Appendix

Table 1 Collection of representative classes of macrostates* and their associated i) entropies, ii) entropic descriptor C_{λ} and iii) the relative form $C_{\lambda} / C_{\lambda, \max }$, for a toy model: (A) $N=4$, (B) $N=7$ and (C) $N=8$, where the black pixels are placed on a 4×4 lattice partitioned into $\lambda=4$ (not overlapping) cells at length scale $k=2$. The maximal values of the relative complexity are given in boldfaced form. The last columns include also results of a $C_{\lambda}(S C S)$-calculation (with the sliding cell-sampling approach) for the specific representative configurations given below.

Case	Macrost. \#	Config.	$S_{\min }$	S	$S_{\max }$	C_{λ}	$C_{\lambda} / C_{\lambda, \max }$
$C_{\lambda}(\mathrm{SCS})$							
A	1	1111	5.5452	5.5452	0.0	0.0	
A	2	0112		4.5643		0.2018	0.5823
A	3	0022		3.5835		0.3169	0.9144
A	4	0013		2.7726		0.3466	1.0
A	5	0004	0.0	0.0		0.0	0.0
B	1	1222		6.7616	6.7616	0.0	0.0
B	2	0223		4.9698		0.2986	0.8889
B	3	0133		4.1589		0.3356	0.9989
B	4	1114		4.1589		0.3356	0.9940
B	5	0124		3.1781		0.2986	0.8889
B	6	0034	1.3863	1.3863		0.0	0.0
C	1	2222		7.1670	7.1670	0.0	0.0
C	2	1223		6.3561		0.1798	0.4014
C	3	1133		5.5452		0.3137	0.7003
C	4	0233		4.5643		0.4144	0.9251
C	5	1124		4.5643		0.4144	0.9251
C	6	0224		3.5835		0.4479	1.0
C	7	0134		2.7726		0.4250	0.9553
C	8	0044	0.0	0.0		0.0	0.0

* e.g., for A\#4 the notation 0013 denotes representative macrostate realized by
$\binom{4}{0}\binom{4}{0}\binom{4}{1}\binom{4}{3}=16$ configurational microstates, one of them being \Rightarrow

This macrostate exhibits the highest value of $C_{\lambda}=0.3466$ for case (A).
For the above specific representative configuration one can create the corresponding macrostate (using SCS-tenets), i.e., 000111123, having 96 realizations. Thus, the value of the entropic descriptor will be $C_{\lambda}(S C S)=0.2759$.

For B\#3, i.e., for the 0133 representative macrostate one obtains
$\binom{4}{0}\binom{4}{1}\binom{4}{3}\binom{4}{3}=64$ configurational microstates, one of them being \Rightarrow

This macrostate and the one given below exhibit the highest possible value $C_{\lambda}=0.3356$ for case (B) while for the corresponding macrostate 011101323 (SCS used again), one finds $C_{\lambda}(S C S)=$ 0.2940 .

The associated degenerate B\#4, i.e., the 1114 macrostate is realized by
$\binom{4}{1}\binom{4}{1}\binom{4}{1}\binom{4}{4}=64$ configurational microstates, one of them being \Rightarrow

This macrostate shows the same as above highest value of $C_{\lambda}=0.3356$. Using the SCS approach, i.e., for the corresponding macrostate 111122134 we obtain $C_{\lambda}(S C S)=0.2947$, which differs from the previous one. This means that certain degenerations can be removed with SCS-help.

In turn, the C\#6 case, i.e., the 0224 macrostate, is realized by
$\binom{4}{0}\binom{4}{2}\binom{4}{2}\binom{4}{4}=36$ configurational microstates, one of them being \Rightarrow

This macrostate exhibits the highest possible value $C_{\lambda}=0.4479$ for case (C) of this toy model with $1 \leq N \leq 16$ at length-scale $k=2$. For the corresponding SCS-macrostate, i.e., 022123234 one finds $C_{\lambda}(S C S)=0.3386$.

