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Abstract 

In this paper, starting with an introductory review of the applications of liquid crystals and 

polymer-dispersed liquid crystal systems in (bio)sensors and microfluidics, the possibilities of 

visualizing self-organization products of liquid crystalline media or field-induced instabilities 

of liquid crystalline systems are considered. In particular illustrated cases, it is proposed to 

use FemtoScan software-containing metrological complexes to visualize instabilities in liquid 

crystalline systems and products of self-organization in liquid crystalline media. 
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1. Introduction 

It is well known that liquid crystals (LCs) are widely used in the development of different 

physical sensors, including chip-based ones [1] and lab-on-a-chip analytical systems [2]. Such LC 

and polymer composite structures can be used for physical [3] and chemical or biochemical 

sensing. Examples of LC-based physical sensors include: 

1. Liquid crystal temperature sensors [4-7] (based on different principles – from optical to 

electrical [8, 9] and phase transition-based ones [10]), including fiber-optic liquid crystalline 

temperature sensors [11-13]. Thermochromic liquid crystals for thermal sensing in analytical 

practice can usually be introduced into microfluidic chips and thermocontrollable 

microreactors [14-17]. 

2. Liquid crystal high-pressure sensors [18-21] including fiber-optical and chip-scale 

microelectromechanical (MEMS-based) ones.  

3. Humidity array sensors prepared with reactive cholesteric liquid crystal mesogens [22]. 

4. Electric field and electrostatic discharge sensors based on brightness retention of liquid 

crystals [23-26]. 

5. Different optical sensors and transducers, such as routers for optical fiber sensor networks 

[27], liquid crystal optical phased arrays and modulators [28, 29], fiber- and film-based 

spectral multiplexers [30, 31], etc. 

6. Liquid crystals in optical sensors of mechanical forces and motion [32, 33]. Such systems in 

microfluidic polymer chips can also be used with voltage-expandable liquid crystal surfaces 

or liquid crystal pumps [34, 35] or liquid crystal polymer microactuators, including 3D-

printed artificial cilia and artificial muscles [36-39] (electrocontrollable, thermocontrollable 

or photo controllable ones).  

7. LC-based and LC-containing image sensors and transceivers [40], including spectrally 

multiplexed ones and multispectral/hyperspectral ones [41] for smart regenerative medicine 

of the future – for the artificial retina design [42]. Many optical sensors and transducers can 

also be used for multi-angle holographic detection [43, 44]. 

Examples of chemical sensors (including position-sensitive ones [45]) based on liquid crystals 

and liquid crystal polymer composites are given below: 

1. pH-sensors, converters and transducers [46-49]. 

2. Different gas sensors (based on polymer-dispersed liquid crystals in droplets and films, 

planar optical waveguides and optical fibers, etc.) [50-53]. 

3. Toxic heavy metal detectors, including mercury [54, 55]. 

4. Solvent vapor detectors with cholesteric liquid crystals [56] and cholesteric liquid crystal 

detectors of organic vapors [57]. Such devices can be spatially sensitive/2D position-

sensitive [58]. 
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As examples of biochemical sensors based on liquid crystals and liquid crystal polymer 

composites (including biochemical sensing devices with in situ-formed liquid crystal thin films [59, 

60] and microdroplets [61]) one can mention: 

1. DNA biosensors on solid surfaces and liquid-crystalline DNA-based biosensors [62-64].  

2. Different enzyme sensor assays and microarrays [65, 66], for example, liquid-crystal 

protease assays [67-69]. 

3. Microfluidic immunoassays with liquid crystals on the polymer biosensing chips [70]. 

4. Liquid crystal-based aptasensors [71-73]. 

5. Protein determination systems based on molecularly imprinted polymer recognition 

combined with birefringence liquid crystal detection [74] and liquid crystal microdroplets 

coated with block liquid crystalline polymers by protein adsorption for sensor applications 

[75]. Some LC-assisted protein detection techniques (including on-chip detection) can also 

be implemented using surface plasmon resonance principles [76]. 

6. Toxicological tests, including neurotoxicity sensors with liquid crystal components (for 

example, sensors for detecting organophosphorous nerve agents using liquid crystals 

supported on chemically functionalized surfaces [77-82] or neurochemical applications of 

liquid crystals sensor for organoamine detection. 

Polymer microfluidic devices with liquid crystal components and devices based on LC polymers 

can be used for optical detection [83, 84]. For example, concentric polymer-dispersed liquid 

crystal rings can be used for light intensity modulation [85]. The production of interferometric 

sensors based on the wavelength detuning by a liquid crystalline polymer waveplate can also be 

implemented [86]. In the simplest case, opto-sensors can be created based on the transient 

property of a liquid crystal lens [87].  In chronic experiments, such sensor systems can be applied 

in biological objects to detect physiological and biochemical parameters of living organisms in situ, 

[88, 89]. Also such LC systems with flexoelectric response can be used as the elements of smart 

biocompatible implants [90-94]. Phytochemical reporters also can be liquid crystalline. As classical 

(since 1980th) optical reporters liquid crystal phthalocyanines [95-101] and other 

macroheterocyclic compounds (and also photochromic dyes with the host-guest effect of the 

liquid crystalline polymer matrix [102]) can be used not only in elementary physical sensors, but 

also in complex chemo- and biosensors.  

