same time preserving graft-versus-tumor activity [27, 

28]. Within the fields of solid organ transplantation, in vitro alloantigen stimulated regulatory T 

cells have been shown to induce long-term tolerance in both skin and cardiac transplants [29]. 

Treg utilization may also benefit from recent advances in T cell research such as the genetic 

engineering of T cells to overexpress transgenic TCRs, which is a research model that is currently 

being tested in settings such as cancer immunotherapy [30], autoimmune diseases [31] and 

allograft rejection [32, 33]. By developing chimeric antigen receptors (CARs) on Tregs, these cells 

could target designated allo-antigens and induce highly specific tolerance toward a small group of 

antigens. In one recent study [32] CAR technology was used to modify Tregs, and the results 

indicated that CAR-Tregs exhibit more potent suppressive activity both in vitro and in human skin 

xenografts when compared to polyclonal Tregs. Additionally, in a separate study utilizing a murine 

islet transplant model, mAb-directed CARs were bound to Tregs and administered to the mice that 

were recipients of the islet cell transplants. The administration of these Tregs led to donor specific 

tolerance and extended both islet cell graft survival and secondary donor skin graft survival [33]. 

2.2 Clinical Application 

Human Tregs have been well-characterized over the past two decades, and the important roles 

they have in human transplantation outcomes are becoming evident. In 2009, a study by 

Trzonkowski et al [34] demonstrated that ex vivo expanded Tregs are effective at preventing 

chronic GvHD in humans. In particular, they found that Treg infusion was associated with a 

significant decrease in pro-inflammatory cytokines, and they also found that if Treg administration 

was delayed, the prevention of GVHD was less successful. Later, in 2010 Brunstein et al [35] 

managed to prevent allogeneic acute GvHD in bone marrow transplant recipients by infusing ex 

vivo expanded Tregs along with a standard immunosuppressive therapy into patients. They also 

found that cryopreservation may negatively impact the overall functioning of Tregs. In 2011, Di 

Ianni et al [36] proved that the infusion of freshly isolated donor Tregs into bone marrow 

transplant recipients can make immune reconstitution with CD4+ and CD8+ T cell administration a 

feasible and safe option in the clinical setting. Finally, a study by Marek-Trzonkowska et al [37] 
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showed that Treg infusion is an effective therapeutic option to prolong the length of remission of 

type 1 diabetes in children. 

More recently, a phase 1 Treg Adoptive Cellular Transfer (TRACT) trial tested the use of Tregs in 

kidney transplantation through the use of polyclonal expanded Tregs from recipients’ 

cryopreserved leukopheresis products (NCT02145325) [38]. A total of nine patients were enrolled 

in the TRACT study, and all of them received Tacrolimus and mycophenolate immediately after  

transplantation, followed by conversion to Sirolimus monotherapy prior to administration of Tregs. 

Compared to pre-transplant Treg levels, in all patients a 5-20 fold increase in Tregs was achieved 

at one year follow up, indicating that the Treg infusions resulted in a stably elevated Treg presence 

within the recipients. Additionally, the study demonstrated the long-term safety of Treg therapy in 

humans. The pilot TASKp trial (NCT02088931) also explored the potential of ex vivo expanded 

polyclonal Tregs in kidney transplantation. The TASKp trial therapy included an infusion of 320×106 

Tregs into each patient, and the resulting 100-fold expansion (or greater) of infused Tregs over the 

course of one week resulted in the infused Treg population comprising 7.5% of the patients’ total 

peripheral Tregs. Furthermore, the results of a 1-year follow-up indicated decreased graft 

inflammation and increased uCRM scores compared to pre-Treg infusion levels. Finally, another 

pilot study recently applied regulatory T cell-based therapy in the setting of living donor liver 

transplantation. Ex vivo-produced Tregs were infused into recipients, and 7 out of 10 patients 

were able to completely withdraw from immunosuppression [39].  

Through all of these clinical trials, Treg infusion has been shown to be a safe and effective 

method of modulating the immune system while simultaneously minimizing the use of 

immunosuppressive drugs. Furthermore, these studies show that the efficacy of Treg therapy is 

dependent on proper dosage, time of administration, and quality of the Tregs themselves. Future 

utilization of Treg infusion therapy will rely on the development of novel Treg expansion protocols 

as well as further discoveries into the mechanisms by which Tregs suppress immune functions. 

3. CD8+ Regulatory T Cells 

While it has become well-established that CD4+ regulatory T cells are critical for immune 

regulation, researchers have just recently discovered that some sub-populations of CD8+ T cells 

may also act as potent regulators of immune tolerance through the promotion of suppressive 

activity. In humans, CD8+CD28- Tregs have been found in the settings of chronic allograft rejection 

[40-42] and autoimmune disease [43], and along with other CD8+ subtypes including CD8+CD103+ 

[44] and CD8+CD122+ [45] cells, they have been shown to inhibit T cell activation and proliferation. 

