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Abstract 

To date, many studies have examined the development and use of novel materials, enhancing 

the performance of existing dental composites and improving methods for restoring tooth 

structure. In recent years, nanotechnology-based techniques have been used to develop a 

variety of nanomaterial-based dental products aimed at conservative dentistry applications. 

These new nanomaterial-based materials offer improved physicochemical and mechanical 

properties, combined with enhanced aesthetics that makes them superior restorative 

materials in several dental procedures. This review discusses tooth structure, the oral 

microbial environment, chronic dental diseases such as dental decay (or caries), and 

periodontal disease, as well as systemic diseases in light of nanotechnology-based 

preventative and restorative dental filler product advancements. Considerations regarding 

human health and safety associated with the use of nanomaterials in dentistry are discussed. 
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Lastly, knowledge gaps and limitations including future perspectives warranting further 

research are outlined. The study is followed by a conclusion which condenses the extensive 

data into a brief summary to establish a link between new nanomaterials and human 

interactions. This paper draws out and distils the current findings that have emerged from a 

substantial bibliographical review of a range of articles to provide an insight into the use and 

development of novel nanomaterials for preventive and restorative dentistry.  

Keywords  

Conservative dentistry; nanotechnology; nanomaterials; dental decay; caries and periodontal 

disease 

 

1. Introduction 

Historically, dental care procedures are believed to have started around 7,000 BC with holes 

being made in teeth to remove tooth decay [1]. Later the Sumerian’s (~5000 BC) explained the 

reason for tooth decay (or caries), with their manuscripts describing “tooth worms” as being the  

cause for tooth deterioration and decay. While ancient Egyptian texts from around 2500 BC 

reported the use of gold wire ligatures to stabilize loose teeth and prevent their loss [1]. Other early 

civilisation also made efforts to restore the function of diseased teeth. Both the Etruscans (~500 BC) 

and the Phoenicians (~300 AD) carved replacement teeth from materials such as oxen bones and 

ivory, and then using gold wire, fix the replacement in place [2, 3]. While in the America, Mayans 

(~600 AD) used carved shells and Honduran’s civilisations (~800 AD) used fashioned stone to replace 

mandibular teeth [4]. But it was not until the 18th century in Europe that dentistry became more 

scientific, with early dentists like Pierre Fauchard identifying acids and sugars as the drivers for 

dental decay. His studies also presented concepts such as repairing teeth with dental fillings, using 

teeth braces and dental implants. It was also during this period that teeth were collected from 

cadavers or the poor for use in patients. This practise continued for many years until the 

development of replacement porcelain teeth in the 19th century [2]. It was during the early part of 

the 20th century that significant and rapid developments in new materials and implants for dental 

applications emerged. And, by the middle of the century, the use of biocompatible metals such as 

stainless steel and cobalt-chromium-molybdenum were being extensively used. While during the 

second half of the century saw the use of titanium alloys in dental restorative procedures to return 

masticatory functions to patients [5, 6]. By the end of the 20th century, dental restorations were 

broadly classified into six categories, namely, filling materials, crowns, implants, bridges, dentures 

and Inlay or onlay restorations. All of these restoration procedures can be carried out by either 

direct or indirect methods. In direct restorations the damage is repaired, decayed tissue is removed 

and the cavity is filled with a suitable filler material in situ. While indirect restoration methods 

involve the fabrication of a replacement tooth or implant outside the patient’s mouth, following a 

direct cemented replacement in the mouth during a subsequent visit. 

However, it is interesting to note that while human kind has been grappling with dental issues 

for a long time and that despite many scientific developments and medical advancements, dental 

treatment is still needed today. Significantly, dental related diseases affect almost everyone at some 
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stage of life [7]. In the UK alone, each child has on average 3 to 4 teeth affected by tooth decay and 

the average NHS cost of treating oral health conditions on children’s dental care is about £3.4 billion 

per year [8]. Dental decay is increasingly recognized as a worldwide public health concern affecting 

mostly children in UK and US and is an ever-increasing burden to governmental and private health 

cost. In Australia, survey data showed that recurrent expenditure on dental services accounted to 

about $8,706 million in 2012–13 [9]. These statistical highlights have clearly revealed the urgent 

need to address the importance of preventive and restorative strategies for better dental hygiene 

and practices. 

A variety of traditional restorative materials (metals, polymers, ceramics and composites) are 

currently being used in dentistry across the world. These materials are expected to perform in a 

very hostile environment, in which pH, salivary flow and mechanical loads rapidly fluctuate during 

day and night. Furthermore, in the treatment of dental caries, filler materials are not only expected 

to fill and seal the cavity, but are also expected to prevent further bacterial invasions, restore lost 

aesthetics, and preserve the remaining pulp and tooth structure [10]. However, in spite of the many 

advantageous physiochemical and mechanical properties of these materials, no material has yet 

proven to be ideal for all dental applications [11]. For example, traditional dental amalgams are 

composed of elemental mercury (42 to 50%), silver (22 to 32 %), tin (14%) and copper (8%) have 

been extensively used in dental restoration for over a century [12, 13]. Importantly, their use in 

dental fillings is straightforward procedure and begins with the amalgam being mixed. Once mixed, 

the amalgam is packed into the prepared dental cavity where it sets and forms a hard filling with 

similar mechanical properties to the surrounding tooth. Unfortunately, toxicity studies carried out 

in the early 1980s revealed significant amounts of mercury leaching from amalgams. Subsequent 

patient blood tests by Abraham et al., revealed increased mercury levels in blood samples following 

mercury amalgam use [14, 15]. This posed significant concern, since elevated mercury levels in the 

blood have been associated with certain diseases such as chronic fatigue syndrome and fibromyalgia 

[12]. Further amalgam toxicity research, revealed that modern amalgams tend to be less stable than 

more traditional amalgams, concluding that mercury vapour emission rates from modern amalgams 

were typically ten times higher [16]. This body of evidence for amalgam leaching resulted in the 

establishment of several anti-amalgam advocacy groups whom are lobbying governments globally 

to restrict or eliminate the use of amalgams in dental restoration, especially among children [17]. 

Another problem associated with the use of amalgams is the silver-grey colour. For consumers this 

is, not aesthetically pleasing. Thus, alternative materials are constantly being developed and 

evaluated as possible replacements for amalgams [18], such as composite resins. These polymers 

have emerged as more aesthetically appealing restorative materials. However, composite resin’s 

restorative integrity is questionable with secondary caries rates between 50 to 60% [19, 20] as a 

result of composite resin micro-leakage which typically forms at the interface between the prepared 

tooth cavity and the restorative resin [21]. This problem highlights the importance of selecting the 

most appropriate restorative material which is also dependent on patient factors such as age, size 

of cavity and the amount of viable tooth structure left after removal of a carious lesion, and the 

location of the cavity in the mouth [22-24]. Thus, not only does the restorative material have to 

restore aesthetics, function and morphology of tooth structure. It also needs to be biocompatible, 

capable of withstanding occlusal loads, prevent gap & biofilm formations, promote remineralisation 

& self-repair, and be easily applied during the restoration process [25]. At present no currently 
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available synthetic biomaterial meets all of the abovementioned requirements for all dental 

applications [26, 27]. 

Nanotechnology-based manufacturing processes for producing nanomaterials with unique 

properties and structures has attracted considerable interest in recent years. Nanomaterials are 

characterised by their small size (a least on dimension less than 100 nm) and having a large surface 

area to volume ratio [28]. They are also characterised by having large proportion of their atoms 

located near the surface and having large surface energies. Because of these unique features, 

nanomaterials have been introduced in several innovative dental applications in recent years. Some 

of these applications include nanometre scale resin-based composites and glass-ionomer 

nanocomposite cements [29, 30]. Moreover, the natural mineral components of bone and tooth 

hard tissue materials are of nanometre scale units. Importantly, the demand for new dental 

biomaterials will ensure the continued development of new nanomaterials for standalone products 

or being incorporated into existing products to improve their performance [31, 32]. Ultimately the 

goal of new nanomaterials designed for restorative dentistry is to closely match the properties of 

oral tissues, thus ensuring the restoration fully restores the integrity of the oral tissues. Hence, if 

suitable nanomaterials are developed and used effectively in dental restorative procedures, major 

benefits can be achieved such as improved oral health, general wellbeing and an improved quality 

of life for patients. The aims of this review were to: 1) summarize the structure of human teeth; 2) 

describe oral microbial homeostasis and oral health in terms of dental caries, periodontal diseases, 

and systematic diseases; 3) outline nanotechnology-based preventative and restorative dental filler 

materials being resin based composites, glass-ionomer cements and calcium phosphates, including 

hydroxyapatite; 4) discuss potential health and safety risks associated with the use of nanomaterials 

in dentistry, and finally, (5) discuss future perspectives, knowledge gaps and suggestions for future 

research. 

