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Light-matter interaction at the nanometer scale lies at the heart of many physical problems 

including spectroscopic techniques to characterize lithium-ion batteries (LIBs). One of the most 

important topics in time-dependent quantum mechanics for physicists and chemists is the 

description of spectroscopy, which refers to the study of matter through its interaction with light 

fields. Classically, light-matter interactions are a result of an oscillating electromagnetic field 

resonantly interacting with charged particles. Quantum mechanically, light fields will act to couple 

quantum states of the matter. Light-matter interactions are fundamentally quantum 

electrodynamical. In many cases, they are described as quantum transitions by electrons, 

accompanied by the emission, absorption or scattering of quanta of photons [1]. Over the past few 

decades, several experiments have investigated electromagnetic waves’ interaction with various 

materials used in LIBs for the benefit of society [2-4]. Currently, research in the battery community 

http://creativecommons.org/licenses/by/4.0/
mailto:emananga@gradcenter.cuny.edu
mailto:eugene.mananga@bcc.cuny.edu
mailto:eugene.mananga@nyu.edu
mailto:emananga@gradcenter.cuny.edu
mailto:eugene.mananga@bcc.cuny.edu


Recent Progress in Materials 2021; 3(2), doi:10.21926/rpm.2101012 

 

Page 2/15 

is still extensive due to novel techniques and their applications in LIBs and beyond [5]. Usually, one 

technique is not sufficient to fully characterized LIB materials. One needs to combine more than one 

technique to characterize one single material [6-9]. When several techniques are used to 

characterize one type of material, these techniques are applied at different timescales and periods. 

This fact must be taken into consideration when analyzing data of different techniques obtained at 

different life span of the material [10-14].  

Batteries are devices that transform chemical energy into electricity and consist of 

electrochemical cells that are electrically connected [15]. Historically, the modern battery was 

developed by Alessandro Volta in 1800 [16]. Shortly after Volta, Gaston Plante invented the lead-

acid battery in 1859 [17]. As time went by, Georges Leclanche introduced the zinc-carbon battery 

(Leclanche cell) in 1866, which is one of the first modern electric batteries and the precursor of the 

modern dry cell battery [18]. In 1899, Ernst Jungner invented the nickel-cadmium battery (NiCd) 

[19]. The effort on nickel metal hybrid (NiMH) batteries began at the Battelle-Geneva Research 

Center following the technology's invention in 1967. An interest grew in the 1970s with the 

commercialization of the nickel-hydrogen battery for satellite applications [20]. Research carried 

out by the CNRS in France and the Philips Laboratories developed new high-energy hybrid alloys 

incorporating rare-earth metals for the negative electrode [21]. However, these high-energy hybrid 

alloys suffered from alloy instability in alkaline electrolyte and consequently insufficient cycle life. 

The first consumer-grade NiMH cells became commercially available in 1989 [22]. In 2008, more 

than two million hybrid cars worldwide were manufactured with NiMH batteries. The battery 

directive in the European Union makes NiMH batteries replace Ni–Cd batteries for portable 

consumer use [23]. In advanced Ni-MH batteries, the positive electrode is nickel hydroxide (NiOOH) 

used with optimum amounts of additives (such as Co(OH)2, Y2O3, graphite powders, etc.) to enhance 

the electrical conductivity of the cathode for higher charge efficiency [24-26]. In the last few years, 

nickel hydroxide production technology and its utilization techniques in Ni-Cd and Ni-MH batteries 

have increased. Because of the importance of secondary batteries, significant investments have 

been made in this area in the last decade. A new perspective on the mass scale production could be 

timely to the battery community. Ni-MH batteries have been drawing increasing attention due to 

their high discharge rate with relatively less heat dissipation [27, 28]. This technology has gained 

worldwide attention throughout the market for its ever-increasing demands for communication, 

space, and defense applications due to its unique features such as long-term life cycle at the 

profound depth of discharge. 

