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Abstract 

Glass ionomer cements (GICs) are dental materials that were invented by Wilson & Kent in 

1972. They can chemically bond to enamel and dentin and can exhibit anti-cariogenic activity 

that allows the release and uptake of fluoride ions. They also possess the ability to render 

color. The setting reaction of GICs is a neutralization reaction that results in the formation of 

polycarboxylate salts. The most important GIC modification process involves the addition of 

resin components, resulting in the development of resin-modified glass ionomer cements 

(RMGICs), which contain self-and photo-curing systems. Modification of conventional GICs 

and RMGICs can be achieved by the incorporation of nano-sized fillers into the materials. 

Conventional GICs and RMGICs can also be modified by introducing nano-sized bioceramics 

to the glass powder. It has been previously reported that the incorporation of nano-sized 

particles helps improve the mechanical properties of conventional GICs. Conversely, the 

commercially available nano-filled RMGICs do not hold any significant advantage over 

conventional RMGICs as far as the mechanical and adhesive properties are concerned. Glass 

carbomer is a novel glass ionomer material, and the bioactivity of which is better than the 

bioactivity of the conventional GICs. However, it is more brittle and less strong than the 
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modern conventional GICs. Additionally, clinical techniques that can be used to transfer 

external energy on the surface of a GIC have also been used for modification. These 

techniques can be used to reduce the duration of the initial setting stage and improve the 

rate of the setting reactions, resulting in faster development of the mechanical properties. 

Premature failure of the restorations can be avoided under these conditions. The lack of 

long-term clinical studies limits the use of nano-modified glass ionomers and glass 

carbomers in daily clinical practice. More randomized clinical trials are required to justify the 

use of these modern modified materials.  

Keywords 

Bioactive materials; glass ionomer cements; modifications; nanofillers; nanotechnology 

 

1. Introduction 

Glass ionomer cements (GICs) are dental materials that were invented by Wilson & Kent in 

1972 [1]. They can chemically bond to enamel and dentin. The origin of the anti-cariogenic activity 

of the materials can be attributed to the release and uptake of fluoride ions. The materials can be 

used to render color effectively [2-4]. Glass ionomers exist in powder and liquid form. The powder 

consists of fluoro-alumino-calcium-sodium-silicate glass particles, usually in the form of SiO-AlO2-

CaF2-AlPO4-Na3AlF6. Some formulations contain strontium (Sr) and barium (Ba) compounds that 

improve radiopacity and remineralization properties. The liquid is an aqueous solution of various 

polycarboxylic acids, which are primarily polyalkenoate acids. The low viscosity of the acids 

facilitates the handling of cements [5-7]. Tartaric acid is also added to the liquid to improve the 

ease of handling and increase working time [8]. 

The setting reaction associated with GICs is a neutralization reaction, resulting in the formation 

of polycarboxylate salts [9]. Initially, the hydrated protons (Η3Ο+) of the polyacid react with the 

basic particles in glass. This promotes the movement of Na+, Ca2+, and Sr2+ ions, and later Al3+ ions, 

from glass to the polyacid solution [10-12]. These ions react with the polyacid molecules and form 

ionic bonds. Thus, the formed insoluble polysalt network causes the cement to harden [10]. Water 

is an essential component of glass ionomers as it is the solvent of polymeric acid. It contributes to 

the release of protons. It functions as the matrix for the setting reaction and is also a structural 

component of cement [13]. The loss of water from freshly hardened cement creates an unsightly 

chalk surface due to the formation of microcracks (Figure 1). To prevent dehydration, it is 

important to coat the surface of the cement with a hydrophobic material such as Vaseline or a 

suitable resin varnish [14]. 
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Figure 1 Representative scanning electron microscopy (SEM) image of the surface of a 

high-viscosity glass ionomer cement Equia Fill after desiccation presents microcracks. 

The setting reaction has been studied by various spectroscopic methods, and it has been 

observed that the reactions proceed over two phases [15]. Ionic bonds, which are responsible for 

the immediate hardening of the cement, are formed in the first phase. Ionic bonds involving Al3+ 

ions are formed in the second phase, and the formation of these bonds starts approximately 10 

min after the initial setting. The process continues at a slow rate for approximately 24 h [11, 12]. 

This is followed by the process of maturation, which takes several weeks or months. During this 

process, minor changes such as an increase in the compressive strength and degree of 

translucency occur. The process is accompanied by a decrease in toughness and degree of opacity. 