Due to their recent discovery, the underlying inhibitory mechanisms of these CD8+ Tregs have not 

yet been fully illustrated. However, perforin-mediated cytotoxicity, cell contact-dependent 

inhibition, the production of inhibitory cytokines, and the upregulation of inhibitory markers on 

APCs have all been linked to their suppressive activity [46, 47]. Moreover, there is evidence that 

CD8+Foxp3+ Tregs may indirectly inhibit proliferation of effector CD4+ and CD8+ T cells and the 

production of pro-inflammatory cytokines by stimulating an increase in CTLA-4 expression on 

dendritic cells [48]. 
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3.1 Animal Models 

Numerous pre-clinical research models have demonstrated the potential benefits of CD8+CD28- 

Tregs in the transplant setting. In ex vivo models, the CD8+CD28- Tregs have been shown to 

anergize xenoreactive CD4+ T cells [49]. These CD8+CD28- Tregs have also been demonstrated to 

have a beneficial effect on the long-term survival of rat liver transplants [50]. Additionally, 

adoptive transfer of CD8+CD122+ Tregs has been shown to extend graft survival in murine 

allogeneic islet transplantation models [51]. Finally, the infusion of human CD8+ regulatory T cells 

in a murine model proved to be effective in inhibiting GvHD while persevering the protective 

immunity of the mice [52]. 

In summary, while CD8+ Tregs have only recently been discovered and there have not been any 

clinical trials involving their administration into human patients, they are considered a novel and 

promising cell population with many potential future applications in the prevention allograft 

rejection. 

4. Tolerogenic Dendritic Cells 

Dendritic cells (DCs) have become well-known as the most potent of the antigen presenting 

cells. As critical orchestrators of the immune response, DCs have multiple roles in the upregulation 

and downregulation of the immune response as well as the induction of tolerance [53]. DCs 

comprise a very heterogeneous group of cells, and they can be sorted into conventional and 

plasmacytoid DCs based on their phenotypes and functions. Additionally, DCs can be sub-divided 

into immature and mature DCs based on their development stages. Of particular interest is a 

subpopulation of DCs known as regulatory or tolerogenic DCs (tol-DCs). These cells arise from 

immature DCs and function as suppressors of the immune response [54]. Tol-DCs play a vital role 

in maintaining both central and peripheral tolerance, and they promote tolerance through T cell 

inhibition and apoptotic depletion, induction of T cell anergy, activation of Tregs, and the 

production of immunosuppressive cytokines such as IL-10, TGF-β and IDO [55, 56]. Regarding 

central tolerance within the thymus, these tol-DCs enforce negative selection of self-reactive and 

antigen-specific reactive thymocytes. Furthermore, they also promote central tolerance by 

inducing regulatory T cell generation [57-59]. 

4.1 Animal Models 

Many experiments have been conducted using tolerogenic DCs as a treatment both prior to 

and after the establishment of autoimmune disease symptoms, and the results suggest that 

tolerogenic DCs have a strong inhibitory effect on the development of autoimmune diseases [60]. 

In rodent heart and islet cell transplant studies it has been shown that tol-DCs are capable of 

decreasing effector T cell frequency and inducing splenic T cell unresponsiveness to allo-antigens 

[61, 62]. Furthermore, adoptive transfer of tol-DCs into transplant recipients has been shown to 

promote the development of donor-specific tolerance [63]. In mice, a series of studies showed 

that when pre-transplantation adoptive transfer of tol-DCs was utilized in addition to conventional 

immunosuppression, the median survival of the cardiac grafts exceeded 100 days [63-66]. 

In non-human primate transplant models, the Thomson group showed that infusion of tol-DCs 

along with CTLA4-Ig administration reduced allogenic T cell responses and led to an increase in 
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immune-modulating IL-10 producing T cells [67]. In another non-human primate transplant study, 

it was shown that tol-DC administration one week prior to transplantation increased graft survival 

by over 70 days [68]. Most recently, tol-DCs have also been shown to modulate the immune 

response by decreasing IL-17 production and promoting renal allograft survival in primate models 

[69]. 

4.2 Clinical Application 

Tol-DCs are already being utilized in clinical trials to test for therapeutic benefits in 

inflammatory and autoimmune diseases such as Type 1 Diabetes [70], Rheumatoid Arthritis [71, 

72] and Crohn’s Disease [73]. Within the transplant setting, tol-DCs, and indeed, APCs in general 

are beginning to enter the clinical realm. Most recently, researchers have been studying the 

immunosuppressive benefits of another APC, which is a donor splenic macrophage referred to as a 

“transplant acceptance inducing cell” (TAIC) [74, 75]. In Hutchinson JA’s study on TAICs and their 

immunosuppressive effects after renal transplantation, his team found that 10 of 12 patients were 

able to gradually withdraw from the conventional immunosuppression after 8 weeks due to the 

addition of TAICs to the treatment protocol [74]. Another study investigating the efficacy of 

regulatory macrophages (Mregs) in the renal transplant setting involved the administration of 

Mregs one week prior to transplantation. The patients then received multi-drug 

immunosuppression for 6 months before being tapered down to low-dose Tacrolimus 

monotherapy. Flow cytometry-based in vitro suppression assays indicated profound suppression 

of both CD4+ and CD8+ T cells in the early post-op period, and both patients in the study had 

stable graft function at 3 year follow-up visits [9]. As evidenced by these numerous successful 

clinical and pre-clinical trials, tol-DCs and other regulatory APCs have proven to be safe for use in 

humans and are demonstrating promise as potent additions to post-transplantation 

immunosuppression protocols. Given the promising results of these initial studies, then, several 

new phase I/II clinical trials are now underway to further investigate the use of tol-DCs and other 

APCs as additions to the immunosuppressive protocol in a variety of transplant settings. 