2. Human Teeth and Their Structure  

The oral cavity contains teeth, salivary glands and tongue, which contribute to the mechanical 

mastication and initial chemical digestion of food. Like bone, teeth are a rigid and hard form of 

connective tissue that is classified as hard tissue. The unique structure and composition of teeth 

endows them with exceptional mechanical properties that enable them to perform the demanding 

functions of incision, laceration and grinding. During mastication teeth function in a very hostile 

environment, in which saliva flow, pH, and various mechanical forces (flexural and shear) and 

various force combinations constantly and rapidly change. To assist in transferring the mechanical 

forces of mastication, the teeth are anchored in sockets (alveoli) in the gum-covered boundaries of 

the mandible (lower) and maxilla (upper) jaw bones. Each tooth has two distinct regions (crown and 

root) (see Figure 1), which are delineated by the gum. The first region is the upper enamel-coated 

crown, which is above the gum and directly experiences the tearing and grinding of food during 

mastication. The thin (< 1 mm) enamel coating is acellular, highly mineralised, brittle and the 

hardest material in the human body. It is composed of inorganic materials (96% wt.), with the 

balance of the weight made up by organic materials and water. The enamel microstructure consists 

of rod-like structures that are typically 5 µm in diameter. These rod-like structures are composed of 

densely packed hydroxyapatite crystals (26 nm in diameter and 68 nm in length) surrounded by a 2 

nm thick layer of protein [33]. The rod-like structures are also perpendicularly orientated to the 
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tooth surface to resist forces resulting from mastication [34]. Thus, giving the enamel an anisotropic 

force resisting property. Importantly, soon after the tooth erupts from the gum, the cells 

responsible for generating the enamel coating soon disintegrate. Thus, the resulting acellular 

enamel is unable to heal itself from damage or decay and must undergo restorative dental 

procedures to restore structural integrity, if damaged or removed. 

 

Figure 1 An illustration of a healthy tooth dissected lengthways to show the internal 

layers and structures forming the crown and root. 

The second and lower region of the tooth embedded in the gum and underlining bone is the 

cementum covered root (see Figure 1). The cementum coating has similar properties to bone tissue 

and is also composed of calcium containing apatites that form the inorganic phase, while collagen 

and non-collagen proteins form the organic phase. Importantly, the cementum attaches to the 

surrounding thin periodontal ligament to form a tight collar within the alveoli [35]. Also present, 

underlying and supporting the enamel in the crown and the cementum in the root is the bone-like 

dentine, which forms the bulk of the tooth. Dentine is less mineralised (65-70%) than enamel (96%), 

but more mineralised than the cementum (45-50%). Dentine is not as hard as enamel, but is harder 

than the cementum. The inner most region of dentine contains the central pulp cavity, which 

contains blood vessels, connective tissue and nerve fibres. Also present and radiating outwards from 

the central pulp cavity to the exterior cementum or enamel coating are micro-scale liquid filled 

tubules. Each tubule contains an odontoblast cell that generates and maintains the dentine [36].  

It is the composition and complicated structure of teeth that directly influences its amazing 

mechanical properties. These properties include elasticity, hardness, fracture toughness and 

viscoelasticity. Tooth elasticity is its ability to recover its original dimensions after external forces 

are removed during mastication. While tooth hardness is an indicator of its ability to withstand 

elastic deformation, plastic deformation and destruction [34]. An important property of a tooth is 

its fracture toughness, which determines its strength and the growth rate of cracks resulting from 

fatigue and age [37]. Whereas, very few viscoelasticity studies have evaluated teeth and those that 

did have focused on the dynamic mechanical properties of dentine [38]. To date, elasticity and 

hardness are the two most studied mechanical properties of teeth. In particular both enamel and 

dentine have been extensively studied, while cementum has been studied to a lesser extent [38-40]. 

Moreover, earlier studies assumed tooth composition and structure were isotropic in nature and 
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both elasticity and hardness were the same in all directions. However, in recent years, with a greater 

understanding of factors such as mineral and organic component densities, rod arrangements in the 

enamel, the direction of tubules and organic fibres in the dentine, the tooth structure was found to 

be highly anisotropic in nature [37, 41, 42]. For instance, the anisotropic nature of enamel and its 

influence on elasticity and hardness has been found to vary with respect to the directions of the 

enamel rods, calcium content and gradually decrease from the surface to the enamel-dentine 

interface [43, 44]. In addition, dentine elasticity and hardness is not only closely related to its 

complex structure and composition, but also to the external environment. In terms of composition, 

highly mineralised dentine can have an elastic modulus between 40 and 42 GPa, while poorly 

mineralised dentine can have modulus values as low as 17 GPa [45]. In terms of external 

environmental factors, studies have shown dentine is isotropic in a dry environment and anisotropic 

in a moist environment. For instance, in a hydrated environment, elasticity and hardness both 

decrease by 35% and 30% respectively [46, 47]. The mechanical and thermal properties of human 

teeth are presented in Table 1, along with typical elasticity and hardness values reported by several 

researchers for enamel and dentine. It must be pointed out that current dental restorative materials 

have not been able to fully reproduce the complicated structure and unique mechanical properties 

of human teeth. Moreover, restoration failure generally results from a combination of factors such 

as inappropriate dental material composition, poor material properties and bacterial growth on 

dental surfaces. Crucially, the oral microbial environment has an important role in sustaining oral 

health and assisting in preserving dental restorations [10]. Emerging data of the oral microbiome’s 

role where there can be up to ~1000 species [48] can colonise the oral cavity shows a much more 

complex interaction of these species with the underlying material of the tooth as well as the 

surrounding tissues and support structures. Figure 2 shows the optical images of extracted human 

tooth at different angles or positions. 

Table 1 A selection of mechanical and thermal properties of several dental materials. 

Material Mechanical Properties Ref. Thermal Property Ref. 

 Hardness (G Pa) Elastic Mod. (G 

Pa) 

 Linear coefficients of 

thermal expansion 20-

60 °C (ppm) 

 

 

Enamel 

(Premolar) 

Surface 

5 ± 0.45 

60 to 100 [49] 11.4 [50] 

Cross-section 

4.5 ± 0.45 

40 to 80 [34] _ _ 

 

 

Dentine 

Crown of 

1St Molar 

Pulp wall 

0.52 ±0.24 

Pulp wall 

 11.59 ± 3.95 

[51]  

8.3 

 

[52] 

Middle area 

 0.85 ± 0.19 

Middle area  

17.06 ± 3.09 

 

[51] 

  

Dentin-enamel 

Junction 

0.91 ± 0.15 

Dentin-enamel 

junction 

16.33 ± 3.83 

 

[51] 

  

Ag amalgam 2.34 ± 0.27 107.00 ± 12.00 [53] 22.1–28.0 [52] 

Porcelain 5.5 to 6.5 55 to 75 [54] 12.0 [52] 



Recent Progress in Materials 2021; 3(1), doi:10.21926/rpm.2101007 

 

Page 7/42 

Glass-ionomer 

cement 

0.7 ± 0.02 4.5 ± 0.3 [55] 10.2–11.4 [52] 

Resin 

Nanocomposite 

1.2 ± 0.1 16.0 ± 1.1 [56] 14–50 [57] 

Nanocomposite 0.2 ± 0.01 8.5 ± 2.0 [58] ̶ ̶ 

 

Figure 2 Optical images of human teeth: (a) lingual view of extracted and bleached 

wisdom tooth; (b) occlusal view of extracted and bleached wisdom tooth with visible 

cavities in cusp regions; (c) lingual view of extracted healthy wisdom tooth sample, and 

(d) occlusal view of extracted healthy wisdom tooth with no visible cavities. 

3. Oral Cavity Environment  

Humans are not only composed of their own diverse range of cells, but they are also heavily 

colonised by a wide variety of microorganisms. These microorganisms live either in or on the surface 

of the body and their numbers can be more than ten times greater than the number of cells forming 

the body [59]. Figure 3 represents the site of attachment of different microbial colonies at various 

structural receptors present on tooth surfaces. The microbial communities found in the oral cavity 

are considered the second most complex in the body, the first being the colon [60]. The highly 

diverse oral microbiome contains around 700 species composed of archaea, bacteria, fungi, 

protozoa and viruses [61]. The presence of microorganisms in the oral cavity is a natural and normal 

occurrence in the mouth [62]. But unlike commensal microorganisms found in other parts of the 

body such as the colon, which assist the body in fighting pathogens, help regulate the immune 

system and maintain homeostasis, the microbiota of the mouth are also actively involved in 

pathogenesis and promote many oral and systemic diseases [63, 64]. Examination of early human 

remains (~7,000 BC) has shown the presence of manmade holes in teeth to remove tooth decay. 

