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Abstract 

Carbon fibre reinforced polymer (CFRP) systems as sheets or plates are commonly used to 

strengthen and retrofit damaged reinforced concrete beams. In general, the bond between 

the FRP element and concrete defines the effectiveness of the externally bonded FRP 

materials. In most cases, the interface bonding behaviour is usually tested via static loading 

conditions. In this paper, the bonding is verified under dynamic conditions. Wave 

propagation is modelled in delaminated CFRP strengthened reinforced concrete beam. First, 

the Wave Finite Element (WFE) is applied to predict the wave characteristics of the 

waveguides. Having established free wave solutions, one can couple it to a damaged 

segment that can be modelled in FE. The bond–slip model is used to simulate the CFRP to 

concrete interface bonding behaviour. Then, wave scattering characteristics are identified at 

the damaged section. Partial loss of debonding results in high refection coefficient of higher 

order modes. This study can lead to further advance based damage detection techniques 

related to debonding of FRP element to concrete with no required access to the FRP lamina. 
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1. Introduction 

Fibre-reinforced polymer (FRP) is excessively used in advanced concrete applications due to 

their superior performance compared to the typical steel reinforcements. In particular, FRP system 

can be externally bonded for strengthening of reinforced concrete (RC) beams [1]. FRP-

strengthened RC structural members demonstrate improved flexural strength, shear and torsional 

capability, seismic resilience and durability [2]. Furthermore, retrofitting of damaged RC beam 

with FRP composites is widely applied since they provide non-corrosive properties, stiffness, 

strong structural tensile strength, ease of installation and chemical attack protection [3]. In 

addition, CFRP features the most strength amongst FRP composites with variety of strength range 

[4]. 

When it comes to structural behaviour of CFRP-strengthened RC beams, the performance does 

not rely solely on the materials such as concrete, steel and FRP lamina. However, the bonding 

behaviour between concrete and CFRP lamina plays a significant role since it defines the stress 

transfer from concrete to the CFRP [5]. Subsequently, debonding damage detection of the CFRP- 

strengthened RC beams is essential to maintain the integrity and structural performance of the 

structure. There are several techniques that reported the detection of debonding between 

concrete and CFRP lamina.  

The behaviour of bonding between concrete surface and lamina had been investigated in 

literature. For instance, the bonding behaviour between Steel Reinforced Polymer (SRP) and 

concrete surface were investigated experimentally by taking into account the effect of the 

concrete surface roughness in the bonded region, the density of the steel fabric, the ratio of the 

epoxy covered concrete surface width to the SRP strip width and the length of the bonded 

interface [6]. Furthermore, the SRP-concrete interfacial bonding behaviour and strength were 

successfully modelled and calibrated by using an experimental database [7]. Regarding FRP-

retrofitted RC beams, the full nonlinear moment-curvature relationship undergoing interfacial slip 

is presented in [8]. where debonding is evaluated via cohesive interface. Results have shown very 

close agreement between the computed values and experimental results. On the other hand, a 

nonlinear semi-analytical model was developed to predict debonding of FRP-concrete interface in 

RC beams subjected to concentrated or uniform loads. The model employed second order 

differential equations with their dependent variables being the strain in the FRP and the relative 

normal displacement of the interface. Satisfactory agreement was found between model and 

experimental results [9]. 

In order to detect the debonding between the concrete and CFRP lamina, microwave imaging 

method was adopted based on near-filed approach of two-dimensional images of the structure 

[10]. By monitoring the air-filled debonding in FRP-strengthened reinforced concrete via infrared 

thermography, debonding between concrete and FRP can be detected in bridge decks [11] and 

CFRP RC beams [12]. In addition, far-field radar method was applied to detect interfacial defects in 
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an FRP wrapped concrete member through merging synthetic aperture radar measurements with 

back projection algorithms [13]. Furthermore, acoustic emission was used to detect the debonding 

between concrete and CFRP lamina using different approaches: applying parametric intensity 

principal component analysis [14], exciting the structure and using a laser beam to identify the 

vibration response [15]. Also, impact-echo method was employed to detect the debonding at the 

interface between concrete and CFRP [16].  