(NCT02088931, NCT02091232, NCT02129881, NCT02188719, NCT02244801) 

5. Mesenchymal Stem Cells 

Mesenchymal stem cells (MSCs) have long been considered an exciting cell population with the 

potential to enhance immunosuppressive protocols while minimizing side effects. In the field of 

transplantation, MSCs can be exogenously cultured and infused in order to influence immune 

microenvironments within the host in a paracrine fashion [76], and the dual roles of MSCs in 

regeneration and immune regulation make them uniquely attractive compared to previously 

mentioned cell lines such as T cells and DCs. What is more, allogeneic MSCs do not trigger classic 

rejection episodes by the host’s immune system, and their immunomodulatory effects have 

shown promise in reducing cell-mediated cytotoxic effects on transplanted organs [77]. 

Mesenchymal stem cells possess a wide variety of immunoregulatory functions and have been 

shown to suppress the proliferation and activity of immune cells both in vivo and in vitro [1, 78, 

79]. MSCs can suppress Th1 and Th17 cell proliferation via a contact-dependent method, and they 

can induce the expansion of immunomodulatory Tr1 IL-10+ T cells and Th3 TGF-β+ T cells. One 

study showed that MSCs can influence the development and maturation of APCs and decrease the 
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ability of these APCs to activate a T cell response [80]. In addition to inhibiting lymphocyte 

activation and cytokine production, there are also multiple studies indicating that MSCs can 

stimulate the maturation of regulatory T cells and regulatory B cells [81].   

Although therapies based on MSC administration are generating exciting results, it is important 

to note that there are controversies surrounding the classification and characterization of “MSCs.” 

Cells classified as MSCs can originate from bone marrow, skin, pancreatic tissue, the lungs, the 

kidneys, and many other sources. Furthermore, the term “MSC” represents such a diverse class of 

cells that, unlike many other stem cell types, there’s no defining epitope unique to all MSCs [82]. 

As such, isolating MSCs requires an extensive enrichment process involving multiple markers, and 

the final enriched product may be a heterogeneous mixture of MSC subpopulations [83, 84] .  

5.1 Animal Models 

The preclinical pilot study on the immunosuppressive potential of MSCs was conducted on a 

baboon model by Bartholomew et al [85]. The infusion of allogeneic MSCs led to extended skin 

graft survival, and the MSCs did not elicit a proliferative response from the host immune system. 

Since this initial trial, numerous studies have been conducted to explore the mechanisms by which 

MSCs influence and enhance graft survival in various transplantation models [86-88]. 

5.2 Clinical Application 

The first clinical trial regarding the infusion of MSCs in a transplantation setting was reported in 

2011, in which two renal transplant patients received autologous MSCs from living-related donors 

[89]. Through the generation of an increase in the CD4+ Treg population and a simultaneous 

decrease in the CD8+ memory T cell population, cell-based therapies that utilized the MSCs were 

proven to be safe and effective in the clinical transplant setting. Currently, five completed clinical 

trials [90-94] have investigated the effects of MSC infusion in transplant patients, and all have 

shown MSCs to be effective immunomodulators. Furthermore, there are eight ongoing clinical 

trials involving MSCs in transplantation, and these trials will provide further information regarding 

the efficacy of MSCs in the clinical setting. (NCT02490020, NCT01690247, NCT02563366, 

NCT02409940, NCT01429038, NCT02561767, NCT02492308, NCT02957552) 

Although MSCs are relatively new within the field of cell-based transplant treatment and their 

therapeutic benefits have not yet been fully elucidated, the research that has been done has 

shown MSCs to be a safe and promising therapeutic option of the future. 

6. Conclusion 

Cell based therapies within the field of transplantation are relatively new and must be 

rigorously standardized, optimized, and generalized before becoming a crucial addition to 

immunosuppressive protocols. However, with minimal side effects and clear benefits in an era of 

personalized medicine, cell-based therapies are ideally suited to become a new class of 

immunomodulatory treatments and to revolutionize our approach to developing transplant 

immunosuppression regimens.  

 

https://clinicaltrials.gov/ct2/show/NCT02490020
https://clinicaltrials.gov/ct2/show/NCT01690247
https://clinicaltrials.gov/ct2/show/NCT02563366
https://clinicaltrials.gov/ct2/show/NCT02409940
https://clinicaltrials.gov/ct2/show/NCT01429038
https://clinicaltrials.gov/ct2/show/NCT02561767
https://clinicaltrials.gov/ct2/show/NCT02492308
https://clinicaltrials.gov/ct2/show/NCT02957552
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