Pioneering work of the lithium battery began in 1912 under Gilbert Lewis, but it was until early 

1970s that the first non-rechargeable lithium batteries were commercially available to the general 

public [29, 30]. Attempts to develop rechargeable lithium batteries in the 1980s failed due to safety 

problems [31]. A breakthrough came out in 1985 when Akira Yoshino and his co-workers identified 

that certain qualities of petroleum coke were stable under the required electrochemical conditions 

[32]. These effective anode materials allowed Yoshino to develop an efficient and working LIB based 

on the ion transfer cell configuration [33, 34]. Thus, the graphite was thus used as an anode and 

LixCoO2 was also good enough to be a material used as a cathode [35]. These discoveries and 

developments ultimately led to the release of a commercial lithium battery in 1991 by SONY. Today, 

this chemistry has become the most promising and fastest-growing battery on the battery 

research15. For the past 30 years, LIBs are the most popular rechargeable energy storage devices in 

consumer electronics. They are the leading contenders for powering commercially viable electric 
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vehicles in the near future [36]. Nearly, 70,000 major scientific journals on LIBs have been published 

from 1990 to 2020, but none of these articles (research/review articles) explore all the diagnostic 

studies of the different techniques used to investigate the LIBs and beyond. LIBs have enabled the 

electronics revolution and electric vehicles are beginning to take off. They are also enabling 

renewable energy such as wind and solar [37]. LIBs store chemical energy, delivering it in electric 

power with high efficiently and no exhaust emissions [38]. While LIBs are widely used in portable 

electronics, their implementation into larger-scale applications is hindered by the electrode 

materials’ performance and the electrolyte [39]. Safety is also a significant concern in LIB 

technologies, and many high-profile examples of runaway reactions have the community searching 

for advanced materials with better stability [40, 41]. For instance, cathode materials such as the 

layered oxides (LiMO2) and most commercially available electrolytes exhibit a non-negligible 

instability at the end of the charging process [42]. To overcome these safety concerns, alternative 

material systems are under intense investigation to enhance safety and chemical stability over a 

wide range of ambient and operating temperatures [43]. As recently reported by Whittingham [44], 

the success of LIB over the past 30 years comes with several responsibilities such as focusing on the 

need for a cleaner environment for both health and climate change mitigation; emphasizing the 

science rather than this will make the next greatest battery. A better understanding of the reaction 

mechanisms, thermodynamics and kinetics and a focus on fundamental science is important. 

Equally important, giving enough data allows direct comparison. The LIB development did not stop 

with the above seminal and important discoveries, but many improvements and alternatives have 

since been reported [45-53]. 

Recently, several electrode materials and electrolyte systems have been discovered, leading to 

improve the energy storage materials for the benefit of society [40]. Table 1 names some electrode 

and electrolyte materials that have been used in the history [40].  

Table 1 Electrode and electrolyte materials. 

Cathode Materials Anode Materials Electrolyte Materials 

Lithium iron (II) phosphate, 

LFP (LiFePO4) 

Lithium titanate, spinel, LTO 

nano-powder (Li4Ti5O12) 

Lithium aluminum titanium 

phosphate, LATP 

(Li1.3Al0.3Ti1.7(PO4)3) 

Lithium cobalt phosphate,  

LCP (LiCoPO4) 

Lithium titanate, LTO (Li2TiO3) Lithium difluoro (oxalato) 

borate, LIF2OB; LIODFB; LIFOB 

(LiBC2O4F2) 

Lithium nickel manganese 

cobalt oxide, NMC 

(LiNi0.33Mn0.33Co0.33O2) 

Lithium-aluminum alloy (Al-

Li) 

Lithium bis (oxalato) borate, 

LiBOB (LiB(C2O4)2) 

Lithium nickel cobalt 

aluminum oxide, NCA 

(LiNi0.8Co0.15Al0.05O2) 

Tin (IV) oxide (SnO2) Lithium hexafluorophosphate 

(LiPF6) 

Lithium manganese nickel 

oxide, (LMNO Li2Mn3NiO8) 

Lithium (Li) Lithium trifluoromethane-  

sulfonate, (LiTf CF3SO3Li) 

Lithium nickel cobalt oxide, 

LNCO (LiNi0.8Co0.2O2) 

Graphite (C) Lithium tetrachlorogallate 

(LiGaCl4) 
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Lithium manganese oxide, 

LMO (LiMn2O4) 

Carbon, mesoporous (C) Lithium tetrachloro- 

aluminate (LiAlCl4) 