And recent bio-molecular studies of these ancient adult teeth and skeletons has confirmed the 

mouth cavity acted as a reservoir for microbial organisms involved in both oral and systemic 

diseases [65]. In particular, microbial organisms have a strong tendency to attach and colonise the 

various tissue surfaces found within the oral cavity [66, 67]. The oral cavity contains soft tissue 

surfaces (oral mucosa and tongue), hard tissue surfaces (teeth), and saliva [68]. Importantly, 
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microbial attachment and colonisation is influenced by the interplay of several favourable and 

unfavourable factors. And regardless of favourable factors such as suitable tissue surface chemistry, 

nutrients, temperature and humidity, microbial colonisation is constantly being challenged by the 

body’s immune system [69, 70]. However, it should be pointed out that the presence of commensal 

microbes in the mouth is an important factor in preventing colonisation by pathogens. Colonising 

commensal microbes achieve this by reducing the number of available binding sites for pathogens 

[71]. For instance, in vitro studies have shown microbes such as Streptococcus salivarius (strain K12) 

inhibit the growth of several pathogenic species associated with periodontitis and halitosis [72, 73]. 

This ecological balance can be readily seen when antimicrobial agents disrupt the balance and 

opportunistic pathogens infect the oral tissues [74]. Thus, highlighting the importance of 

commensal microbes being present and the importance of maintaining an ecological balance for 

preserving a healthy oral environment [63]. However, studies have shown commensal microbes are 

site specific [75, 76]. For instance, soft tissue surfaces such as the cheek and palate have a 

monolayer of bacteria. The tongue has multiple coatings of microbes that also include bacteria. 

Crypts present in the tongue provide an ideal environment for anaerobic microbes to thrive [77, 78]. 

While the continuously flowing saliva has a similar microbial profile to both tissues surfaces and 

biofilms. The major part of the microbial content present in saliva is produced by biofilm flaking 

from oral tissues [79, 80]. The viscous properties of saliva also assist in rinsing the teeth and soft 

tissues, and also assists in microbe desorption from the teeth and soft tissues [81, 82]. In addition, 

the saliva also contains chemicals such as bicarbonate and calcium phosphate that are used to 

buffer the effects of acids produced from the consumption of food and drink and/or bacterial 

metabolism [83]. Thus, the saliva neutralises the effects of generated acids, prevents acid erosion 

of the teeth and maintains oral cavity pH [84, 85]. Also present in saliva are antimicrobial proteins 

for instance lysozyme and lactoferrin, as well as immune system components such as 

immunoglobulins that also promote a healthy oral environment. Furthermore, studies have shown 

that salivary microbiota can be used as diagnostic indicators for several diseases like dental caries, 

periodontitis and oral cancer [86, 87]. 

 

Figure 3 A diagrammatic representation of tooth and surrounding gum tissue in the oral 

cavity with microbial colonization present at the enamel-gum interface. 

The most distinctive feature of the mouth is the array of teeth. The non-shedding hard tissue 

surfaces that form each tooth can provide a stable location for microbial colonisation [88]. In 

addition, both microbe surfaces and tooth surfaces are negatively charged. This results in the 

soluble cations (potassium, sodium, magnesium and calcium) present in saliva being attracted to 
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the negatively charged surfaces. This results in the generation of a double charged layer (electrical 

double layer) forming around the respective surfaces that produce a repulsive electrostatic force. 

Meanwhile, microbes approaching tooth surfaces also experience a repulsive force (van der Waals 

force). The resulting modulation between the two interacting electrostatic forces generate 

equilibrium and subsequently promotes the attachment of microbes to tooth surfaces [89, 90]. In 

addition, exposure to saliva produces a proteinaceous coating on tooth surfaces called the pellicle. 

The pellicle layer is composed by amino acids, amylase, glucose, glycosyltransferases, muscin, 

lysozyme, and soluble ions [91, 92]. The pellicle moderates surface charge and promotes attractive 

interactions between the tooth and oral environment [93]. Thus, microbes are able to attach to the 

pellicle through adhesin–receptor interactions and colonise the tooth surface to form a biofilm. The 

biofilm, known as dental plaque, is a functionally organised structure resulting from the metabolic 

interactions occurring between different microbial species forming the colonising community [94]. 

There are two types of dental plaque. Above the gum line, it is known as supra-gingival plaque and 

below the gum line it is known as sub-gingival plaque. Supra-gingival plaque is linked to tooth decay 

and promotes the formation of dental caries. Clinical studies have shown the number of caries 

increase with growing numbers of acidogenic and aciduric (acid-tolerating) bacteria such as 

Streptococci mutans and lactobacilli, which are constituent members of plaque [95, 96]. Numbers 

of these acid-tolerating bacteria can rapidly increase when acidic by-products produced from their 

metabolism of fermentable carbohydrates, reduces oral pH levels and promotes their proliferation 

[97, 98]. Meanwhile, the under lower pH levels reduce the survival rates of acidic sensitive microbial 

species that promote good tooth health [99, 100]. Also, the lower pH levels produce higher tooth 

dissolution rates. While below the gum line sub-gingival plaque extends down along the tooth root. 

In this region there is very little saliva and local pH levels and temperatures are more severe, and 

the local environment becomes more anaerobic [82]. Common to both types of plaque is their 

degree of stability (microbial homeostasis) achieved by their respective microbial communities 

[101]. Apart from regular events like dietary intake and oral hygiene, microbial homeostasis is 

achieved by balancing the numerous synergic and antagonistic interactions occurring between the 

various members of the microbial community [102, 103]. 

4. Oral Microbial Homeostasis and Health  

The interactions occurring between oral microbiota and the host are extremely important in 

maintaining good oral and systemic health. Many of these microbes have evolved unique biological 

characteristics and properties that are antagonistic to many oral pathogens, which makes them 

beneficial for good health and wellbeing. These biological characteristics and properties are 

important factors in controlling microbial populations in the oral cavity [71]. For instance, in vitro 

studies by Wescombe et al., showed that bacteriocin produced by Streptococcus salivarius (strain 

K12) inhibits several detrimental microbial species associated with periodontitis and halitosis [72, 

104]. But the role of these factors is complex, since signalling molecules not only modulate and 

influence the activity of microbial species, they also interact with the immune system [105-107]. 

Importantly, because biofilms are in extremely close physical contact, they have the greatest 

opportunity to interact with oral tissues and in turn interact with the immune system [108]. Several 

studies have shown dental decay is not restricted to a single species, but is the outcome of 

interactions occurring between various microbial species and oral tissues that result in virulence 
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and pathogenesis [109-111]. Crucially, these interactions regulate microbial homeostasis, but when 

out of balance can drive the pathogenic potential of cariogenic microbial species. Hence, the 

following subsections briefly discuss major oral and systemic diseases associated with oral 

microbiota. 

4.1 Dental Caries 

When microbial homeostasis is disturbed the character of dental plaque changes. One major 

disturbance is the ingestion of high levels of fermentable carbohydrates and sugars on a regular 

basis. This leads to higher acid production levels, lower salivary buffering and lower pH levels [95]. 

Acidification results in a series of complex interactions occurring between acid-producing bacteria 

and fermentable carbohydrates. These interactions result in major changes to the phenotypic and 

genotypic composition of the plaque and leads to the formation caries [112]. Dental caries is the 

most common form of oral disease that results in pain and subsequent tooth loss [94]. Figure 4 

outlines the different stages of dental caries, when the process is initiated by growth of bacterial 

biofilm which gradually dissolves the enamel, followed by dentine and pulp. Importantly, 

acidification favours aciduric microbial species that are better able to adapt to lower oral pH levels 

[113, 114]. In particular, species such as Streptococcus mutans and lactobacilli thrive in acidic 

conditions and are considered pathogens because of their cariogenic properties [115, 116]. Studies 

have also reported species like Actinomyces spp., Atopobium spp., Bifidobacterium, 

Propionibacterium and Scardovia are also involved in caries formation [96, 117-119]. Importantly, 

these studies have shown that dental caries are caused by the interactions of a complex community 

rather than a single pathogen [81]. Also present are bacterial species that can raise the pH level by 

producing ammonia from arginine and urea molecules [99]. The alkalising effect not only raises pH 

levels, but also assists in balancing acid production from dietary carbohydrates and sugars, and 

supports microbial homeostasis. Importantly, alkali production moderating the effects of dental 

decay and provides some degree of protection against dental caries [94, 99]. Crucially, if dental 

caries is not treated, decay progresses through the dentine towards the root canal and pulp. On 

reaching the pulp, the pulp becomes infected and subsequently dies resulting in tooth extraction 

[120].  