The piezoelectric transducers (PZT) were employed excessively in detecting the bond defect 

between concrete and FRP. For example, a surface mounted PZT was used as an actuator and an 

embedded PZT as a sensor to detect debonding between concrete and CFRP [17]. In addition, 

guided wave techniques using embedded PZT in the structure was used to detect the interfacial 

defects [18]. Furthermore, spectral model was developed on similar model via simulation and 

experimental validation [19]. 

Despite the fact the acoustic emission, ultrasonic detection, infrared thermography, 

electrochemical impedance spectroscopy and PZT methods can successfully detect the bond 

defect between concrete and CFRP, few of them have been implemented successfully to 

interfacial damage monitoring [20]. Moreover, the guided wave techniques described above 

require embedded PZTs inside the structure which require special interrogation and preparation 

[21]. In addition, some of the mentioned techniques involve access to the FRP lamina. This put 

some limitations into the applications of those techniques on real structure where the bottom of 

the beam might be inaccessible due to partitions.  

In this paper, detection of debonding between concrete and CFRP lamina is investigated using 

guided waves characteristics. The latter are defined first in undamaged beam section via the 

application of the Wave Finite Element (WFE). The model features full bonding between concrete 

and CFRP composite. Then, the defined waves solutions are coupled to the damage section that is 

modelled in FE. The damage features partial loss of the bond–slip model to simulate the CFRP to 

concrete interface behaviour with defect. Next, wave scattering characteristics are calculated. 

Finally, conclusions relate to additional future works corresponding to damage detection 

techniques of debonding of CFRP element to concrete. 

2. Materials and Methods 

2.1 WFE formulation  

The dynamic response of simple structures such as rods and beams can be computed 

analytically. However, the solution is not straightforward for complicated structures. Usually, one 

tends to modelling solution such as full or partial finite element analysis (FEA). However, this 

imposes computational cost, time, and accuracy errors for complex models especially at high 

frequencies. An alternative approach is the wave-based method. To analyse a waveguide, one 

approach is the spectral finite element (SFE). However, this requires new spectral mass and 

stiffness matrices for each scenario on a case-by-case basis [22].  

Alternatively, the Wave Finite Element method (WFE) can be employed of a small segment of 

the waveguide modelled in FE. The WFE method forecasts the wave characteristics of a short 

periodic waveguide through expressing the continuity of displacements and equilibrium of forces 

at the boundaries between consecutive segments. Then, an eigenvalue problem is formulated in 
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terms of a transfer function across the section. The solutions as eigenvalues relate the variables, 

as function of the wavenumbers of the waveguide, associated with the right and left sides of the 

section. Furthermore, the eigenvectors are related with the displacements and forces on the cross 

section. This eigenvalue problem is solved at each step frequency [23].  

The dynamic stiffness matrix is established using the mass and stiffness matrices. Here, ANSYS 

is employed to model the CFRP-strengthened RC waveguide section in order to extract the 

required matrices. After the latter is accomplished, the dynamic stiffness matrix is deployed to 

formulate the transfer matrix. Next, the eigenvalue problem is solved at each step frequency to 

acquire the wavenumbers and wave mode shapes.  

Relating the element nodal displacements and forces, the dynamic stiffness matrix at frequency 

𝜔 of a finite section is defined by 

𝐃 = 𝐊 − 𝜔2𝐌 (1) 

where 𝐊 and 𝐌 are the 𝑛 × 𝑛 stiffness and mass matrices of the waveguide section, where 𝑛 is 

the total number of DOFs. As in Figure 1, L and R denote the left and right sides and ∆ is the length 

of the section modelled of the waveguide. ∆ should not be too large with respect to the shortest 

wavelength to reduce discretization errors, nor too small to avoid round off-errors [24].  