The content of bound water increases to a limiting value, and the extent of bonding (attributable 

to the process of continuous ion exchange) to the tooth surface increases [16]. 

Depending on their clinical application, glass ionomers can be classified into four categories 

[10]: a) GICs for bonding bridges, crowns, inlays/onlays, posts, and orthodontic rings; b) GICs for 

fillings (these are further divided into two subcategories: the first includes aesthetic cements for 

anterior teeth, which have a variety of shades and translucencies [17, 18] and the second includes 

reinforced glass ionomers which are used in posterior teeth); c) GICs for tooth cavity bases and 

liners [19, 20]; and d) GICs for dental sealants [21]. 

There are several factors that limit the application of GICs under certain clinical conditions. The 

mechanical properties of the GICs are poorer than those of the resin-based materials [22]. The 

limiting factors also include low resistance to abrasion [23] and high sensitivity to moisture in the 

oral cavity [24]. Various modification methods have been used to tune the composition of the GICs 

to address the problem of reduced physical-mechanical properties. The most prominent 

modification method included the addition of resin components in the GICs. This resulted in the 

development of the resin-modified glass ionomer cements (RMGICs), which contain self-and 
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photo-curing systems [25, 26]. Zinc [27, 28], stainless steel [29], strontium oxide [30], silicon 

particles [31], bioactive apatite [32], a mixture of bioactive apatite and strontium [33, 34], 

synthetic fibers [35] polyacids containing N-vinylpyrrolidone [36], and amino acid monomers [37] 

have been used over the years as additives to improve the mechanical properties of the materials. 

In recent years nanotechnology has been used to produce new composite resins. It has been 

reported that the method can be used to effectively improve the mechanical properties of the 

materials [38, 39]. Similar efforts have been made to improve the physical and mechanical 

properties of both conventional and resin-modified GICs. Glass Carbomer, a modified GIC,contains 

modified glass particles, nano-hydroxyapatite, and silicone oil [40, 41]. 

Most recent versions of GICs typically consist of powders that contain some of the polymeric 

acids in dried form, resulting in the formation of a low-viscosity acid solution. The freshly mixed 

cement prepared under these conditions contains high amounts of acid that promote the rapid 

setting of the material. The process also imparts good strength. These types of materials are 

labeled as “high-viscosity” GICs, a term typically applied to materials characterized by high 

powder/liquid ratios of at least 3.6:1 [16]. In 2015, a novel GIC material known as the Equia Forte 

(GC Inc., Kyoto, Japan) was introduced for application in high-load-bearing areas in posterior teeth. 

It is a glass hybrid restorative material containing a multifunctional monomer and reinforced with 

ultrafine, highly reactive glass particles [42, 43]. The time frame for the development of glass 

ionomer materials is presented chronologically in Table 1. 

Table 1 Developments of glass ionomer materials. 

Date Glass ionomer developments 

1972 The invention of conventional GICs 

1977 Metal (silver)-reinforced GICs 

1980 RMGICs self-polymerized 

1990 RMGICs photo-polymerized 

1991 RMGICs (photo+self)-polymerized 

2003 Glass Carbomer 

2007 Nano-modified RMGICs 

2008 Nano-modified conventional GICs 

2008 High-viscosity conventional GICs 

2015 Hybrid restorative GICs 

Therefore, the purpose of this literature review is to present the current data for the latest 

modifications of GICs, emphasizing the modifications involving nanotechnology. 

2. Resin-Modified Glass Ionomer Cements (RMGICs) 

RMGICs were introduced in the field of dentistry in the late 1980s. These are hybrid materials 

with combined properties of conventional GICs and composite resins. The components present in 

the powder are almost the same as the components present in conventional GICs. The liquid 

methacrylate monomers and a photoinitiator system are also present in the system [44]. The 

monomer is typically 2-hydroxyethyl methacrylate (HEMA), and the photo initiator is usually 

camphorquinone (CQ)[45]. 
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Two different chemical reactions occur during the process of setting of RMGICs. The acid-base 

reaction is initiated immediately after the process of powder/liquid mixing. The polymerization of 

the methacrylate monomers is stimulated using a dental light-curing unit such as light-emitting 

diode (LED) devices. The properties of the material can potentially degrade due to the 

simultaneous progress of the two antagonistic reactions [46]. The method of mixing and the light-

curing should be conducted following the instructions provided by the manufacturer to avoid 

deleterious effects on the structure of the cement [46]. 