 

Figure 4 Illustration of different stages of tooth decay progression and dental 

restoration strategies. (a) A representation of tooth with no visible decay, (b) decay of 

the enamel and is generally sealed by filling with a dental filler material, (c) decay has 

spread to the dentine and pulp, accompanied by tooth pains and this condition is either 

cemented with a new crown or fixed with a metallic implant. 
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4.2 Periodontal Diseases 

The most common periodontal disease of humans is gingivitis and its prevalence in the adult 

population can be as large as 90% [121]. Dental plaque constantly forms on all tooth surfaces. But 

with increasing numbers of gram-negative and anaerobic microbial species in plaque located at the 

gingival boundary, there is a transfer of endotoxins and other enzymes into the gingivae [122]. This 

contamination results in an inflammatory response and the gingivae becomes inflamed and swollen. 

Species like Haemophilus, Lautropia, Leptotrichia, Prevotella, Streptococcus and Veillonella have 

been closely associated with gingivitis [123, 124]. Gingivitis can be reversed or prevented altogether 

by regular tooth cleaning, which significantly reduces plaque levels on teeth. However, if oral 

hygiene is not practiced, plaque levels increases and the severity of the disease increases [123, 125]. 

In extreme cases, gingivitis produces destructive inflammation and results in the bone loss disease 

known as periodontitis. Unlike gingivitis, periodontitis is a chronic and irreversible inflammatory 

disease that results in the destruction of alveolar and connective tissue in the jaws [126]. 

4.3 Oral and Systematic Diseases 

The oral microbial community has long been known as a source of both oral and systematic 

infections. One common mucosal disease of the mouth, which is characterised by painful ulcers is 

recurrent aphthous stomatitis (RAS). Studies have shown that RAS is linked with specific microbial 

species present in both mucosal and salivary microbiota [127, 128]. Studies have also linked oral 

microbiota with oral cancer, but the mechanisms involved are currently not fully understood to date 

[129, 130]. For instance, oral squamous cell carcinoma (OSCC) studies of the mouth epidermis 

tissues found the surface of carcinoma cells had significantly higher numbers of aerobes and 

anaerobes than healthy cells [131, 132]. The role of bacteria in cancer has been reported for several 

years. Researchers believe the presence of bacteria and their secretions provokes inflammatory 

responses that influence cell proliferation, mutagenesis, oncogene activation and angiogenesis [130, 

133, 134]. Because of this association, recent research has focused on identifying specific oral 

microbiome as a new biomarker for detecting cancers [135]. Importantly, oral microbiome can gain 

access to the bloodstream through carious lesions and the gingival crevice. Once in the bloodstream, 

oral microbiome can circulate and infect various locations within the body. For instance, periodontal 

pathogens have been linked to cardiovascular diseases [136, 137], while oral microbiome have been 

detected in brain and liver abscesses [138-140]. Studies have also examined the relationship 

between periodontitis and diabetes, since badly controlled diabetes also contributes to 

periodontitis [141]. In addition, some studies have found no significant differences in microbial 

numbers present in saliva and sub-gingival plaques between diabetic and non-diabetic patients, 

while other studies have seen significant differences [142, 143]. While recent studies have linked 

oral microbiome with diseases such as pancreatic and gastrointestinal cancers [144, 145]. Similarly, 

head and neck squamous cell carcinoma [146], as well as esophageal cancers [147] have also been 

linked to the presence of oral bacteria. The abovementioned studies clearly highlight the 

importance of maintaining an effective oral microbiome balance to sustain good human health and 

longevity.  
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5. Nanotechnology-Based Preventative and Restorative Dentistry 

In recent years nanotechnology-based techniques for manufacturing a variety of nanometre 

scale materials has attracted considerable interest due to the unique structures and properties 

displayed by these new nanomaterials. The tooth is essentially composed of nanomaterials that 

make up the enamel, dentine, and cementum. Accordingly, recent studies have focused on 

understanding the physiochemical and mechanical properties of nanomaterials for potential use in 

the field of dentistry [148, 149]. The two fundamental fields of dentistry are preventative and 

restorative. The objective of preventive dentistry is to inhibit or minimise risks of onset of dental 

diseases by which plaque removal through mechanical and behavioural management aids in early 

prevention of tooth decay and periodontal disease. To this end several nanomaterials have been 

included in a variety of oral health-care products such as toothpastes, mouth pastes and liquids in 

recent years [150]. While the objective of restorative dentistry is to use dental materials to replace 

tooth structure or oral (gingivae and bone) tissues resulting from disease processes, and to restore 

physical and mechanical functioning of the oral cavity [151, 152]. The inclusion of nanomaterials in 

both preventative and restorative dental procedures in the future is expected to improve oral health 

and benefit across the life-span of the patients. 

5.1 Preventive Dentistry  

Diseases occurring in the oral cavity are complex in nature. Thus, the main strategy of dental and 

health organisations is prevention. The most frequent disease found in the oral cavity is dental 

caries. And in spite of the surface pellicle, erosion and demineralization of tooth enamel takes place 

[153, 154]. Also, the frequent consumption of acidic foods and beverages common in today’s diets 

significantly accelerates enamel erosion and demineralization [155]. Further erosion and 

demineralization takes place if stomach acid reflux occurs after meals. To counter demineralisation 

and reduce dental decay, fluoride (re-mineralising agent) has been added to dental products [156, 

157] and drinking water for many years [112, 158]. The World Health Organisation (WHO) 

recommends the maximum permissible fluoride concentration in drinking water should not exceed 

1.5 mg/L [159]. However, concentrations exceeding the maximum permissible concentration leads 

to serious health problems such as skeletal fluorosis [159].  

The daily use of mouthwashes and toothpastes by patients is an important strategy to manage 

their oral health and help prevent the formation of both carious lesions and periodontal disease 

[160]. In medicine, nanomaterials are used in a variety of applications such as drug delivery, 

diagnostics and imaging tools [161, 162]. Accordingly, there has also been considerable interest in 

using nanotechnology-based methods to produce new dental products and improve the 

performance of traditional dental products [162, 163]. Nanotechnology-based products have the 

potential to improve the mineralisation of hard dental tissues using nanomaterials composed of 

hydroxyapatite and fluoride. While antimicrobial nanomaterials such as silver, zinc oxide and 

titanium oxide also have the potential to manage plaque and dental infections [27, 164, 165]. For 

example, the use of toothpastes and mouthwash preparations containing nanomaterials are 

effective strategy for mineralising tooth enamel and dentine, while also controlling microbes and 

plaque. In particular, studies have shown the inclusion of nano-hydroxyapatite in toothpaste can 

both enhance remineralisation and improve the hardness of tooth enamel and dentine [165, 166]. 
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This is achieved due to the extremely small size of nano-hydroxyapatite particles, which can readily 

enter and interact with sub-micrometre and nanometre scale damage on tooth surfaces caused by 

acidic erosion (white spots) [167]. During the interaction, calcium and phosphate ions are released 

from the nano-hydroxyapatite particles. The released ions move into the enamel rods and change 

into apatite crystals. Hence, re-mineralising and repairing enamel surfaces [168, 169]. Furthermore, 

several studies have shown the use of nano-hydroxyapatite in dental products can also lower 

bacterial colonisation of tooth surfaces and reduce dentine hypersensitivity [149, 170, 171].  

In recent years, several manufacturers have produced a wide range of commercially available 

oral health-care products (liquids and pastes) for plaque management and re-mineralization of early 

sub-micrometre-scale enamel lesions as a method of preventing tooth decay. Products such as GC 

Tooth Mousse, MI Paste and Recaldant® each containing milk based casein phosphopeptides (CPP) 

and amorphous calcium phosphate (ACP) have been on the market for several years. In CPP-ACP 

based products, CPP combines with ACP to form amorphous nano-complexes that contain a rich 

source of stabilised calcium and phosphate ions [172]. On entering the oral acidic environment the 

nano-complexes dissociate, releasing calcium and phosphate ions for enamel remineralisation [173, 

174]. Studies have also shown products such as Recaldant® exhibit anti-cariogenic properties and 

have been used to treat dentine hypersensitivity [175-179]. While a study by Reynolds et al., found 

the addition of fluoride into CPP–ACP pastes could significantly improve tooth re-mineralisation 

[174]. Alternatively, other manufacturers have used different active materials and approaches for 

controlling plaque and re-mineralising damaged enamel surfaces. Some of these alternative 

ingredients and products include sodium fluoride (PreviDent®), calcium sodium phosphosilicate 

(NovaMin®), and arginine bicarbonates and calcium carbonates (SensiStat®). A selection of currently 

available oral health-care products and their active ingredients is presented in Table 2.  

Table 2 Commercially available calcium phosphate based toothpastes and dental 

creams. 

