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Abstract 

Collective effects are a typical nuclear feature that refers to the behavior of a group of 𝑁 

fermions (protons and neutrons) within the atomic nucleus. Our interest lies in light nuclei 

only. Thus, we consider here, using the Lipkin model, a small-𝑁  fermion system at low-

temperature 𝑇 and discover -collective phenomena. Our fermion-model simplicity allows one 

to gain insight into collective fermion behavior. We focus attention, for 𝑁 < 20, on several 

quantifiers. These include standard ones related to thermal behavior, such as entropy, and 

quantifiers of another kind, like quantum purity. 
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1. Introduction 

The emergence of collective effects in a system with just a few fermions, like atomic nuclei, can 

be highly relevant and scientifically significant. These collective effects (like nuclear rotation, nuclear 

vibration, or nuclear deformation, for instance) refer to behaviors or phenomena that arise from 

the interactions between individual particles in a system. In the context of fermions, these 

interactions often involve quantum mechanical principles, such as the Pauli exclusion principle, 

which is a fundamental aspect of fermionic behavior. Observing collective effects in a small 

fermionic system can provide valuable insights into the underlying quantum behavior of particles. 

It can help researchers better understand how quantum statistics, particle interactions, and 

confinement in small systems lead us to discover emergent phenomena here. Note that we will not 

need this discovery to appeal to the entanglement notion, although this may be necessary to explain 

them. In condensed matter physics, understanding the behavior of a small number of fermions is 

crucial for comprehending electron correlations and interactions in specific materials, such as 

quantum dots, where a limited number of electrons are confined to a tiny space. As technology and 

experimental techniques advance, studying small fermionic systems can yield valuable 

contributions to understanding fundamental physics and developing new technologies. 

The quantum 𝑁 -fermion system exhibits some intricate properties [1-30]. Using statistical 

mechanics, we will study special manifestations of collective quantum properties for small (𝑁 < 20) 

fermion numbers at very low finite temperatures. We use a tractable many-body system, originally 

designed to study atomic nuclei, that can illuminate some interesting theoretical effects. Thermal 

statistical manipulation of the behavior of many fermions at finite temperatures is known to yield 

interesting insights [17]. Accordingly, we appeal to the exceedingly well-known Lipkin model (LM) 

[31, 32] at finite temperature and consider the pertinent structural traits in Gibbs’ canonical 

ensemble formalism framework. The general principles of many-body physics and collective 

behavior that the Likpkin model addresses can be relevant to researchers in many areas. 

1.1 A Nuclear Physics Motivation 

Collective behavior is not limited to heavy atomic nuclei; even light atomic nuclei can exhibit 

collective effects that arise in nuclei due to the interactions among nucleons (protons and neutrons). 

While the specific manifestations of collectivity may vary depending on the size and characteristics 

of the nucleus, certain light nuclei do display collective behavior. For example, some light nuclei 

exhibit clustering behavior, where nucleons arrange themselves into clusters resembling alpha 

particles (helium nuclei). Enhanced stability can result from this clustering phenomenon observed 

in certain isotopes. Other collective effects are nuclear deformations. Also, light nuclei can undergo 

collective excitations, where nucleons collectively oscillate or move in a coordinated manner. This 

can include vibrations and rotations [10]. 

1.2 Our Goal 

For small particle numbers 𝑁 < 20  , we focused on emerging collective phenomena in a 

celebrated interacting fermions model. These phenomena appear in various fields of science, 

particularly nuclear physics, and give rise to typical behaviors revealing a high level of organization. 
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Our examples highlight how, for small particle numbers, collective effects in fermion systems can 

manifest themselves. LARGE particle numbers emerge in various physical phenomena, from 

superconductivity and metal-insulator transitions to quantum (and fractional) Hall effect. 

2. Details of the Lipkin Model to Be Needed Here 

2.1 Preliminaries 

Many-body theorists are usually knowledgeable about exactly solvable models (ESM). There are 

not many of them. They help gain insight into many particle systems. If the problem to be solved 

can be related to a precisely solvable one, however vaguely, one can usually gain some insight. In 

this work, we use a model that, with a little diagonalization effort, yields exact results. 