Post photopolymerization, the material is exposed to conditions of a fast initial hardening 

process to form the polymer network. However, the acid-base reaction continues after light-curing 

and is completed within 10-12 min of mixing [4]. Unlike conventional GICs, moisture-protecting 

substances need not be used immediately after application, and this can be attributed to the 

formation of the polymer network. They also show greater resistance to compression, diametrical 

tensile strength, degree of bending, and modulus of elasticity than the conventional GICs [22, 47]. 

They present lower water sorption ability, a lesser degree of solubility, and higher translucency 

than conventional GICs. These improve the aesthetic performance of the materials. The process of 

polymerization shrinkage during setting limits the application of RMGICs. The extent of fluoride 

release recorded for the RMGICs is lower than that recorded for the conventional GICs. This can be 

attributed to the low solubility (attributable to the less hydrophilic nature) of the material and the 

release of unreacted monomers to the surrounding tissues. Fluoride is released in two phases in 

conventional GICs. A large amount of fluoride is released during the first phase (burst effect). This 

is followed by the steady release of a small amount of fluoride ions during the second phase. The 

second phase is longer than the first phase [48, 49]. Small amounts of Na+, Al+3, PO4
-3, and Ca+2 

ions are also released during the process. They exhibit buffer properties and increase the pH of 

the oral fluids in an acidic environment [50, 51]. 

In terms of biocompatibility, RMGICs lag behind conventional GICs because they release the 

monomer HEMA, especially during the first 24 h. It can penetrate dentinal tubules and is 

considered potentially cytotoxic to pulpal cells [52-54]. It has been previously reported that low 

cytotoxicity (determined by conducting MTT assays) values were recorded for all the tested 

materials (conventional GICs, RMGICs and resin composites) and low extraction times were 

involved, indicating minimal cytotoxicity of the materials (less than 30% inhibition). One RMGIC 

presented significantly higher cytotoxicity compared to the other materials [54]. RMGICs should 

always be light-cured for at least the manufacturers’ recommended time at thicknesses no greater 

than the maximum recommended value to minimize HEMA release [52]. Efforts have been made 

to modify RMGICs with nanoparticles and bioceramic particles to address the persisting issues [55, 

56]. 

3. Modifications of GICs using Nanotechnology  

Nanotechnology involves the production of functional materials and structures whose 

dimensions are in the range of 1-100 nm. The materials are produced using various physical and 

chemical methods [57, 58]. The introduction of nanotechnology in restorative dentistry led to the 

development of nano-filler particles. The physical, chemical, and biological properties of a particle 

in the nanoscale dimension are different from the properties of the particles at the 

atomic/molecular level. The properties of nanomaterials are also different from the properties of 
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the bulk material [59]. Tooth tissues are composed of nanoscale structural units [60]. Hence, 

synthetic nanoparticles of similar nature are needed to mimic the properties of natural teeth. Two 

primary approaches in the field of nanotechnology are used for developing small or improved 

materials. These methods are also used to form complex assemblies from small components. The 

first approach involves the solid-state processing of materials. The processing methods include the 

processes such as milling, machining, and lithography. Approaches such as chemical vapor 

deposition, monolithic processing, wet etching, and plasma etching are used to fabricate 

functional structures at micro and nano levels [61]. The second approach includes the fabrication 

of materials via edifice-up particles by harvesting atomic elements [62]. The methodis based on 

highly organized chemical synthesis methods and the growth of materials [63]. 

In the field of dentistry, nanotechnology has been used to modify the surface of bone implants 

[64], improve the mechanical properties of resin composites [38, 65, 66], and prevent caries [67]. 

Efforts have also been made to improve the mechanical properties of both conventional and resin-

modified GICs. The aim is also to significantly improve physical properties and address issues 

associated with wear resistance, hardness, and elasticity. Researchers have also aimed to achieve 

patient satisfaction in terms of aesthetic appearance. They have attempted to improve the 

translucency and polishing ability by incorporating nanoparticles into GICs [68]. 

3.1 Modifications of Conventional GICs with Nanoparticles 

Hydroxyapatite and fluorapatite exhibit significantly high chemical affinity toward bone and 

dental tissues and for this reason they have been used in the field of implantology [69] and 

prevention of caries [57, 67]. Nano-hydroxyapatite crystals have been found to contribute 

significantly to the remineralization of enamel [70, 71]. It has been reported that the addition of 

nano-hydroxyapatite to resin composites significantly improves their mechanical properties [72]. 