Commercial 

Name 

Manufacturer Active Ingredients Description 

PreviDent® Colgate Oral 

Pharmaceuticals 

(USA) 

Sodium Fluoride, Potassium 

Nitrate, hydrated Silica, sorbitol, 

PEG-12, Sodium lauryl sulfate, 

titanium dioxide, sodium 

saccharin, sodium hydroxide, 

mica 

Prescription strength 

fluoride toothpaste 

for sensitive teeth 

Regenerate® 

Enamel 

Science 

Unilever, (UK) Glycerin, calcium silicate, PEG-8, 

Hydrated silica, tri-sodium 

phosphate, sodium phosphate, 

PE-60, sodium laurly sulfate, 

sodium mnofluorophosphate, 

synthetic, fluorphlogopite, 

sodium saccharin, polyacrylic 

acid, tin oxide,limonene 

A patented NR-5® 

technology using 

calcium silicate and 

sodium phosphate as 

a combination to 

form crystal 

structures similar to 

that of 

hydroxyapatite. 
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MI Paste, MI 

Paste Plus 

GC AMERICA inc. 

(USA) 

Calcium Phosphopeptide (CPP), 

Amorphous calcium phosphate 

(ACP), glycerol, D-sorbitol, 

propylene glycol, silicon dioxide, 

titanium dioxide, phosphoric 

acid, zinc oxide, sodium 

saccharin, magnesium oxide, 

hydroxybenzoates 

Contains an active 

ingredient 

RECALDENT® (CPP-

ACP), which is a milk 

derived protein to 

release bio-available 

calcium and 

phosphate. 

Moothpaste MOOGOO 

(Australia) 

Calcium carbonate, 

hydroxyapatite, sodium-N-

lauroysarcosinate, glyceryl 

caprylate, Anisic acid, titanium 

dioxide, triclosan 

Uses calcium 

hydroxyapatite as an 

active ingredient for 

remineralization of 

teeth 

Arm & 

Hammer® 

dental range 

Church & Dwight 

Co., Inc. (USA) 

Sodium fluoride, sodium 

bicarbonate, glycine, PEG-8, 

hydrated silica, calcium sulfate, 

sodium lauryl sulfate, 

dipotassium phosphate, sodium 

carbonate, titanium dioxide 

Uses sodium 

bicarbonate as an 

abrasive and sodium 

fluoride as the active 

ingredients 

Enamel Pro® Premier Dental 

Products Co., 

(USA) 

Fumed silica, sodium fluoride, 

dibasic sodium phosphate 

A gel or paste 

preparation used as a 

cleaning and 

polishing procedures 

by professionals. 

Variants available 

with ACP tech.  

NovaMin® GlaxoSmithKline, 

(UK) 

Glycerin, PEG-8, Silica, Calcium 

Sodium Phosphosilicate 

(NOVAMIN), Cocamidopropyl 

Betaine, Sodium Methyl Cocoyl 

Taurate, Sodium 

Monofluorophosphate, 

Titanium Dioxide, Carbomer, 

Saccharin Sodium, Limonene. 

Contains NovaMin® 

technology i.e. 

Bioactive glass as an 

active abrasive to 

repair vulnerable 

areas of teeth. 

SensiStat® Ortek 

Therapeutics 

(USA) 

Arginine bicarbonate, calcium 

carbonate 

A saliva based 

composition to re-

mineralize teeth and 

reduce dentinal 

sensitivity 

Another important function of several oral health-care products is to mediate and treat dentine 

hypersensitivity. Hypersensitivity results from the movement of oral fluid through the dentinal 

tubules and stimulating the nerves in the pulp. Bio-compatible nanomaterials such as nano-

hydroxyapatite, bioactive glass nanoparticles, calcium-based and arginine-based compounds have 
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been incorporated in several products as a method of blocking the dentinal tubules and prevent 

tubule infiltration [180, 181]. For instance, Novamin® contains bioactive glass particles (composed 

of calcium sodium phosphosilicate), which interact with the aqueous oral environment to releases 

calcium and phosphate ions. These ions combine to form a layer of hydroxyl-carbonate apatite 

crystallites that block the dentinal tubules [182, 183]. Other features of Novamin® include anti-

gingivitis properties and moderating plaque formation [184]. Unfortunately, the complex organic 

and inorganic structure of dentine makes re-mineralisation difficult. For instance, a study by 

Vollenweider et al., found treating dentine with ultrafine bioactive glass particles could not regain 

its original properties [185]. Similarly, a study by Shibata et al., also found the original mechanical 

properties of dentine could not be regained after treatment with colloidal nano-beta-tri-calcium 

phosphate [186]. While products such as ProClude® and SensiStat®, which are composed of arginine, 

bicarbonate and calcium carbonate provide an alternative method for treating hypersensitivity. In 

the oral cavity the positively charged arginine combines with calcium carbonate to form a positively 

charged clusters. These clusters soon attach to the negatively charged dentine surfaces and in the 

process block the dentine tubules [187]. While another arginine-based product developed by 

Colgate is Pro-Argin®, which also includes fluoride to enhance re-mineralisation as well as treating 

hypersensitivity [156]. In spite of these advanced oral health-care products, hard brushing 

hypersensitive teeth opens dentine tubules and produces erosion. And combined with a complex 

organic/inorganic structure, makes the treatment of hypersensitivity and re-mineralisation 

problematic and challenging [183, 188]. 

5.2 Dental Fillers 

The use of dental fillers is one of the most common dental materials that are used for restorative 

procedures performed on humans. Traditionally, dentistry has used a variety of amalgams to 

replace lost tooth tissue in order to restore mechanical function. However, to date no material has 

been found that completely replicates the properties of natural teeth. For instance, in spite of being 

used for more than a century there are serious health concerns regarding the release of mercury 

ions from amalgams [18, 189]. And although being initially successful, dental materials are 

challenged continuously by recurrent caries that ultimately leads to their failure [190]. With failures 

levels resulting from secondary caries being as large as 50 to 60% for many dental materials [191, 

192]. The high failure rates result from factors such as: 1) modelling the dental material to fit the 

prepared tooth cavity; 2) poor sealing between dental material and cavity wall, resulting in micro-

leakage; 3) material deterioration over time; 4) material discolouration over the life of the 

restoration, and 5) tooth sensitivity after the restoration procedure [21, 193]. Because of these 

factors there has been extensive research into developing new dental composites with improved 

material properties [194]. Many current dental composites have similar mechanical properties to 

amalgams and also have desirable aesthetic properties [195, 196].  

5.2.1 Resin Based Composites 

Dental resin-based composites are a mixture of different materials. The reason for the mixture 

is that no single material can provide all the properties necessary for a successful dental restoration. 

Contemporary composites are a mixture of glycidyl methacrylate resin, which acts as the matrix 

polymer, and materials such as quartz, glass and silica act as fillers [197]. These mixtures also contain 
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additives like polymerization initiators, accelerators and coupling agent (usually silane), which are 

designed to promote chemical bonding with the methacrylate matrix during polymerisation [198]. 

Also added are colouring pigments to produce aesthetically pleasing colours that closely match 

individual patient tooth colours. The mixture is then sculptured to fit the prepared tooth cavity. In 

early composite formulations, polymerisation was thermo-chemically initiated with initiators such 

as benzoyl peroxide. In contemporary composite formulations, the setting reaction is light activated 

by a lamp [199]. For a successful restoration, a dental composite must have the following features: 

1) low viscosity to enable it to fill the prepared tooth cavity; 2) a controllable polymerisation rate; 

3) a coefficient of thermal expansion similar to the tooth, which prevents stresses resulting from 

the mismatch and prevent micro-leakage of saliva and bacteria; 4) low shrinkage to prevent micro-

leakage; 5) good mechanical properties, and 6) resistance to water adsorption. In addition, recent 

studies have also focused on producing composites that are more biologically active, produce less 

stresses during polymerisation, and have re-mineralisation properties. Thus, promoting more 

favourable host interactions and superior tooth integrity [25].  

Resin-based composites are made from a variety of filler particle types. The mass ratio between 

filler particles and the organic matrix determines the composite’s strength, its ability to handle 

masticatory stresses and its ability to withstand wear during mastication [200]. There are three filler 

particle type categories: 1) macro-fill particles; 2) micro-fill particles, and 3) hybrids, which are a 

combination of both macro-fill and micro-fill particles [201]. Early composites were reinforced with 

just macro-fill particles, while recent composites have also included micro-fill and hybrid composites. 