The dynamic stiffness matrix is partitioned accordingly as, 

 

Figure 1 Structure with periodic elements where the cell N of length ∆ is shown with 

the force and displacement vectors on the right and left-hand sides. 

[
𝑫𝐿𝐿 𝑫𝐿𝑅
𝑫𝑅𝐿 𝑫𝑅𝑅

] [
𝒒𝐿
𝒒𝑅
] = [

𝒇𝐿
𝒇𝑅
] (2) 

The propagation constant 𝜆 = 𝑒−𝑖𝑘Δ  relates the right and left displacement and forces with 𝑘 

as the wavenumber such as the periodic conditions for the displacements and the equilibrium 

condition at the junction of the two elements are 𝒒𝑅 = 𝜆𝒒𝐿 and 𝒇𝑅 = −𝜆𝒇𝐿 . Subsequently, Eq. (2) 

can be written as 
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𝐓 {
𝒒𝐿
𝒇𝐿
} = 𝜆 {

𝒒𝐿
𝒇𝐿
} (3) 

where 𝐓 is the transfer function that features continuity of displacements 𝒒 and equilibrium of 

forces 𝒇 between the boundaries of two consecutive elements [23]. Then, 

𝐓 = [
−DLR

−1DLL DLR
−1

−DRL + DRRDLR
−1DLL −DRRDLR

−1] (4) 

The eigenvalue problem presented by the transfer matrix is solved at each frequency step where 

the wavenumbers 𝑘 are obtained from the eigenvalues. A good practice is to cluster the solutions 

into positive and negative going waves. The former are characterised by |𝜆𝑗
+| < 1 and the latter by 

|𝜆𝑗
+| > 1. For |𝜆𝑗

+| = 1, the associated waves are considered positive going if they accomplish the 

condition of 𝑅𝑒{f
L
H𝒒̇L} = 𝑅𝑒{𝑖𝜔fL

Hq
𝑓L
} < 0 

Similarly, regarding wave modes of the right eigenvectors in Eq. (3), one can group those into 

positive and negative going waves such as 

𝚽+ = [𝚽1
+⋯𝚽𝑛

+];𝚽− = [𝚽1
−⋯𝚽𝑛

−];𝚽 = [𝚽+𝚽−] (5) 

where each wavemode is divided into displacement 𝒒 and force 𝒇 sub-vectors, 

𝚽𝑗 = {
𝚽q

𝚽f
}
j

(6) 

The left eigenvectors of the transfer matrix 𝐓 can be obtained as well,  

𝚿𝑗 = {𝚿f 𝚿q}j; 𝚿
± = [

𝚿1
±

⋯
𝚿𝑁
±
] ;𝚿 = [𝚿

+

𝚿−] (7) 

Since the left and right wavemodes are orthogonal, they can be normalised such as  

𝚿+𝚽+ = 𝐈 (8) 

The main advantage if the above normalisation is to improve the conditioning of the matrices that 

require to be inverted [24]. This is achieved by multiplying the anticipated matrix by the 

normalised right eigenvectors. 

In addition, the relation between the physical domain (where the motion is described in terms 

of 𝑞 and 𝑓), and the wave domain (described in terms of waves amplitudes such as a+ and a− as 

the positive and negative going waves) is expressed via 

{
q
L

f
L
} = [

𝚽q
+ 𝚽q

−

𝚽f
+ 𝚽f

−] {
a+

a−
} (9) 
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2.2 CFRP-Strengthened RC Beams Modelling in FE 

A prior step to apply WFE method to the undamaged CFRP-strengthened RC Beam, a section 

should be modelled in FE. Here, ANSYS was used for this application in order to extract the 

associated mass and stiffness matrices. Four different types of elements were used to model the 

associated section: solid element for concrete and adhesive, embedded secrete element for 

reinforcement rebars, shell element for CFRP lamina and interface element for interface 

interaction as illustrated in Figure 2. First, the modelling elements are described. Then, the 

material properties and bonding model are presented. 

 

Figure 2 Cross Section of CFRP-strengthened RC beam to be modelled in FE. 