Nano-hydroxyapatite or nano-fluorapatite, when used as additives in conventional GIC powder, 

significantly improves the compressive strength, tensile strength, and flexural strength of the 

materials [73]. Glass ionomers containing nano-fluorapatite have better mechanical and adhesive 

properties than those containing nano-hydroxyapatite. This can be potentially attributed to the 

low solubility of nano-fluorapatite [36, 73]. The improved mechanical properties of GICs that 

contain nano-apatite are apparent due to the formation of ionic bonds between polyacrylic acid 

and apatite crystals [36]. It has been claimed that when GIC powder containing nano-

hydroxyapatite is used with a liquid containing a mixture of polyacrylic acid, itaconic acid, and 

polymers of N-vinylpyrrolidone (instead of the commonly used polyacrylic copolymer), the 

mechanical properties of GICs are further improved. This may be explained by the formation of 

strong chemical bonds between N-vinylpyrrolidone and apatite crystals [36]. Nano-apatite-

containing GICs exhibit a better degree of adhesion (with dental tissues) than the other materials. 

This can be attributed to the ability of apatite crystals to form strong ionic bonds with Ca ions in 

dental tissues [74]. The small nano-apatite particles significantly increase the surface area of the 

particles and improve the ability of the particles to penetrate demineralized enamel and dentin. 

This results in an increased adhesion to the tooth surface [75]. 

Apart from nano-apatite, other types of nanoparticles have also been used to improve the 

mechanical properties of GICs. More specifically, in some GIC products, nanoparticles (3-5 wt %) of 

titanium dioxide (TiO2) have been added to the powder to improve the mechanical properties and 
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increase the antimicrobial activity of the cement [76, 77]. Although TiO2 is considered to exhibit 

toxic effects, results from in vitro studies did not reveal that the toxicity of the nano-TiO2-

containing GIC was higher than the toxicity of the conventional ones [78, 79]. GICs can also be 

modified by adding a mixture (4 vol %) of nano-hydroxyapatite and zirconia (ZrO2) particles to the 

powdered samples. This also results in improved mechanical behavior. This improvement may be 

attributed to the uniform distribution of the glass and the mixture of nano-apatite and zirconia 

particles within the matrix of the cement [33]. Fractures in the cement structure were also 

observed. The origin of the fractures was attributed to the weak bond between the glass and the 

zirconia. Therefore, the content of the mixture of hydroxyapatite and zirconia should not exceed 4 

vol% [33]. 

3.2 Modifications of RMGICs with Nanoparticles 

The property of chemical adhesion is considered to be the most important property of GICs. 

GICs can effectively adhere to dental tissues. RMGICs bond to dentin both micromechanically (the 

resin penetrates the collagen network) and chemically (by forming a chemical bond between the 

carboxylic acid groups and the Ca ions of the crystals of hydroxyapatite of partially demineralized 

enamel and dentin through ionic reactions) [9, 80]. Nano-RMGICs show a similar bonding 

mechanism. It has been observed that minimal penetration of the resin into the dentin occurs in 

these cases, indicating that the strength and efficiency of bonding depend more on the ionic bond 

than on the micromechanical retention. This is similar to the case of conventional GICs [55]. The 

commercially available RMGIC Ketac N100/Ketac Nano (3M ESPE) contains nano-agglomerated 

silicon particles and is accompanied by a primer (Ketac Nano Primer), which is applied to the tooth 

surface before placement of the cement. However, relevant studies have shown that there is no 

significant difference in bond strength to dentin between nano-reinforced and conventional 

RMGICs [55].  

It has been demonstrated that the use of 37% orthophosphoric acid before the application of 

the cement can increase the shear bond strength of nano-RMGICs due to the removal of the 

smear layer and increase in the surface energy [56, 81, 82]. However, high molecular-weight 

carboxylic polymers (MW = 8000-15000) present in RMGICs cannot penetrate demineralized 

dentin. This leaves the dentin collagen network unprotected and exposed to the risk of hydrolytic 

degradation [83, 84]. Thus, excessive demineralization of dentin should be avoided when RMGICs 

are used [74, 85] as the polyalkenoic polymers cannot penetrate the collagen of the dentin [86]. 

Therefore, it is suggested that weak acidic primer or aqueous solutions of polyacrylic acid (usually 

25%) should be used for pretreatment of the tooth surface to improve the adhesion ability of 

nano-RMGICs. A recent clinical study has compared a nano-RMGIC with a conventional RMGIC and 

a composite resin. It was found that after 1 year there were no differences among the materials in 

terms of retention of the restorations. However, the nano-RMGICs exhibited higher discoloration 

and lower marginal integrity than the conventional ones [87]. In another in vitro study, it was 

reported that the marginal integrity of nano-RMGIC restorations was lower than that of the 

conventional ones. This presumably is explained by the lower bond strength that present the 

nano-RMGIC especially to and enamel [88]. 