The Lipkin Model (LM) [31, 32] is a simplified quantum mechanical model, easily diagonalizable, 

used to describe certain features of many body systems. Harry J. Lipkin introduced it in 1960; since 

then, it has been a valuable tool for understanding collective phenomena. This model is primarily 

used to study the interplay between single-particle motion (which can be described by a mean-field 

approach) and residual two-body interactions (correlations between fermions pairs) in a many-body 

quantum system. The LM provides a simplified framework to explore distinct many-fermion traits. 

Next, some of them are mentioned [31, 32]. 

1) One of the key features of the Lipkin Model is its ability to describe pairing correlations. This 

pairing phenomenon is essential for understanding superfluidity and superconductivity. 

2) Phase Transitions: the model can be used to study phase transitions in many body systems, 

such as the transition from a non-correlated phase to a correlated phase. 

3) Symmetry Breaking: the Lipkin Model can illustrate the breaking of certain symmetries. In 

particular, it can show how the pairing interaction can break isospin symmetry in certain cases. 

4) Didactics: the Lipkin Model is often used as a pedagogical tool because it provides a tractable 

way to explore many-body interactions and their effects. 

The LM itself [3] involves a set of quantum operators and Hamiltonians that describe the 

interaction between nucleons and is typically solved numerically. 

In summary, models like Lipkin’s are indispensable tools in understanding and exploring quantum 

phenomena, testing theoretical methods, and providing insights into the behavior of complex 

quantum systems. Their importance extends beyond theoretical physics and has applications in 

condensed matter physics, quantum information, nuclear physics, and related fields [31, 32]. 

2.2 Lipkin Model’s Formalism 

The LM [31, 32] is a simplified system containing 𝑁  fermions in just two levels. It is exactly 

solvable. The model considers a quite simple fermion-fermion interaction of strength 𝑣. In nature, 

of course, the coupling constants are fixed. In the model, of course, we vary it to observe how 

changes in 𝑣 affect the ground state traits. We also study the model behavior for different 𝑁. 

Our model possesses 𝑁 = 2𝛺  fermions that occupy two different N-fold degenerate single-

particle (sp) energy levels. A sp energy gap 𝜖.characterizes them. This entails 4Ω s.p. microstates. 

Two quantum numbers (𝜇 = ±1 and 𝑝 = 1,2, … , 𝑁) are associated with a given microstate |𝑝, 𝜇 >. 

The first one, called 𝜇 , adopts the values 𝜇 = −1  (lower level) and 𝜇 = +1  (upper level). The 

second runs from unity to 𝑁. This remaining quantum number, called 𝑝, is baptized as a quasi-spin 
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or pseudo-spin that singles out a specific microstate about the 2𝑁-fold degeneracy. The pair 𝑝, 𝜇 is 

considered a "site" that can either be occupied by a fermion or remain empty. Lipkin fixes [31, 32]. 

𝑁 = 2𝐽. (1) 

Here, 𝐽 is a sort of angular momentum. Lipkin [17, 31] uses special operators called quasi-spin 

ones. We use below the usual creation operators 𝐶𝑝,𝜇
+  and its associated destruction ones 𝐶𝑝,𝜇 for 

creating or destroying a fermion at a site |𝑝, 𝜇 >. 

2.3 Quasi Spin Operators 

Quasi-spin operators 𝐽  are mathematical constructs describing the collective properties of 

specific many-body systems. These operators arise in various areas of physics, such as nuclear 

physics, condensed matter physics, and quantum optics, where systems can exhibit collective 

behavior due to interactions between constituent particles. Quasi-spin operators are beneficial in 

cases where the collective behavior resembles the behavior of spin systems, hence the name "quasi-

spin." The concept of quasi-spin originates from the analogy between the properties of many-body 

systems and those of spin systems, which are well-understood and widely used in quantum 

mechanics. In a spin system, the angular momentum operators (spin operators) obey the 

commutation relations of the SU2 algebra, and they play a fundamental role in characterizing the 

system's angular momentum and magnetic properties. In many-body systems, introducing quasi-

spin operators represents collective excitations or modes that behave similarly to angular 

momentum. These operators often have algebraic properties resembling the SU2 algebra, making 

them suitable for describing the collective dynamics of the system. Overall, quasi-spin operators 

offer a valuable tool in theoretical physics for investigating collective behavior in complex many-

body systems, facilitating the understanding of emergent phenomena and enabling the 

development of analytical and numerical techniques to study these systems in different physical 

contexts [31, 32]. The specific form and properties of the quasi-spin operators depend on the nature 

of the many-body system being studied and the interactions between its constituents. They are 

introduced to simplify the description of collective phenomena and, as mentioned earlier, provide 

a robust mathematical framework for treating many interacting fermions. One has for these 

operators the definitions:  