Macro-fill composites have the strength to resist masticatory stresses generated during the crushing 

and grinding of food and are commonly used in posterior restorations [202]. Unfortunately, macro-

fill composites are difficult to polish, which makes them unsuitable for anterior restorations. On the 

other hand, micro-fill composites, with smaller particle sizes are much easier to polish, and as a 

result are generally used for anterior restorations [203]. Importantly, composite properties can be 

modified to suit particular restorations by adjusting parameters such as filler particle size, type and 

quality of accelerators and coupling agents, and the type of polymerization activation process. Also, 

resins without filler particles have low viscosities, which enables them to be used to fill surface pits 

or be used to seal fissures [204]. However, in spite of their aesthetics and advantageous properties, 

micro-fill composites tend to be technique-sensitive, time-consuming and expensive [204, 205]. 

During the evolution of resin-based composites there has been a gradual decrease in filler 

particle size. In recent years, several nanomaterials have been incorporated into resin-based 

composites as a method of improving mechanical properties such as elastic modulus, flexural 

strength and wear resistance [206, 207]. Typical nanomaterials used as fillers include: alumina, 

hydroxyapatite, titania, silica and zirconia [208]. However, because of the large surface area and 

high surface charge of nanoparticles they need to be dispersed in a liquid phase before mixing with 

the resin matrix. However, the liquid phase usually contains a combination of dispersed 

nanoparticles (less than 100 nm) and porous clusters of agglomerated nanoparticles. Nano-clusters 

form as a result of nanoparticles agglomerating in an effort to minimise their surface energy. Studies 

have revealed composites incorporating nanoparticles have improved strength and fracture 

resistance. The internal porous structure of nano-clusters allows the entry of coupling agents. The 

resulting penetration forms an interpenetrating structure that enhances the mechanical properties 

of the individual nano-clusters [209]. The nano-clusters behave like the larger particles found in 

micro-fillers. Thus, nano-filler-based composites tend to be stronger, have less shrinkage and can 
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be polished [11, 210]. However, studies have also revealed the presence of voids in nano-clusters 

that produce a greater tendency for cracking and subsequent failure under loading [209, 211]. 

Hence, further research into nano-filled composites is needed to improve and optimise material 

properties.  

5.2.2 Glass-Ionomer Cements  

Most commonly used alternative to resin-based composites are glass-ionomer cements (GICs) of 

which some are listed in Table 3. The material properties of GICs can be modified by varying the 

powder/liquid ratio or by changing their formulation, which enables them to be used in a variety of 

dental procedures [212]. Their use as a base material was reported to show lower stress 

concentration in dentine and improved biomechanical behaviour when simulated using 3D tooth 

models [213]. Studies during the 1960’s found polyacrylic acid could complex with calcium, forming 

hydrogen bonds that made it possible for this cement to chemically adhere to mineralized dental 

tissues [52]. Later, high fluorine containing aluminosilicate glasses were found to react with 

polyacrylic acid via an acid-base reaction to form a paste. These pastes could then be used to fill a 

prepared tooth cavity to form a stable filling [214]. On setting, GICs were found to be more 

aesthetically attractive than traditional metallic amalgams [215]. In addition, fluorine rich GICs also 

release fluoride ions that give the filling anticariogenic properties which, also adhere to moist tooth 

structures and display favourable biocompatibility towards oral tissues [57]. However, low 

mechanical strength, low fracture toughness and brittleness limited their use to posterior dental 

regions [216, 217]. Studies found the lower mechanical properties were the result of moisture 

contamination occurring immediately after cement mixing [218]. While several studies have 

reported factors like: 1) particle size; 2) porosity distribution within the microstructure; 3) variations 

in the powder/liquid ratio, and 4) mixing method (air entrapment during mixing) can directly 

influence mechanical properties [216, 219]. For instance, mixing induced porosities of around 3 to 

4% can produce a 50% reduction in strength [220]. Similarly, studies have also shown mixing 

procedures incorporating centrifugation or carried out under vacuum can significantly reduce 

porosity and increase strength by around 39% [221-223].  

Table 3 A selection of commercially available Glass ionomer cements. 

Commercial 

name 

Manufacturer Variants Type Main Composition 

 

 

Fuji® 

 

 

 

GC America INC 

(USA) 

 

GC Fuji Plus, 

II LC, CEM 2, 

Resin 

reinforced 

glass 

ionomer 

cement 

2-hydroxyethyl 

methacrylate (HEMA), 

urethane dimethacrylate 

(UDMA), ethoxylated 

bisphenol-A dimethacrylate 

(Bis-EMA), butylated 

hydroxytoluene (BHT), poly 

(acrylic acid), silicon 

dioxide, polybasic 

carboxylic acid, poly (n-

GC Fuji I, 

TRIAGE, II, IX 

GP 

Conventional 

glass 

ionomer 

cements 
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EQUIA® 

Forte Fil 

Glass hybrid 

restoratives 

butyl methacrylate) & 

TRADE SECRET mixtures 

Vitremer® 3M ESPE Products 

(USA) 

̶ Resin 

modified 

glass 

ionomer 

cement 

Polyacrylic acid copolymer, 

fluoro-alumininosilicate 

glass, carboxylic acid 

copolymer, HEMA, 

potassium persulfate and 

ascorbic acid 

Vivaglass® Ivoclar Vivadent 

Corporate 

(Liechtenstein) 

CEM PL, 

CEM IC 

Conventional 

glass 

Ionomer 

cement 

Powder: Ionomer glass, 

Polyacrylic acid, pigments. 

Liquid: Water, Tartaric acid, 

Paraben 

Filtek® 3M ESPE Products 

(USA) 

Z250 Composite 

Resin 

Co-polymer of acrylic acid-

maleic acid, tartaric acid, 

polyacrylic acid 

Compoglass® Ivoclar Vivadent 

Corporate 

(Liechtenstein) 

̶ Composite-

glass 

ionomer 

hybrid 

Very fine aluminium 

fluorosilicate glass (Ø grain 

size 1.0 µm) 

Dicarboxylic acid with 

polymerizable double 

bonds 

Grandio® VOCO GmbH, 

Cuxhaven 

(Germany) 

Flow, SO, SO 

Flow, SO 

Heavy Flow, 

SO x-tra 

Composite-

nanohybrid 

Restoravite 

Glass ceramic, nano-silicon 

dioxide, pigments (iron 

oxide, titanium dioxide), 

Camphorquinone, BHT 

Resin: bisphenol A-glycidyl 

methacrylate (BisGMA), Bis-

EMA, triethylene glycol 

dimethacrylate (TEGDMA) 

 

 

 

 

Ketac® 

 

 

 

 

3M ESPE Products 

(USA) 

Silver 

Maxicap, 

Silver liquid 

handmix, 

Silver 

Aplicap 

Silver-

Reinforced 

Glass 

Ionomer 

Co-polymer of acrylic acid-

maleic acid, tartaric acid, 

silver, titanium dioxide, 

copper, glass 
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Nano Light curing 

Resin 

modified 

Glass 

ionomer 

Restrorative 

Silane treated glass, silane 

treated zirconia, 

polyethylene glycol 

dimethacrylate (PEGDMA), 

Silane treated silica, HEMA, 

BisGMA, TEGDMA, Silane 

treated ceramic, copolymer 

of acrylic and itaconic acid 

Molar Quick, 

Molar, Molar 

Easy mix, Fil 

Plus, Cem 

Conventional 

Glass 

ionomer 

Restorative 

Co-polymer of acrylic acid-

maleic acid, glass, 

Dichlorodimethylsilane 

reaction product with silica 

 

 

 

Harvard® 

 

Harvard Dental 

International,GmbH 

(Germany) 

Ionoglas Fil, 

Ionoglas 

Cem, 

Conventional 

Glass 

ionomer 

cement 

Aqueous solution of 

polyarylic acid, barium-

fluoro-aluminosilicate glass 

powder, dried polyacrylic 

acids and pigments 

Cention N Ivoclar Vivadent 

Corporate 

(Liechtenstein) 

_ Alkasite 

restorative 

Dimethacrylate (95-97%), 

calcium fluorosilicate glass, 

Ba-Al silicate glass, Ca-Ba-Al 

fluorosilicate glass, 

Ytterbium trifluoride, 

isofiller (copolymer) 

On the other hand, the coefficient of thermal expansion (CTE) between human enamel and GICs 

(~11.4 ppm) and porcelain (~12 ppm) measured between 20 and 60 °C are similar as seen in Table 

1 [52]. This is of particular importance, since repeated expansions and contractions generated from 

the consumption of hot and cold foods and beverages can result in interface breaking between the 

filling and the tooth. Moreover, the thermal mismatch of materials such as amalgam and resin 

composites, will cause cycling thermal stresses at the tooth-filling interface. This continuous cycling 

overtime will ultimately break the seal and promote micro-leakage [224, 225]. 