Modifications in the shape and size of the fillers can affect the mechanical properties of a glass 

ionomer material in the same way as happens in resin composites [22, 89]. RMGICs are more 
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resistant to bending, changes in tensile bond strength, and solubility compared to conventional 

GICs. This can be primarily attributed to the formation of chemical bonds between the glass 

particles and the organic matrix [22, 47]. Traditional RMGICs have been found to be more resilient 

to bending and fatigue than commercially available nano-RMGICs [89, 90]. Additionally, nano-

RMGICs exhibit inferior mechanical behavior under acidic conditions [89] than conventional 

GICs.This can potentially influence the longevity of the nano-RMGIC restorations in the oral cavity. 

As mentioned before, the addition of nano-hydroxyapatite, nano-fluorapatite, and nano-

fluorohydroxyapatite particles can improve the surface properties of the RMCIGs. The 

improvement can be attributed to the increase in the content of the inorganic phase at the 

surface [91]. On the other hand, the use of nano-hydroxyapatite particles significantly extends the 

setting time of the material up to 800 s. This is significantly higher than the time range outlined in 

the ISO specifications (90-480 s) [92]. Although the exact mechanism of this increase in setting 

time is yet to be well understood, it appears as if the nanoparticles interfere with the process of 

polymerization of the monomers [93]. The abrasion caused by toothbrushing on the surface of 

nano-RMGICs has been found to induce less surface loss compared to conventional RMGICs. 

Nevertheless, under clinical conditions where microbial and chemical activities are observed, no 

statistically significant differences were found between the two types of RMGICs in terms of 

surface roughness and hardness [94]. Hence, despite the modifications brought about by the 

addition of nanoparticles, the surface roughness and hardness of the RMGICs were poorer than 

those of the composite resins, due to their lower abrasion resistance and their higher solubility 

[94-96].  

The release of fluoride ions from GICs and RMGICs is one of their major advantages, as fluoride 

is well documented to reduce demineralization, increase remineralization, inhibit the growth of 

bacterial and inhibit their adhesion to tooth surfaces [97]. Because fluoride is not involved in the 

setting process of GIC, it can be released in large amounts by an ion exchange mechanism without 

affecting the structure of the cement. GICs also have the ability to uptake fluoride from the oral 

fluids that function as fluoride storage, which can be re-released preventing demineralization of 

the tooth tissues [98]. However, it has not been clinically confirmed whether the amount of 

fluoride released by GICs is sufficient to prevent the formation of caries [99, 100]. It has been 

reported that the amount of fluoride release achieved using nano-RMGIC is similar to the amount 

of fluoride release achieved using conventional RMGICs. However, the amount is lower than that 

released by conventional GICs [49, 89]. Notwithstanding nano-RMGICs release more fluoride in an 

acidic environment (pH = 4), the total amount of fluoride they released after 84 days was 

comparable to the total amount of fluoride released by conventional RMGICs [89]. Results from in 

vitro studies revealed that nano-RMGICs significantly reduce the development of secondary caries. 

Unfortunately, there are no long-term clinical trials to confirm these results in vivo. 

4. Glass Carbomer 

Glass ionomer cements are considered to be bioactive materials as they release biologically 

active ions (F, Na, Si, and P) in the oral environment, which can beneficially interact with dental 

tissues. They also present buffer properties under acidic conditions and reduce the pH of the 

environment. The glass carbomer is a novel glass ionomer cement, which was claimed to be more 

bioactive than conventional GICs [10]. Despite the fact that the name “glass carbomer” is the 
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brand name of a product of the GCP Dental company, it has been accepted to be used in literature 

[10, 40, 41]. Its setting reaction is an acid-base reaction that occurs between the aqueous solution 

of the polymeric acid and the basic glass containing certain components which are not usually 

present in other GICs [10]. In particular, these components are (a) glass beads of cement powder 

that have been treated with strong acids (HCl), (b) silicone oil containing polydimethylsiloxane, 

and (c) nano-hydroxyapatite and nano-fluorapatite fillers. 