𝐽𝑧 = ∑ 𝜇

𝑝,𝜇

𝐶𝑝,𝜇
+ 𝐶𝑝,𝜇, (2) 

𝐽+ = ∑ 𝐶𝑝,+
+

𝑝

𝐶𝑝,−, (3) 

𝐽− = ∑ 𝐶𝑝,−
+

𝑝

𝐶𝑝,+, (4) 

and the Casimir operator:  

𝐽2 = 𝐽𝑧
2 +

1

2
(𝐽+𝐽− + 𝐽−𝐽+). (5) 
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The eigenvalues of 𝐽2  take form 𝐽(𝐽 + 1), and the Lipkin Hamiltonian reads (𝑣  is a coupling 

constant) [31, 32]:  

𝐻 = 𝜖𝐽𝑧 +
𝑣

4
(𝐽+

2 + 𝐽−
2). (6) 

The Hamiltonian matrix is if 𝑛 denotes the number of fermions in the upper level [31, 32], 

⟨𝑛′|𝐻𝐿|𝑛⟩ = {
𝑁

2
− 𝑛 + 1} 𝛿𝑛′,𝑛 −

−
𝑣

2
√(𝑁 − 𝑛)(𝑁 − 𝑛 + 1)(𝑛 + 1)𝑛 𝛿𝑛′,𝑛+2

−
𝑣

2
√(𝑁 − 𝑛)(𝑁 − 𝑛 + 1)(𝑛 + 1)𝑛 𝛿𝑛′,𝑛−2, (7)

 

 

with 𝑛 = 0,1, . . . , 𝑁  for 𝐽 = 𝑁/2 . Numerical diagonalization yields energy-eigenvalues 𝐸𝑛(𝑣, 𝐽) . 

These eigenvalues are needed to build the partition function 𝑍 (see below). 

3. Detecting Collective Effects in the Associated Spectrum 

We now enter new territories and begin to address our goal of detecting collective effects. For 

this, let us consider the energy difference between the ground state energy 𝐸0 and the first excited 

one 𝐸1 and focus on the energy gap Δ𝐸 = 𝐸1 − 𝐸0. 

We plot Δ𝐸 versus the coupling constant 𝑣 in Figure 1. For 𝑁 = 2 the energy gap monotonously 

grows with the strength 𝑣. For more significant fermion numbers, and things drastically change—a 

critical value for 𝑣 energy with a minimal energy gap. The gap is no longer a monotonously growing 

one. We face a collective effect here. 

 



Recent Progress in Materials 2024; 6(1), doi:10.21926/rpm.2401004 
 

Page 6/12 

Figure 1 Energy gap Δ𝐸 = 𝐸1 − 𝐸0 between the first excited and ground state energies. 

The gap is plotted about the coupling constant 𝑣 . We see that a collective effect 

emerges at 𝑁 = 4. Instead of growing monotonously with the coupling strength, the 

gap first diminishes, reaches a minimum, and then starts to grow again. The minimum 

is a collective effect that requires at least four fermions to be produced.  

4. Thermal Collective Effects 

Now, we will try to detect collective effects only seen at finite temperature 𝑇. As 𝑇 is tiny, our 

putative effects will resemble ground-state workings. In the following expressions, we refer to the 

inverse temperature 𝛽 and to entropy 𝑆. We need Gibbs’ canonical framework here to proceed. 