Different LC converters of physical and chemical signals into optical ones can be used for 

biomedical morphochemical and morphodynamical [103-106] applications, including 

intraoperative [107] and implantable ones. Most progressive types of LC-assisted methods of 

optical spatial and spatiotemporal biological investigations in the nearest future must be 

associated with artificial intelligence and machine learning on the datasets of images, provided by 

using liquid crystalline converters [108, 109]. However, it’s a very non-standard problem, because 

(in contrast to the additive signal) spatial or spatiotemporal behavior of liquid crystals at the 

microscopic and submicroscopic scales is usually associated with textural reorganization under the 

primary detection signals in the real physical media (or (micro)environment) and phase transitions 

[110-114]. This potential source of artifacts before 2000th has been eliminated by measuring area-

averaged values, leveling the role of single microstructures or liquid-crystal texture elements. 

However, this approach is inapplicable when microanalysis with positional sensitivity is required. 

Unfortunately, morphological and textural inhomogeneities and features of the spatial 

distribution of mesophases in contact with various substrates (metal, polymer, and glass) used in 
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the sensor design affect the metrological qualities of the sensors. They change not only the area-

averaged analytical signal, but also its spatial distribution. The boundaries of the blurring effects of 

metrological signals received from liquid crystal transducers are determined by soft matter physics, 

that is, the partial ordering of the medium. Therefore, it is necessary not only to take into account 

the contribution of this (changing in response to the primary sensor signal/properties of the 

analyzed medium) ordering to the overall result of the analysis, but also to take into account the 

phenomena of microstructural self-organization and physicochemical transitions in a liquid crystal 

system (including LC-containing sensor sandwich systems) with positional sensitivity 

corresponding to the level of its structural (self) organization. In this regard, in this work, we 

attempt to perform a morphometric operando analysis of structural changes in a sensor based on 

a liquid crystal matrix on glass and polymer substrates using 3D visualization. The resulting 

crystals/dendrites under chemical analytics and biochemical physics detection conditions can lead 

to artifacts in detecting analytes and biological/biochemical/cytological structures. Therefore, we 

also consider examples in which the resulting products of self-organization are "artifacts" from the 

point of view of obtaining the final analytical signal [115, 116].  

2. Materials and Methods 

We used propionic acid cholesteryl ester liquid crystal (REACHEM, catalog number 070140) 

dissolved in chloroform (reagent grade, Chimmed, Russia). This solution was poured onto the 

polymer substrates made of low-density polyethylene (LDPE), in particular, those adapted for 

working with agar media. The latter was chosen due to the fact that visualizing sensory LC-

containing systems on a chip (for which the above experiments were performed in 2018) was 

intended for experimental biophysical and biomedical problems. The same LCs were studied on 

glass substrates (as prototypes of glass microfluidic chips) [117]. 

The measurements were performed using an inverted microscope with a modular illuminator 

designed by O.V. Gradov and a modified DIC/NIC microscope. A series of raw focal scans before 

multi-layer image processing and stacking are given in the supplement. Image analysis was 

performed using FemtoScan software, designed, in particular, to analyze scanning probe and 

superresolution microscopy data. 

3. Results 

First, unification of scales and selection of the optimal mesh for 3D visualization of LC textures 

and crystalline mesostructures on the surface of a polymer substrate were performed. The 

optimal mode was established between undersampling and oversampling, when the main 

features of the 3D texture are already visible, but it is not overloaded with details. At the same 

time, we did not allow false super-resolution when the sampling increases due to bootstrap or 

interpolation. An example of scale selection is shown in Figure 1. Figures 1-a – 1-e demonstrate 

undersampling, Figures 1-g – 1-h are optimal in terms of detail, while in Figures 1-i – 1-l 

oversampling is observed. (Self-organization on a chip using optimal Bezier meshes we considered 

earlier within the context of morphological evolution in the d’Arcy-Thompson model in the 

technical papers [118, 119]). Using this approach, we analyzed the spatial level of self-organization, 

from mesoscopic to nano level. These results are a kind of resolvometry for LC medium in 
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response to the external factors that induce self-organization (either the nature of the surface or 

signals from the external environment). 
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Figure 1 (a-l) Selection of the optimal LC surface visualization mode between undersampling and oversampling. 
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Laplace-type, Lambertian, and Lommel-Seeliger-like [120] shadow photometric mapping 

methods were used for pseudo-3D visualization. Pseudocolor mode enabled texture visualization, 

as in DIC/NIC and Hoffman and Rheinberg contrast techniques. An example of this is given in 

Figure 2.  