SOLID65 [25] was used to model concrete. It is a 3D solid element with three DOFs, which are 

translations in the X, Y and Z directions, and it is defined by eight nodes. This element can simulate 

cracking under tension in three orthogonal directions, crushing under compression, plastic 

deformation and creep. Reinforcement rebars were modelled via the 3D discrete element 

REINF264 [25] embedded in the SOLID65 element [26]. The nodal locations, degrees of freedom 

and connectivity of the REINF264 element are identical to those of the base element which is the 

SOLID65. The location of the rebar was defined as an offset distance from the edges of the base 

element selected (i.e. SOLID65). The main advantages using REINF264 as embedded reinforcement 

are associated with no need to model the bonding behaviour between the steel reinforcement 

and surrounding concrete elements, and no extra mesh/nodes is required to identify the rebar 

element.  

CFRP was modelled via the SHELL181 element [25]. Shell element was always favoured to 

model FRP lamina since the thickness is relatively small compared to the structure, no additional 

nodes were required and the aspect ratio of the element did not exceed the acceptable limit [27]. 

SHELL181 is a four nodes element with six degrees of freedom such as translations and rotations 

about X, Y and Z directions. In this model, the membrane option was only used the therefore each 

node of SHELL181 had only the translation DOFs in X, Y and Z directions.  
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SOLID45[25] element was used to model the adhesive. It is a 3D solid element with three DOFs, 

which are translations in the X, Y and Z directions, and it is defined by eight nodes. The element 

has plasticity, creep, swelling, stress stiffening, large deflection and large strain capabilities. The 

element comprises two sets of nodes. In this model, one set was applied with the interface 

element and the other with the CFRP [28].  

The bonding behaviour between the CFRP and adjacent concrete surfaces was modelled using 

the cohesive element INTER205[25] between the top surface of the adhesive and bottom surface 

of the concrete. INTER205 is a 3D eight nodes with DOFs as translations in the X, Y and Z directions. 

It is a linear interface element that is able of simulating various interfaces between two surfaces as 

well as delamination progression. In principle, the debonding occurred when initially coincident 

nodes experience an increase in longitudinal or transversal displacement [29].  

The CFRP-strengthened RC Beam section was modelled using the dimensions and meshing as 

shown in Figure 3. The length Δ of the segment in the X direction was equal to 0.01 m, the total 

number of DOFs 𝑛 is 210, and a hysteretic damping value 𝜂 of 0.004 was chosen. The CFRP plate 

had a thickness and width of 1.4 mm. A layer of Sikadur 30 LP having a thickness of 1 mm was used 

to simulate the adhesive [29]. Material properties are summarised in Table 1. One started by 

modelling the concrete element with designated mesh. Then, the embedded reinforcement were 

assigned to the corner concrete elements. CFRP elements were modelled with the adhesive ones 

on top. Both concrete bottom surface nodes and adhesive top surface nodes shared adjacent 

nodes where the interface elements are assigned.  

Table 1 Material properties required for the FE model.  

Material Type 
Modulus of Elasticity 

(GPa) 
Poisson Ratio 

Density 

(kg/m3) 

Shear 

Modulus 

(GPa) 

Concrete Isotropic 25 0.2 2400 - 

Steel Isotropic 200 0.3 7850 - 

CFRP Orthotropic 𝐸𝑥=160, 𝐸𝑦,𝑧=16 
𝑉𝑥𝑦,𝑥𝑧=0.28, 

𝑉𝑦𝑧=0.42 
1800 𝐺𝑥𝑦,𝑦𝑧=7 

Adhesive Isotropic 10 0.32 1650 - 

For composite lamina modeled as layer system, delamination can be represented as a 

reduction of the resultant Modulus of Elasticity of the lamina of a specific layer number and over a 

certain distance. This results in lower bending stiffness and frequency predictions. As seen in [30], 

the proposed delamination modeling technique had shown robust results in comparison to 

experimental data especially at structural boundaries.However, in the proposed problem, the 