The procedure is detailed in [33]. All thermal quantities of interest are derived from the partition 

function 𝑍 [4]. We construct 𝑍 using probabilities assigned to the models’ microscopic states using 

the Lipkin energies 𝐸𝑖  [4]. Significant macroscopic quantifiers are computed following the 

procedure in [4]. These indicators and 𝑍  derive from the canonical probability distributions [4] 

𝑃𝑛(𝑣, 𝐽, 𝛽). The relevant expressions are provided in [4]. Below are the appropriate expressions for 

constructing the required apparatus. 

𝑃𝑛(𝑣, 𝐽, 𝛽) =
1

𝑍(𝑣, 𝐽, 𝛽)
𝑒−𝛽𝐸𝑛(𝑣,𝐽) (8) 

𝑍(𝑣, 𝐽, 𝛽) = ∑ e−𝛽𝐸𝑛(𝑣,𝐽)

𝑁

𝑛=0

(9) 

𝑈(𝑣, 𝐽, 𝛽) = ⟨𝐸⟩ = −
∂𝑙𝑛𝑍(𝑣, 𝐽, 𝛽)

∂𝛽
=

= ∑ 𝐸𝑛(𝑣, 𝐽)𝑃𝑛(𝑣, 𝐽, 𝛽)

𝑁

𝑛=0

=

=
1

𝑍(𝑣, 𝐽, 𝛽)
∑ 𝐸𝑛(𝑣, 𝐽)e−𝛽𝐸𝑛(𝑣,𝐽)

𝑁

𝑛=0

(10)

 

 

𝑆(𝑣, 𝐽, 𝛽) = − ∑ 𝑃𝑛(𝑣, 𝐽, 𝛽)ln [𝑃𝑛(𝑣, 𝐽, 𝛽)]

𝑁

𝑛=0

(11) 

Thermal quantifiers provide much more information than the one obtained via just the quantum 

resources of zero temperature 𝑇 [4]. Taking a low enough 𝑇, thermal quantifiers yield an excellent 

representation of the 𝑇 = 0 scenario [4]. We plot the entropy 𝑆  versus 𝑁  in Figure 2. 𝑆  almost 

vanishes for just two fermions and starts growing as the number 𝑁 grows beyond two. We use the 

inverse temperatures 𝛽 = 5 and 20 and a strength 𝑣 = 1. The emerging collective phenomenon 

here is the growth of the entropy as 𝑁 augments. Another interesting effect is 𝑆- saturation at the 

exact value of 𝑁 for two different 𝛽s. In this, we are observing an 𝑁 effect and not a 𝑇 one. 
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We pass now to the mean energy 𝑈, another thermal quantifier. Figure 3 depicts the mean 

energy 𝑈 versus 𝑁 for 𝑣 = 1 and several 𝛽 values. One interprets the growth of the binding energy 

with 𝑁 as a collective effect. 

 

Figure 2 Lipkin entropy 𝑆 versus particle number for two inverse temperatures and 𝑣 =

1. The entropy almost vanishes at 𝑁 = 2 and significantly augments for larger 𝑁 values. 

Another collective phenomenon is detected as well. There is a saturation 𝑆-effect for 

relatively low 𝑁 values. 

 

Figure 3 Lipkin mean energy 𝑈  (binding energy) versus particle number for several 

inverse temperatures and 𝑣 = 1. This simple plot shows that the mean energy vanishes 



Recent Progress in Materials 2024; 6(1), doi:10.21926/rpm.2401004 
 

Page 8/12 

at 𝑁 = 2  and rapidly diminishes or larger 𝑁  values, clearly another collective 

phenomenon. 

5. A State’s 𝝆 Degree of Mixture 𝑪𝒇 

5.1 Preliminaries 

As stated above, in quantum mechanics, the notion of purity 𝑃𝑦 is a measure of how "mixed" or 

"pure" a quantum state (QS) is [30]. When a single quantum wavefunction describes a QS, this 

represents an instance of complete knowledge about the QS. On the other hand, a mixed state is a 

statistical set of multiple pure states. Thus, it represents a state of incomplete knowledge or 

uncertainty about the system. We repeat thus that in quantum mechanics, quantum states can exist 

in two fundamental distinct forms: pure and mixed. A pure state that a single, normalized wave 

function can describe exhibits maximal coherence and well-defined quantum properties. 