Lithium manganese (III, IV) 

oxide, LMO LiMn2O4 

Carbon (C) Lithium tetrafluoroborate 

(LiBF4) 

Lithium manganese dioxide 

(LiMnO2) 

 Lithium perchlorate 

(LiClO4) 

Lithium nickel dioxide, LNO 

(LiNiO2) 

 Lithium hexafluoroarsenate 

(V) (LiAsF6) 

Lithium trivanadate, LTV 

(LiV3O8) 

 Lithium phosphate  

Monobasic (LiH2PO4) 

Lithium iron (III) oxide 

(LiFeO2) 

  

Lithium cobalt (III) oxide 

(LiCoO2) 

  

Lithium molybdate (Li2MoO4)   

Germanium (IV) sulfide (GeS2)   

Manganese nickel  

Carbonate (Mn0.75Ni0.25CO3) 

  

Cathode materials, which account for about 45% of the cost of a whole battery, play an essential 

and decisive role in cell voltage and capacity. Disordered rock-salt (DRX) materials were shown to 

have facile Li transport enabled by a percolating network of Li-rich environments [54, 55]. Their 

ability to function without requiring cation ordering has enabled novel cathodes with remarkable 

chemical diversity [56]. In some cases, many new cathode materials, containing only earth-

abundant elements (e.g., Fe, Mn, and Ti) have been developed in this category, such as 

Li1.3Mn0.4Nb0.3O2 [57], Li1.2Mn0.4Ti0.4O2 [58], Li1.2Ni1/3Ti1/3Mo2/15O2 [59], Li4Mn2O5 [60], and 

Li2FeV0.5Ti0.5O4 [61] as well as their fluorinated variants [62-66]. 

The objective of this perspective article is to extend knowledge in the fields of materials 

chemistry such as the improvement of the capacity of LIBs in ways that will make green energy more 

accessible and commercially viable [67]. Building a better LIB involves addressing several factors 

simultaneously. For instance, keeping the battery’s cathode electrically and ionically conductive to 

making sure that the battery stays safe after many cycles [68]. A recent discovery published in the 

article Nature reports the development of a new cathode coating by using an oxidative chemical 

vapor deposition technique that can help solve several potential issues with LIBs all in one stroke 

[69]. The polymer fabricated in this discovery called PEDOT consists of nickel-manganese-cobalt 

(NMC) cathode material, encapsulated with a sulfur-containing polymer [70]. This polymer provides 

the cathode a layer of protection from the battery’s electrolyte as the battery charges and 

discharges. A recent article by Divakaran et al. [71] reviews a rational design on materials for 

developing next generation LIB. Divakaran et al. presents the historical and recent advancements in 

cathode and anode materials including the future scope of the lithium nickel manganese cobalt 

oxide cathode. The review focuses also on the role of technological advancements in nanomaterials 

as a performance improvement technique for new novel anode and cathode materials as well as on 

the discussion about lithium based and beyond lithium-based anode materials. In addition, the 

review offers rational cell and material design, perspectives, and future challenges to promote the 
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application of these materials in practical lithium-ion batteries [71]. With the coating PEDOT 

application, it is expected that the NMC-containing battery could either run at higher voltages, thus 

increasing their energy output, lifespans, or both. This work is reported in the journals [69, 72].  

The progress in energy storage requires new ways of thinking about LIBs and the fundamental 

limitations that different material chemistries impose. Research in electrochemistry presents a 

potential breakthrough advancement needed for the electrode and solid electrolyte materials to 

play a significant role in safer LIBs with longer life and higher efficiency. This would provide an 

explicit new understanding of the mechanism of Li-ion conduction and the through-space distance 

measurement between lithium spins in different environments [73, 74]. The applications and 

further development of the different techniques during the last 30 years of diagnostic studies in 

LIBs and beyond cover critical technological developments and scientific challenges for a broad 

range of LIBs and beyond. The information that can be derived by applying different techniques to 