Because of poor fracture toughness and low strength GICs, research has focused on incorporating 

various types of particles or fibres to as a method of improving mechanical properties. One of the 

earliest methods was to combine silver-based amalgams and GIC glass particles to form a new 

composite [226, 227]. In this composite a blended powder of components (1:1 ratio) is mixed with 

poly-carboxylic acid to produce a plastic paste. The paste hardens with time to form a 

ceramic/metallic composite cement commonly known as “Cermets” [221]. However, studies have 

revealed the bonding between ceramic and metallic components was less than satisfactory. In 

particular, when Cermets were used in posterior restorative procedures their durability was poor 

compared to conventional GIC restorations [228, 229]. While other studies have evaluated the use 

of materials such as alumina, carbon, calcium phosphates, glass, silicon carbide and zirconia to 

improve the mechanical performance of GICs. Studies have shown the inclusion of these types of 

fibres can significantly increase fracture toughness and strength [230]. For instance, the inclusion of 
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glass fibres (40% wt.) can increase flexural strength by as much 4.5 times compared to unreinforced 

GICs [231]. The addition of glass fibres also increases fracture toughness by 140% when compared 

to unreinforced GICs [232]. While the inclusion of carbon fibres into the matrix can produce a four-

fold increase in fracture strength [233, 234]. Moreover, research has also focused on including slow 

release bioactive agents to promote bioactivity and biocompatibility [235, 236]. Several GICs have 

been developed specifically to promote osteoconductivity, osteoinductivity and to promote the 

proliferation of various cells and tissues. For instance, bioactive GICs are used to replace hard tissues 

in oral, maxillofacial and orthopaedic surgical procedures [237, 238]. In particular, the inclusion of 

bioactive glass particles can significantly enhance bioactivity and physicochemical properties of GICs 

[239-241]. Several studies have also reported cellular properties such as gene activation, cell 

differentiation and cell proliferation are enhanced when exposed to bioactive glass [242, 243]. 

Unfortunately, studies have also reported that large concentrations of bioactive glass or similar 

bioactive materials in GICs compromises strength, toughness and hardness [244]. 

The reduction in mechanical performance resulting from increasing amounts of fillers has 

prompted research into incorporating nanometre scale materials known as nano-fillers [245]. 

Studies have found the addition of nano-fillers to CIGs produces highly desirable properties [30]. 

For instance, the presence of uniformly distributed nano-fillers in the CIGs matrix permit higher filler 

loads, decrease viscosity and reduce curing shrinkage [246]. The inclusion of nano-fillers has also 

been found to increase strength and hardness of these new composites by four to five times 

compared to conventional GICs [247]. For instance, the inclusion nano-zirconia oxide (ZrO2) 

increases toughness by 20% [248] and the inclusion of carbon nanotubes (CNTs: ~4%) improves 

wear characteristics and mechanical properties by 30% [249, 250]. The most commonly used nano-

fillers include alumina, hydroxyapatite, silica, titania and zirconia [251-254]. 

5.3 Calcium Phosphates and Hydroxyapatite 

The success of many dental materials depends on their interactions with surrounding oral tissues. 

Poor osseointegration or inflammatory responses from surrounding tissues resulting from infection 

leads to material rejection and restoration failure [255]. Importantly, during dental procedures one 

of the operative dental risk in light of the oral environment and microbiota is the possibility of 

microbes entering via a lesion. This creates competition between invading microbes and oral cells 

trying to colonise the surface of the dental material, a phenomenon known as “the race for the 

surface” [256]. If colonising oral cells are successful, infection is minimized, and the implant surface 

is covered with oral cells. However, if the number of invading microbes keep increasing, the 

resulting microbial population forms a biofilm that eventually prevents surrounding oral tissues 

interacting with the dental material. The lack of interaction results in poor integration and ultimately 

failure of the restoration [257]. Therefore, success of the dental procedure is determined by the 

behaviour of oral tissues and inflammatory responses resulting from infection [258]. Accordingly, 

surface chemistry and topography are important factors that must be considered when designing 

and manufacturing materials for dental procedures. Calcium phosphate (CaP) compounds are 

extensively used to coat metallic orthopaedic and dental implants to transform their surfaces to a 

more favourable biocompatible substrate. These coating are capable of promoting the formation of 

new bone or dental tissues [259, 260]. For instance, titanium (Ti) implants coated with CaP 

nanoparticles (20 to 100 nm) display greater osseointegrative behaviour than uncoated implants 
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[261, 262]. While in vitro studies have also shown osteoblasts have better proliferation rates on 

nano-CaP coated Ti implants compared to uncoated Ti implants [263]. The most commonly 

produced CaP materials include α-tricalcium phosphate (α-TCP), β-tricalcium phosphate (β-TCP), 

dicalcium phosphate, β-calcium pyrophosphate, hydroxyapatite (HAP), calcium deficient 

hydroxyapatite, octacalcium phosphate, oxyapatite, tetra calcium phosphate and biphasic HAP/β-

TCP mixtures (for further details refer to Table 4). 

Table 4 A selection of different forms of calcium phosphate compounds currently used 

in commercial products (Dorozhkin [264]; Cimdina & Borodajenko [265]; Prakasam M et 

al. [266]).  

Compound Name Crystal 

Structure 

Chemical 

Formula 

Ca/P 

Ratio 

Commercial Product Name & 

Manufacturer 

Monocalcium 

phosphate 

monohydrate 

Triclinic Ca(H2PO4)2·H2O 0.5 Monocalcium Phosphate (DMH 

Deutsche Melasse 

Handelsgesellschaft mbH, 

Germany) 

Monocalcium 

phosphate anhydrous 

Triclinic Ca(HPO4)2 0.5  

Dicalcium phosphate 

dihydrate (mineral 

brushite) 

Monoclinic CaHPO4·2H2O 1.0 Di-tab (Innophos, Inc., USA) 

Di-calcium phosphate 

anhydrous (mineral 

monetite) 

Triclinic CaHPO4 1.0  

̶ 

Amorphous calcium 

phosphate 

3 polymorphs 

Temp. based 

CaxHy(PO4)z·nH2O 

n=3–4.5  

15–20% H2O 

1.2 

to 

2.2 

 

̶ 

Octacalcium 

phosphate 

Triclinic Ca8(HPO4)2(PO4)4·

5H2O 

1.33 ̶ 

α-tricalcium 

phosphate 

Monoclinic α-Ca3(PO4)2 1.5 ̶ 

β-tricalcium 

phosphate 

Rhombohedral β-Ca3(PO4)2 1.5 Bioresorb (Germany) 

Calciresorb (Ceraver, France) 

Cerasorb (Curasan, Germany) 

 JAX, Smith and Nephew (USA) 

Graftys BCP (Graftys, France) 

Osferion (Japan) 

β-Calcium 

pyrophosphate 

̶ Ca2P2O7 <1.5 ̶ 
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Hydroxyapatite with 

calcium deficient 

̶ Ca10-

x(HPO4)x(PO4)6-

x(OH)2-x (0<x<1) 

1.5-

1.67 

Cementek (Teknimed, France) 

Osteogen (Impladent, NY, USA) 

Hydroxyapatite Hexagonal  

(Monoclinic at 

temp. <212°C)  

Ca10(PO4)6(OH)2 1.67 Calcitite (Zimmer, IN, USA) 

Bonefil (Mitsubishi, Japan)  

Bonetite (Mitsubishi, Japan) 

Cerapatite (Ceraver, France) 

Synatite (SBM, France)  

Apaceram (Pentax. Japan) 

Fluorapatite ̶ Ca10(PO4)6F2 1.67 Phosphate Rock Fluorapatite 

(Rotem Amfert Negev Ltd., 

Israel) 

Oxyapatite ̶ Ca10(PO4)6O 1.67 ̶ 

Tetra calcium 

phosphate 

Monoclinic Ca4(PO4)2O 2.0 ̶ 

The most widely used member of the CaP family is hydroxyapatite (HAP). Its widespread use 

stems from its bioactive properties that facilitate new bone formation, promotes tissue integration 

and reducing healing time. Hence, its use to transform the smooth harsh surface of metallic implants 

to a more biocompatible and porous environment similar to hard tissues [267]. Implants made from 

metallic materials such as cobalt-chromium alloys, stainless steels and titanium alloys, which are 

coated with HAP display improved bone bonding, increased new bone formation and 

osteointegration [268]. There is also extensive ingrowth of connective tissues that stabilise the 

implant and reduces recovery time [269]. In addition, HAP is extensively used in orthopaedic 

procedures for example filling bone voids and bone coatings. For instance, Cerament® is a 

commercially available bone filler product that assists in the formation of new bone within 6 to 12 

months after application [270]. Tooth enamel is the hardest and most highly mineralized structure 

found in humans. Although enamel is tough and abrasion-resistant, its high mineral content makes 

it brittle and prone to damage from mastication [271] while exposure to the acidic and bacterial rich 

oral environment overtime degrades the enamel surface. 