delamination occurs at the interface between concrete and CFRP. Therefore, the bond-slip model 

selected employed the INTER205 element to simulate the bonding/debonding at the CFRP-

concrete interface. The cohesive zone material option was used for the interface element. In 

specific, the exponential form as bond-slip model was adapted as presented in [31]. In principal, 

the exponential model was initiated with an increasing segment up to the ultimate shear stress 𝜏𝑢 

with slip 𝑠𝑢. Next, a softening response up to the ultimate attained slip equivalent to 4×𝑠𝑢. The 

correspondent equations are presented in [32] as  
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𝜏 = 𝜏𝑚𝑎𝑥 (
𝑠

𝑠0
) [

3

2 + (
𝑠
𝑠0
)
3] (10) 

 

Figure 3 FE mesh of CFRP-strengthened RC Beam. Dimensions are in mm. 

where 𝜏𝑚𝑎𝑥 = 3.5 𝑓𝑐
′0.19  with 𝑓𝑐

′ the compressive strength of concrete, 𝑠0 = 0.065 mm and 𝑠 is the 

slip between the concrete and CFRP interfaces.  

To better understand the effect of CFRP-concrete debonding on the wave solutions, a small 

damaged section of the waveguide was modelled as well in FE in order to extract the associated 

matrices to apply the WFE solutions and compared it to the undamaged ones. The damaged 

section was modelled with similar dimensions and materials properties of the undamaged one. 

However, the partial loss of bonding between CFRP and concrete in the damaged section was 

reflected via a reduction of 60% in the value of the ultimate shear stress associated with the 

interface element in Eq. (10). 

After the FE model was complete, one could extract the associated stiffness and mass matrices. 

Here, a convergence test was not required since one was only interested in extracting the required 

stiffness and mass matrices. However, to check the model features and mesh precision, a 

convergence test was conducted in [33]. In addition, the elements and mesh size should satisfy the 

following condition to reduce errors in wave solutions [34]. 

𝑙𝑦,𝑧 <
𝜆𝑚𝑖𝑛
2

; 𝜆𝑚𝑖𝑛 =
2𝜋

𝑘𝑚𝑎𝑥
(11) 

where 𝑙𝑦,𝑧  is the element size in Y and Z direction, 𝜆𝑚𝑖𝑛  is the minimum wave length associated 

with the maximum wavenumber 𝑘𝑚𝑎𝑥 within a defined frequency range. Here, 𝑘𝑚𝑎𝑥 value is 50 



Recent Progress in Materials 2020; 2(3), doi:10.21926/rpm.2003020 

 

Page 9/20 

rad/m which provides a value of 𝜆𝑚𝑖𝑛 equivalent to 125.6 mm. Then, 𝑙𝑦,𝑧  is recommended to be 

less than 63 mm. All sides of the model cross section in Y and Z direction are less than the 

recommended value. 

An eigenvalue problem was then formed for each model (damaged and undamaged) at each 

step frequency, where the eigenvalues relate to wavenumber solutions of right and left 

propagating waves, and the eigenvectors to the associated force and displacement wave mode 

shapes. 

2.3 Coupling of Waveguides 

Scattering of incidents waves can be associated with the presence of damage or discontinuity. 

Therefore one can consider the scattering due to discontinuity of a finite length through coupling 

of a finite damage section to undamaged waveguides as illustrated in Figure 4. This coupling 

approach is noted as the WFE-FE-WFE [35]. Here, the damaged section is modelled in FE with 60% 

in the value of the ultimate shear stress associated with the interface element, and with a finite 

length ℎ = 0.05m including a segment length of Δ𝑖 = 0.01 m. Then, the finite damaged length in 

connected at the ends to the undamaged waveguides modelled in WFE as in Section 2.1. The mesh 

considers that both interfaces are compatible since they share same nodal coordinates and DOFs. 

 

Figure 4 The interface between the WFE segments 1 and 2 connected to the FE model 

of the coupling joint as the damage waveguide. 