LIBs and beyond can be used to compare many families of suitable materials. Over the past decades, 

there have been many projections on the future depletion of the fossil fuel reserves on Earth as well 

as the rapid increase in green-house gas emissions [75]. There is clearly an urgent need for the 

development of renewable energy technologies [76]. Reliance on fossil-fuel energy led to countless 

resource wars worldwide and has resulted in the climate crisis we now face. Renewable energy 

sources such as wind or photovoltaic are intermittent, and their production peaks do not always 

follow the increasing demand. Therefore, storing green energy is essential to moving away from 

fossil fuels [77]. On a different frontier, the growth, and manipulation of materials on the nanometer 

scale have progressed rapidly [78]. Energy is the basic framework unifying the developing 

technologies for alternative green energy storage and conversion devices such as batteries, fuel 

cells, solar cells for transportation, stationary power and for distributed power generation 

applications [79]. This framework is the only framework of its kind that allows a consistent 

treatment of the LIBs from electrodes and electrolytes to surfaces or solid-state electrode-

electrolyte interface. LIBs are currently the staple of the video battery industry, and they have 

improved our life dramatically. LIBs are approaching their theoretical limits on achievable energy 

density and specific energy [36]. If the market demand rises for even higher energy cells, then, the 

community must consider new technologies. The drawback of LIBs is due in part to the use of liquid 

organic electrolytes. While these organic electrolytes are necessary to the battery, they are highly 

flammable [80]. However, what we need for the future is a new battery technology called solid-

state battery (SSB), which promises greater safety, longer life, and faster charging [81]. This is 

because SSBs contain non-flammable liquid electrolytes. In contrast, LIBs are charged with 

electricity generated when lithium-ion travels from cathode to anode. SSB technology is not new 

[82]. Michael Faraday discovered the solid electrolytes silver sulfide and lead fluoride, which laid 

the foundation for solid-state research [83]. In the late 1950s, efforts were initiated to develop a 

SSB, which failed due to design limitations [84]. LIBs are at the center of the advanced rechargeable 

batteries and the scientific community has expanded an enormous effort to search for new 

electrode and electrolyte materials to enhance the amount of energy stored in electrochemical cells 

[85]. 

LIB development has a promising future as it lays in the intersection of improvement of cost-

efficient energy storage, an ability to wean economies out of oil dependence, and critical 

components needed to fight and curb global warming [86]. To look at the future of LIB development, 

we must look at the previous techniques and tools used in the battery science formation and how 
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those tools have spilled over to other areas of physical science [87]. We also must analyze the basic 

structural fundamentals of battery science and see if they still hold up to 30 years of development 

and research or if they should be modified or thrown out. LIB is very reactive and can withstand and 

achieve a high voltage rate. This makes it an interesting and an excellent choice for the battery 

revolution. Since, the growing needs of society are getting more and more demanding, LIBs are 

falling short due to the incapability of satisfying certain areas of societal needs. This shows that the 

question that one should ask is: Would LIBs still be the future knowing that obviously it does not 

satisfy major needs of interest? Researchers are looking forward to improving or increasing energy 

density for other lithium-based batteries other than LIB, such as lithium sulfur (Li-S) batteries and 

lithium-oxygen (Li-O2) [49]. More recently, to provide more sustainable energy storage solutions, 

advancements have been made on sodium-Ion batteries (NIBs), potassium-ion batteries (KIBs) [45], 

and magnesium-ion batteries (MIBs) [88]. These sustainable energies storage solutions with the use 

of NIBs, KIBs and MIBs are much more present and abundant than lithium. Moreover, they are 

promising prospects for large-scale grid energy storage. These facts are enough to conclude that 

LIBs are far from being the one lithium-based battery to resolve specific problems. Thus, the 

question of it being the future is inadequate! Researchers are looking for replacements of LIBs and 

researches show that many batteries can be candidates [44]. For example, Na-based batteries are 

candidates for large-scale stationary energy storage applications. Other potential candidates such 

as the spinel Li1-xMn2O4 and the disordered rock-salt Li-Excess battery materials have been 

discovered to be ever-improving energy storage materials for the benefit of society [89-91]. LIBs are 

generally safe, but only so long as there are no defects and the batteries are not damaged. This 

presents some issues because a squandering of LIB can cause a lot of damage. We recall the incident 

with Samsung Galaxy Note 7, where the problem came from a slight flaw in the battery’s fabrication, 

which caused a lot of damage. The battery inside the phone was a lithium-based battery which 

means that it can present safety issues. Even though LIBs are failing to satisfy societal needs is the 

reason why researchers are looking beyond LIBs, it is important to mention that it has its 

advantages. LIBs are by far the most convenient ion-based battery in the industry, making them a 

product of preference among the other batteries [92]. All electronic products now require a LIB for 

basic functioning. The practical benefits of the LIB are, without a doubt, compelling. The batteries 

are lighter in weight than most rechargeable battery alternatives, they hold their charge well, they 

have no memory effect, and they can handle hundreds of cycles of discharging/charging [46].  