The treatment of glass carbomer particles with strong acids results in a significant reduction in 

the calcium content on the surface of the particles, which is confined to the interior of the 

particles [101]. The glass used in the glass carbomer contains strontium, large amounts of silicon, 

and a small amount of calcium. Compared to the other GICs, it contains a relatively larger amount 

of silicon but a similar amount of aluminum, phosphorus, and fluoride [102]. The treatment of the 

powder particles with the strong acids results in a reduction in the rate of the reaction between 

the polyacrylic acid and the copolymer of acrylic-maleic acid. The silicone oil which is added to the 

powder is absorbed on the surface of the glass particles, preventing their direct reaction with the 

polymeric acids. Thus, the glass carbomer can be easily mixed in a large powder-liquid ratio, and 

the high rates of the setting reaction (initiated by the contact between the two components) can 

be avoided. The rate of the setting reaction lowers following the mixing of the materials. However, 

it can be accelerated by irradiating the system with a light-curing unit (LCU) for at least 60 s 

following the manufacturer’s recommendation [40]. The LCU emits heat resulting in an increase in 

the temperature of the cement. This catalyzes the setting reactions and accelerates the process of 

hardening of the cement. This method has been proposed in various previous studies conducted 

on conventional GICs [103-105]. 

As noted previously, the amount of silica in the glass carbomer is higher than the amount of 

silica present in other GICs and hydroxyapatite fillers. This results in the production of a brittle 

cement [10]. To address this problem, the manufacturer added silicone oil that bonded with the 

structure of the material via hydrogen bonds. Under these conditions, the cement becomes more 

resilient.  

Two parallel chemical reactions take place during the setting of the glass carbomer. The first 

reaction occurs between glass and polyacid, while the second reaction occurs between nano-

hydroxyapatite particles and polyacid. Both are acid-base reactions and occur following the 

process of hardening the cement. Then a polysalt matrix is formed, which encompasses glass 

particles and hydroxyapatite. The polysalt matrix is similar to the matrix of other GICs except for 

the fact that it contains polydimethylsiloxane oil [102]. To date, few long-term clinical studies on 

glass carbomer restorations have been published [106-108]. Therefore, there is no evidence of the 

effectiveness of the material in oral environment. 

5. Thermocuring of Glass Ionomer Cements 

As mentioned previously, the mechanical and physical properties of GICs, such as sensitivity to 

moisture, initial fracture toughness, and resistance to wear, are poorer than those of the resin-

based restorative materials, which can be primarily attributed to the slow progress of their setting 

reaction [109, 110]. Due to these drawbacks of the conventional GICs, it has been suggested to 

accelerate their initial setting reaction providing external energy, such as radiant heat, by utilizing 

dental light-curing units (LED or diode lasers) usually for 60-120 s [104, 111, 112] or kinetic energy 
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by using dental ultrasonic scalers, usually for 55 s [113-115]. The delivery of external energy on the 

surface of a GIC reduces the duration of the initial stage of the setting process. This also improves 

the rate of the setting reactions leading to a faster development of the mechanical properties 

avoiding premature failure of their restorations [116]. More specifically, heat transfer from the 

light sources to the GIC surface increases ion mobility at the initial stage of the setting process and 

reduces the viscosity of the material resulting in the enhanced reactivity of the calcium ions in the 

glass and carboxylate groups of the polyalkenoic acids. This process also helps to improve and 

accelerate the setting reaction [112]. 

Various studies have reported that the transfer of external energy to the surface of GICs can 

increase surface microhardness [117], resistance to abrasion [118], adhesion to tooth tissues [119], 

and compressive strength [111], while it can reduce water sorption and solubility [120]. On the 

other hand, it decreases fluoride release from the surface of the material [103-105]. This method 

in combination with the development of GICs with novel composition is very promising for the 

improvement of the clinical behavior of the tooth restorations of GICs, especially in areas 

characterized by high mastication forces, such as the occlusal surfaces of the posterior teeth.  

6. Conclusions 

In conclusion, modification of conventional GICs with nanoparticles improves their mechanical 

properties as the structure of the material is reinforced. Under these conditions, these materials 

become more stable and insoluble and the bond strength with the dental tissues improves. 

Commercially available RMGICs modified with nanoparticles do not show any significant benefit 

over conventional RMGICs in terms of mechanical properties and bond strength to tooth tissues. 

Glass carbomer is considered more bioactive than conventional GICs. The former, is apparently 

more fragile and less resilient than the latter. These new modified GICs require clinical 

documentation for their effectiveness, which can be achieved through conduction of more long-

term clinical trials. 
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