Considering 𝐃𝑐 as the dynamic stiffness matrix of the coupling joint that can be expressed in 

terms of its mass and stiffness matrices as 𝐌𝑐 and 𝐊𝑐 respectively as 

D𝑐 = K𝑐 − 𝜔
2M𝑐 (12) 

For the coupling joint, the left and right interface nodes are denoted by 𝑙 and 𝑟respectively. The 

internal nodes are expressed by 𝑖. 𝐷𝑐 is written as 

D𝑐 = [
D𝑙𝑙 D𝑙𝑖 D𝑙𝑟
D𝑖𝑙 D𝑖𝑖 D𝑖𝑟
D𝑟𝑙 D𝑟𝑖 D𝑟𝑟

] (13) 

By applying the dynamic condensation presented in [24], the dynamic stiffness matrix 𝐃𝑐 can be 

condensed to its internal DOFs. This is given by 
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D𝑐
∗ = [

D𝑙𝑙 − D𝑙𝑖D𝑖𝑖
−1D𝑖𝑙 D𝑙𝑟 − D𝑙𝑖D𝑖𝑖

−1D𝑖𝑟
D𝑟𝑙 − D𝑟𝑖D𝑖𝑖

−1D𝑖𝑙 D𝑟𝑟 − D𝑟𝑖D𝑖𝑖
−1D𝑖𝑟

] (14) 

The displacement and forces at the end of the coupling joint can be related such as 

D𝑐
∗ {

q
𝑙
𝑐

q
𝑟
𝑐} = {

f
𝑙
𝑐

f
𝑟
𝑐} (15) 

Segments 1 and 2 of waveguides 1 and 2 are modelled in WFE. Consider 𝑎+ and 𝑏− the amplitudes 

of the waves incidents on the coupling joint interface. Let 𝑎− and 𝑏+ the amplitudes of the waves 

reflect by the coupling joint interface. By implementing Eq. (9), one can write the following for 

waveguides 1 and 2 

{
 
 

 
 
q
𝑟
1

q
𝑙
2

f
𝑟
1

f
𝑙
2
}
 
 

 
 

=

[
 
 
 
 
𝚽q1
+ 0 𝚽q1

− 0

0 𝚽q2
+ 0 𝚽q2

−

𝚽f1

+ 0 𝚽f1

− 0

0 𝚽f2

+ 0 𝚽f2

−
]
 
 
 
 

{

a+

b−

a−

b+

} (16) 

After the application of WFE, 𝚽q,f
+  and 𝚽q,f

−  are identified by concatenating the relevant vectors for 

waveguides 1 and 2 as 

𝚽𝑞
𝑖𝑛𝑐 = (

𝚽q1
+ 0

0 𝚽q2
+ )  𝚽𝑞

𝑟𝑒𝑓
= (

𝚽q1
− 0

0 𝚽q2
− )   𝚽f

𝑖𝑛𝑐 = (
𝚽f1

+ 0

0 𝚽f2

+)  𝚽𝑓
𝑟𝑒𝑓

= (
𝚽f1

− 0

0 𝚽f2

−) (17) 

By applying the continuity and force equilibrium conditions, the nodal DOFs and forces at the 

interfaces are equal to those of the undamaged waveguides on each side 

(
q
𝑙
𝑐

q
𝑟
𝑐) = (

q
𝑟
1

q
𝑙
2)  (

f
𝑙
𝑐

f
𝑟
𝑐) = (

f
𝑟
1

f
𝑙
2) (18) 

Then, the scattering matrix 𝐒 is expressed as 

(a
+

b−
) = S (

a−

b+
) (19) 

After combining Eq. (15) to Eq. (18), one can write 

𝐒 = −(−𝐃𝑐
∗𝚽𝑞

𝑟𝑒𝑓
+𝚽𝑓

𝑟𝑒𝑓)
−1
(−𝐃𝑐

∗𝚽𝑞
𝑖𝑛𝑐 +𝚽𝑓

𝑖𝑛𝑐) (20) 

It is worth noticing that the scattering matrix S is a block matrix where the diagonal matrices 

comprise the reflection coefficients, and the off-diagonal matrices contain the transmission 

coefficients. If a reduced number of waves is retained, then the matrix to be inverted in Eq. (20) is 

not square and pseudo-inversion is required [35]. Using 𝚿 in Eq. (7) and the orthogonality 

condition in Eq. (8), one can reduce the numerical errors. This is achieved by premultiplying Eq. 