The cost of LIBs used to be high and now we are seeing a decrease in cost over the last few years. 

It's so happens that LIB has a lifespan for a large-capacity battery pack and can be as long as eight 

or more years [93]. This shows that a LIB is the ideal battery when it comes to longevity because 

today, we need a battery that has a long lifespan for it to satisfy the modern society's needs in that 

area. LIBs compared to other batteries have the least impact on the environment. More and more 

research is being conducted and has been done to ever-improving battery understanding, especially 

lithium based-battery. The next step for the scientific community is to change perspective and start 

focusing on the other types of batteries that can satisfy societal needs rather than spending a lot of 

effort on LIBs again. It is about time to change direction and to use other techniques of application 

to other types of batteries to fill in the blank of what LIBs can no longer do. Four perspectives 

characterize the evolution from the conventional to the advanced LIBs (e.g., Li-rich transition metal 

oxide and Ni-rich transition metal oxide batteries), to the state of-the-art LIBs (e.g., Li-air, Li-sulfur 

batteries (LSBs), organic electrode batteries, solid-state batteries, and Li–CO2 batteries), and to the 
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hybridized LIBs (e.g., metal halide perovskite batteries). LSB should be a promising candidate for the 

next generation of rechargeable batteries, but they are not without problems [94]. The efficiency 

of charge transfer is low for lithium, and lithium batteries tend to grow dendrites, thin branching 

crystals when charging that do not disappear when discharged. Sulfur is the right battery of choice 

because it is inexpensive and has a high-charge capacity and a high energy density. For this reason, 

LSB has more energy. However, an LSB forms an inorganic coating in the battery that is brittle and 

cannot tolerate changes in volume [95]. In LSB, the electrolyte dries up and the bulk lithium 

corrodes. The lithium dendrites that form can create short circuits and other safety hazards [96]. 

Switching LIB from a flammable liquid electrolyte to a solid is not an easy task as lithium ions in 

solids are less mobile than in liquids. This lower mobility limits the battery performance in terms of 

charge and discharge rate. Scientists have been looking for materials that could enable all-SSBs. 

Recently, materials such as, LiTi2(PS4)3 or LTPS have been discovered [97]. LTPS has the highest 

lithium diffusion coefficient ever measured in a solid. The lithium mobility comes directly from the 

unique crystal structure of LTPS. This mechanism opens new perspectives in the field of lithium ion 

conductors, and beyond LTPS, opens an avenue toward the search for new materials with similar 

diffusion mechanisms. This discovery is an important step in the understanding of materials needed 

for all-solid-state batteries of the future.  

In addition of portable electronic devices, more perspectives on LIBs upon future developing 

techniques include in aerospace with applications in satellites and aviation [98].  

Recently, Zubi et al. reported the LIBs technology that has the potential to be used in power 

supply systems, off-grid and grid-connected. Substantial improvements have been achieved in 

medical devices, such as in hearing aids, by exploiting the advances in lithium battery technology. 

This development has also guaranteed miniaturized, reliable, high density and hermetically sealed 

rechargeable power sources for highly integrated and size-limited low power implantable devices 

in applications such as drug-delivery, glucose sensing, and neuro-stimulation [99]. The use of LIBs in 

medical devices has been explored, among others, by the US Food and Drug Administration [100]. 

Many self-powered micro-electronics, such as miniature transistors, sensors and actuators also 

integrate tiny LIBs [101]. Furthermore, as professionals continue to demand more powerful, 

efficient, and comfortable tools to work with, LIBs offer outstanding specific energy and power 

together with low self-discharge rates [102]. Finally, Li-ion cells can also be found in wearable 

technology products, flashlights, radio-controlled toys, solar LED systems and wireless vacuum 

cleaners, among others [98]. 
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