 

Figure 2 Laplace-type, lambertian and Lommel-Seeliger-like shadow photometric maps 

of the LC surface: a) grayscale monochrome image, b) visualization optimal for DIC/NIC 

and Rheinberg contrast; c-d) two versions of shadow-like visualizations (optimal for 

different shlieren techniques). 

Optical density gradient fitting (including optimization in different spectrozonal channels) for 

2D and 3D pseudocolor maps was also available, as shown in Figure 3. This figure and the 

following figures (Figure 4 – Figure 6) show the examples of linear artifacts observed in the 

evaporation and cooling zones.  
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Figure 3 Optical density gradient fitting for 2D (b) and 3D pseudo-color (a) photometric 

maps. 

 

Figure 4 “Moire pattern-like” (“moire fringe-like”) visualizations of examples of linear 

artifacts observed in the evaporation and cooling zones (optimal for MIM, VI-DIC, AFM, 

STM, etc.). 
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Figure 5 Correlation spectral analysis based on 2D Fourier spectra (c, d) applied for 

original monochrome grayscale image (a) and its volume (2D-to-3D) transform (b). 

 

Figure 6 Examples of 2D Fourier spectra (b-d) of the original LC surface image (a). 
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In general, it was possible to achieve optimal visualization for probe types of microscopy (for 

example, AFM) and for interference methods such as modulation interference microscopy 

(examples of such visualizations are given in Figure 4). 

Correlation spectral analysis methods based on 2D Fourier spectra (2D FFT) were applied for 

original monochrome grayscale images and their 2D-to-3D transforms. Previously, we 

implemented this using QAVIS software based on the FFTW library. However, in Femtoscan 

technologies, a separate module works inside the GUI program shell for these purposes. An 

example of its use for the original image and the same image processed according to the above-

described procedure is presented in Figure 5. Figure 6 shows a variety of visualizations of 2D 

Fourier spectra for a similar image from another area of the same sample. 

For the characterization of the image elements by 2D FFT, there are ISC and IFC (integral spatial 

characteristics and frequency characteristics) calculation techniques and section techniques. We 

previously implemented these techniques on the basis of the software developed by a group of 

colleagues from the Pacific Oceanological Institute of the Far Eastern Branch of the Russian 

Academy of Sciences. Femtoscan does not have such features, but QAVIS can work directly with 

video memory with images opened in any software, including any version of Femtoscan. Thus, 

estimation of ISC and IFC is also possible for this kind of measurement protocol. However, the 

Femtoscan GUI has an option for grain analysis and comparative sectioning. An example of this 

module application is shown in Figure 7.  

 

Figure 7 Section profiling and morphometric measurements of LC structures on a chip. 

Macroscopic analysis of the sample surface in Petri dishes was also performed using a 

polariscope with the subsequent processing of video flow frames by the Sobel-Feldman gradient 

operator (filter).  

The results are shown at the link:  https://www.youtube.com/watch?v=iApqY4FRY7o (Figure 8, 

Figure 9). Figure 8 provided the polarization pattern image without another processing, mapping 

https://www.youtube.com/watch?v=iApqY4FRY7o
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or analysis; and Figure 9 provided the Sobel-Feldman gradient map for this pattern. In this case LC 

layer was used as the biochemical immobilization layer analog for the prototyping of lab-on-a-dish 

design. Another example of such a pattern (with its Sobel-Feldman map visualization) is provided 

in the video “Orientation effect detection in liquid crystals using Sobel filter (Sobel-Feldman 

operator). 2” by link: https://www.youtube.com/watch?v=bW7HkwkwAZw in our channel. 

 

Figure 8 Polarization pattern images (registered using polariscope) of the lab-on-a-dish 

LC immobilization layer prototype without any digital image processing or mapping. 
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Figure 9 Sobel-Feldman [3 × 3] gradient maps of the polarization pattern images 

(registered using polariscope) of the lab-on-a-dish LC immobilization layer prototype. 

4. Conclusions 

Femtoscan allows selecting the optimal metrological mesh for analyzing self-organization and 

phase transitions in liquid crystals on the substrates, potentially applicable in the analytical chip 

design, controlling and eliminating the possible artifacts. 

Femtoscan usage is compatible with Lommel-Seeliger-like techniques and edge detection 

techniques in multi-angle detection, which allows using together with multi-angle detection 

techniques on a chip containing liquid crystal structures and related elements [121, 122].  

Femtoscan is compatible with the correlation-spectral analysis techniques of the structures on 

a chip (for example, on a chip for the analysis of liquid crystal facies [123, 124]), which allows 

integrating the analysis and separation (AI-clustering for their further recognition based on 

machine learning results) of differently organized mesophases with various textures. This can be 

applied to several biological and fossilization taphonomic problems [125-127]. 
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