(20) with the matrix 𝚿𝑞
𝑟𝑒𝑓

 such as 
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𝚿𝑞
𝑟𝑒𝑓

= [
𝚿q1
− 0

0 𝚿q2
− ] (21) 

Therefore, the scattering matrix 𝐒 becomes 

S = −𝚿𝑞
𝑟𝑒𝑓(−𝐃𝑐

∗𝚽𝑞
𝑟𝑒𝑓

+𝚽𝑓
𝑟𝑒𝑓)

−1
𝚿𝑞
𝑟𝑒𝑓(−𝐃𝑐

∗𝚽𝑞
𝑖𝑛𝑐 +𝚽𝑓

𝑖𝑛𝑐) (22) 

3. Results 

3.1 Wave Solutions of CFRP-Strengthened RC Beam 

After the application of WFE on the CFRP-strengthened RC beam section, one can calculate the 

associated wavenumbers and nodal solutions as displacements and forces. For each model, there 

are 210 different wavenumbers in accordance with number of DOFs, but a large number of them 

have a significant imaginary part matching to highly attenuated waves. Subsequently, the latter 

need to be eliminated. In this model, only the wave modes are only retained, at each frequency 

step, if they fulfil the condition |𝐼𝑚(kΔ)| ≤ 0.3. This is equivalent to 10 dB along the element 

length in the direction of propagation.  

The dispersion curves relating to the least attenuated waves are plotted for both damaged and 

undamaged waveguides. These can be divided into three categories based on the variation of the 

real and imaginary part of the associated wavenumbers across the frequency range. In Figure 5, 

propagating or zero order modes dispersion curve is plotted. They are the wave modes that can 

propagate all over the frequency range with zero imaginary part of the wavenumber. Normalised 

modal displacement of propagating wave modes in the undamaged waveguides at 2000 Hz are 

plotted in Figure 6 in the direction of the major displacement. 

 

Figure 5 Dispersion curves for the real part of the wavenumbers for propagating wave 

modes in CFRP-strengthened RC beam. 
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Figure 6 Nodal displacement of the undamaged cross section for the propagating 

modes in the direction of the major displacement at 2000 Hz. 

In Figure 7, dispersion curve of evanescent modes in damaged and undamaged waveguides is 

plotted. They are the modes with purely imaginary wavenumbers before their cut-on frequency as 

denoted as “E” in the caption. In Figure 8, the complex modes wavenumbers are illustrated for 

both damaged and undamaged waveguides. They are the modes with complex wavenumbers 

before their cut-on frequency as denoted as “C” in the caption. Above cut-on, the wavenumber 

becomes purely real for both evanescent and complex modes. Figure 9 and Figure 10 show the 

normalised modal displacement of evanescent and complex wave modes, respectively, at their 

cut-on frequency in the direction of major displacement.  

 

Figure 7 Dispersion curves for the evanescent wave modes of CFRP-strengthened RC 

beam: – undamaged section, - - - damaged section. “E” denotes an evanescent wave 

with its associated cut-on frequency in Hz. 
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Figure 8 Dispersion curves for the complex wave modes of CFRP-strengthened RC 

beam: – undamaged section, - - - damaged section. “E” denotes an evanescent wave 

with its associated cut-on frequency in Hz. 

 

Figure 9 Nodal displacement of the undamaged cross section for the evanescent 

modes in the direction of the major displacement at their associated cut-on frequency. 
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Figure 10 Nodal displacement of the undamaged cross section for the complex modes 

in the direction of the major displacement at their associated cut-on frequency. 