On the other hand, a mixed state is a statistical ensemble of pure states |𝑖 >, each with its 

associated probability 𝑝𝑖. It exhibits less coherence and may have probabilistic uncertainties. The 

degree of mixing or superposition in a quantum state is measured here by the quantum mixing 

quantifier 𝐶𝑓. The purity 𝑃𝑦 of a quantum state quantifies its coherence and measures its proximity 

to being pure. It is the trace of the square of the state's density matrix 𝜌 as 𝑃𝑦 = 𝑇𝑟(𝜌2). For a pure 

state, the purity equals 1, while for a mixed state, the purity is less than 1 [34]. 

The degree of quantum mixture 𝐶𝑓 equals unity less than the quantum purity 𝑃𝑦 [30, 34]. 

𝐶𝑓 = 1 − 𝑇𝑟(𝜌2) = 1 − ∑ 𝑝𝑖
2

𝑖

. (12) 

Note that we have 𝐶𝑓 = 0 and 𝑃𝑦 = 1 for pure states. 𝐶𝑓 is a significant quantity for us here. In 

probability terms, one has 𝑃𝑦 = ∑ (𝑃𝑛(𝑣, 𝐽, 𝛽))
2𝑁

𝑛=0  and 𝐶𝑓 = 1 − 𝑃𝑦
2. 

5.2 Results for 𝑪𝒇 

Figure 4 depicts 𝐶𝑓  versus 𝑁  for several strengths 𝑣  and 𝛽 = 10 . We see that 𝑣 = 0 , the 

unperturbed system’s state is pure for all 𝑁 and thus 𝐶𝑓 vanishes. If 𝑣 ≠ 0, the state remains pure 

if 𝑁 = 2  but grows for more significant particle numbers and eventually saturates for 𝑁  large 

enough. 

A similar collective effect is seen in Figure 5 for 𝑁 = 4 and not for 𝑁 = 2 by plotting 𝐶𝑓 versus 𝑣 

for two different 𝛽 values. 
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Figure 4 Mixing degree 𝐶𝑓  versus particle number 𝑁  for variegated strengths 𝑣 . We 

detect sudden jumps in 𝐶𝑓  for critical 𝑁 = 4 or larger particle number values. These 

jumps are our collective effect. 

 

Figure 5 Mixing degree 𝐶𝑓  versus particle numbers 𝑁 = 2  and 𝑁 = 4  versus the 

strength 𝑣 for 𝛽 = 20. We detect a clear collective jump in 𝐶𝑓 for 𝑁 = 4. This jump is 

our collective effect. 
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For 𝑁 = 2, the disappearance of the degree of mixture (purity) might indicate that the two 

fermions form a highly correlated or entangled pair. In a two-body system, the ground state can be 

pure, meaning no mixture or uncertainty is associated with the state. For 𝑁 = 4 to 𝑁 = 10 , we find 

that the growth of the degree of mixture suggests an increase in the complexity of the quantum 

correlations within the system. With more fermions, interactions between particles become more 

significant, resulting in a more intricate interplay of quantum states. The system may become more 

entangled, and correlations among fermions may increase, resulting in a less pure state and a higher 

degree of mixture. The saturation of the degree of mixture around 0.5 for larger values of 𝑁 is an 

interesting observation. This saturation might indicate that a certain level of quantum chaos or 

complexity has been reached, beyond which additional particles do not significantly alter the overall 

degree of mixture. The system may have reached a quantum-thermal equilibrium state where 

further particles do not introduce new correlations or dramatically affect the quantum coherence. 

6. Conclusions 

Many emerging collective many-body effects (ECMBE) are observed in condensed matter physics, 

nuclear physics, and various other areas of physics. Understanding and characterizing these 

phenomena often require advanced theoretical and experimental techniques, and they are 

essential for explaining the behavior of complex systems at the quantum level. 

Here, we have used the Lipin model to show that already at its elementary level of complexity, 

these ECMBE are detected employing relatively unsophisticated may body techniques. 

Thus, a collection of a few interacting fermions tends to behave dramatically differently than 

those displayed by just two fermions. We emphasize the vital role played by the 𝑁 = 4 instance. 

This would correspond to the alpha particle, one of the most stable nuclei in the periodic table. 
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