Studies have shown that lost, damaged or eroded tooth enamel can be either replaced or re-

mineralized using calcium phosphate-based materials [272]. In particular, HAP-based materials are 

widely used to resolve surface problems such as discolorations, voids and chips. In recent years 

nano-HAP has been used to repair enamel and used as a re-mineralizing agent in toothpastes [163, 

167]. 

Interestingly, natural HAP found in bones and teeth is non-stoichiometric and displays variable 

deficiencies in Ca, P and OH. These deficiencies are made up by ionic substitutions of different types 

and amounts of elements such as magnesium, strontium, sodium, and silicon [273]. The presence 

of these substitutions changes the structure and surface chemistry of HAP, which in turn influences 

the biochemistry of bones, enamel and dentine [274]. The influence of these ionic species in hard 

tissues has not been fully elucidated. But studies by Carlisle revealed the presence and importance 

of small concentrations of silicon in osteoid regions of young mice and rats, which indicates the role 

of silicon in the early stages of bone formation and calcification [275, 276]. Similar in vitro and in 

vivo studies have also shown the important role of silicon in the growth and development of hard 
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tissues [277, 278]. Similar studies have found the inclusion of magnesium in HAP acts as a growth 

factor and stimulates osteoblast proliferation [279]. Currently, granular and powder forms of HAP 

are used in a variety of dental procedures that include: 1) restoration of periodontal bone defects 

[280]; 2) edentulous ridge augmentation [281]; 3) increasing the thickness of atrophic alveolar 

ridges; 4) filling bone defects after cystectomy; 5) endodontic treatment procedures such as 

repairing bifurcation perforations and pulp-capping [282, 283], and 6) dental implant coating [284]. 

While shaped HAP blocks are used in maxillofacial surgery to repair and reconstruct bone damage 

after trauma or disease. Furthermore, both micro-scale and nano-scale forms of HAP have been 

used as fillers for reinforcing GICs and restorative resin composites [285-287]. The potential 

hydroxyapatite-based nanomaterial composites can be mixed with the polymer resin as a 

restorative approach to replace the damaged tooth cavities (see Figure 5).  

 

Figure 5 A schematic presentation of two potential restorative methods for producing 

dental fillings: (A1) sonochemically engineered hydroxyapatite nano-spheres [288]; (A2) 

sonochemically engineered hydroxyapatite nanorods; with respective scanning electron 

micrograph images of synthesised nanomaterial materials presented in (a) and 

(b)hydroxyapatite crystals. 

6. Health and Safety Risks of Nanomaterials in Dentistry 

Interactions between nanomaterials, living organisms and the environment are complex in 

nature and currently not fully understood. The main features of nanomaterials are their large 

surface area to volume ratios and greater surface reactivity. These features make their 

physicochemical properties significantly different from the same material at the macro-scale size 

[148]. Nanomaterials released into the environment can readily bind and interact with biological 

matter. This interaction changes their surface characteristics. Further surface changes can result 

from environmental factors such as pH, the presence of other materials and temperature [289]. 

These interactions and property modifications can also adversely change the eco-system they are 
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in [290]. The presence of nanomaterials in the environment can have a negative impact on human 

health. Since exposure and subsequent absorption through the skin, digestive tract and lungs 

permits their entry into the body [291]. The uptake of nanoparticles via respiratory tract after 

inhalation or through oral route has urged the need to study their physiological impact. Exposure 

and potential toxicity can also result from dental procedures such as: 1) ingestion of nanomaterials 

in dental products during or after treatment; 2) inhalation of aerosols generated from nanomaterial-

based composites during drilling, and 3) the direct interaction between nanomaterials and cellular 

tissues in the oral cavity [292]. Importantly, nanomaterials can readily interact with cell constituents 

such as DNA molecules, proteins and intracellular components. These interaction mechanisms, 

elimination pathways and immune responses are difficult to predict and understand. This 

uncertainty arises from nanomaterials of the same material displaying different behavioural 

characteristics towards particular cellular tissues. For instance, size range, surface charge and 

surface chemistry resulting from coatings can change the behaviour of nanomaterials towards 

cellular tissues [293]. Materials used in dental procedures are intended to be passive towards oral 

tissues and chemically stable in the oral environment for long periods of time. Studies have reported 

the release of metal ions from amalgams and metal alloys [182]. Furthermore, other studies have 

reported the release of various chemical species from resin composites and dental sealers [294-

296]. To date, there are no studies evaluating the potential toxicity of dental products containing 

nanomaterials. Thus, there is a clear need for more research to develop new nanomaterial-based 

dental products, but also to identify and evaluate the potential hazards resulting from exposure to 

these new products both in the short and long-term [297]. Data from such studies would help to 

develop systemic solutions for delivery of safe and successful clinical outcomes for patients and 

dental professionals [298]. 

7. Future Perspectives  

The demand for new dental products continues to be an active scientific and commercial 

endeavour. Currently there is no one product that meets all the necessary properties and 

requirements for preventative or restorative applications. However, advances in nanotechnology-

based strategies for developing new products is believed to be the most effective method of 

delivering positive outcomes for patients. There are several active areas of research currently being 

investigated. For instance, to reduce anxiety and provide greater patient comfort during dental 

procedures, colloidal solutions composed of millions of active nanometre scale robots could be 

introduced into the oral cavity to shut down specific nerves. Once in the oral cavity, the practitioner 

directs the nano-robots to specific tooth locations or soft tissues. The nano-robots then migrate into 

tissue structures to specific targeted nerves and shut down their sensitivity. Then after the dental 

procedure, the practitioner commands the nano-robots to restore nerve sensitivity and leave the 

tissues [31, 299]. Similarly, orthodontic nano-robots could be used to remodel periodontal tissues 

and allow tooth straightening, rotation, and repositioning without pain in minutes to a few hours 

[300, 301]. Alternatively, nano-robotic dentifrices could be used to transport and distributed 

toothpastes or mouthwashes to breakdown organic matter or oral microbes into harmless by-

products [28]. Similarly, nano-robots could also be used to deliver pharmaceuticals and antibiotics 

(nano-encapsulation) [302, 303]. While nano-sensors/robots could be used to detect and identify 



Recent Progress in Materials 2021; 3(1), doi:10.21926/rpm.2101007 

 

Page 25/42 

harmful materials in order to assist in diagnosing and treating diseases, and ultimately improve the 

wellbeing of patients [149, 304].  

Moreover, recent studies have witnessed the engineering of high strength nanomaterials into 

dental polymers to increase their strength and durability. For example, dental polymer fabricated 

with multi-layered graphene has shown a significant increase in the mechanical properties [305], 

stimulated tissue formation when graphene oxide implanted to collagen scaffold [306], and 

improved physicochemical and surface properties when dental polymer was reinforced with 

graphene gold nanoparticles [307]. Similarly, Carbon nanotubes (CNT’s) and Boron Nitride 

nanoplatelets (BNNP’s) have also captured attention and aroused the interest of many scientists as 

a potential biomaterial for dental applications [308-310]. A recent study highlighted the enhanced 

strength and fracture toughness of zirconia composite as a result of BNNPs reinforcement [310]. 

However, contradictory reports have shown the cytotoxic as well as non-cytotoxic properties of 

CNT’s which opens up a debate on its potential use as a bioceramic material [311-313]. Therefore, 

bio-kinetics and organ toxicity plays an important role in measuring the quantitative risk involved in 

the use of these high strength nanomaterials. 

In addition, there is current research into developing smart nanomaterials that assist in repair, 

promote cellular regeneration and osseointegration of bioactive dental implants [195, 314]. 

However, there are also challenges facing these new technologies. For instance, developing low-

cost and mass produced nano-robotic platforms capable of undertaking their designed tasks. There 

is also a need to develop smart nanomaterials, protocols and nano-devices capable of delivering 

methods for disease monitoring, diagnosis, prevention and treatments tailored to individual 

patients.  

8. Conclusions 

This present review has highlighted the importance and use of emerging nanomaterials in 

preventative and restorative dentistry. Nano-dentistry has the potential to transform dentistry and 

deliver a wide range of novel products capable of delivering more effective health care strategies. 

However, as discussed above, the benefits need to be balanced against possible negative health 

effects resulting from exposure to these new and largely unknown products. Current studies suggest 

toxicity from the use of nanomaterials is low, but further research is needed to fully identify 

potential toxicity issues, arising from exposure levels and human-nanomaterial interaction 

mechanisms across the ages. Future longitudinal research may allay health-related concerns, while 

practitioner and public acceptance and adoption are needed before nano-dentistry can deliver a 

new era of health care benefits.  
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