3.2 Scattering Properties due to Concrete-CFRP Debonding 

The WFE-FE-WFE approach is applied. The scattering matrix 𝐒 is computed at each step 

frequency. The high attenuated modes having a high imaginary part are eliminated. In Figure 11, 

the magnitudes of the reflection coefficients for the least attenuated waves due to loss of bonding 

between CFRP and concrete are plotted.  

 

Figure 11 Magnitude of the reflection coefficients for the least attenuated modes in 

CFRP-strengthened RC beam due to 60\% loss in interface bonding between CFRP and 

concrete over a length of 0.05m. 
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4. Discussion 

Partial debonding of the interface between CFRP and concrete has resulted in some clear 

differences in the wave properties between damaged and undamaged waveguides. Those 

differences and associated reasons are highlighted in this section. 

In Figure 5, there is only a slight difference between the wavenumbers of propagating waves of 

the damaged and undamaged waveguides. This is due to the fact that these wave modes as 

illustrated in Figure 6 are mainly governed by the concrete structural stiffness rather by the CFRP-

concrete bonding. This results in a negligible magnitudes of reflection coefficients associated with 

propagating wave modes shown in Figure 11. This means that propagating waves as axial, torsion, 

bending and transverse bending are not sensitive to the debonding of the interface between CFRP 

and concrete.  

On the other hand, partial debonding of the interface between CFRP and concrete causes 

changes in the evanescent and complex wave modes wavenumbers as illustrated in Figure 7 and 

Figure 8 respectively. One can notice the shift in the cut-on frequencies between the two models 

associated with E6450, E11800, E14150, C8500, C13150, C13250 and C14550. In addition, changes 

in the wavenumbers away from the cut-on frequencies are seen with the wave modes E6450, 

E550 and E13000. Those wave modes have shown cross sectional displacement as illustrated near 

their cut-on in Figure 9 and Figure 10 for evanescent and complex modes respectively. For each of 

the mentioned wave modes, the nodes associated with the interface CFRP-concrete location have 

distinguished displacement compared to the whole cross section deformed shape. For instance, 

E11800 shows a different bending around the interface nodal displacement, and E13000 displays a 

torsional behaviour around the same location that is different from the other nodes deformed 

shapes within the same wave mode. Therefore, some of these wave modes had shown a 

sensitivity toward the partial loss of the bonding between CFRP and concrete resulting in high 

magnitude of reflection coefficients in Figure 11.  

Here, the wave modes that have shown a magnitude of reflection coefficients due to 

debonding higher than 0.5 are selected. Those are plotted in Figure 12 and Figure 13 with their 

associated wavenumbers for damaged and undamaged waveguides. Vertical lines are applied to 

indicate the frequencies at which the selected wave modes have demonstrated a peak in the 

magnitude of reflection coefficients that are explained here. 
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Figure 12 Evanescent wave modes with high reflection coefficients and their 

associated dispersion curves as – undamaged section, - - - damaged section. Red 

vertical lines indicate the frequencies of high reflection peaks. 

 

Figure 13 Complex wave modes with high reflection coefficients and their associated 

dispersion curves as – undamaged section, - - - damaged section. Red vertical lines 

indicate the frequencies of high reflection peaks. 

First, partial debonding between CFRP and concrete causes a shift in the cut-on frequencies of 

evanescent and complex wave modes between the damaged and undamaged waveguides. For 

instance, this shift was to the right as seen in Figure 12 and Figure 13 for E11800, E13000, E14150 

and C13150. This means that those waves start to propagate in the undamaged waveguide at a 
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prior frequency than the damaged ones. This results in high magnitude of reflection coefficients in 

the first peaks associated with those modes at the cut-on frequency shifts between the damaged 

and undamaged waveguides. On the other hand, C13250 had demonstrated a shift to the left in 

the cut-on frequency due to the introduction of partial bonding loss between CFRP and concrete. 

This means that the associated wave starts to propagate in the damaged waveguide at frequency 

prior to the undamaged one. This results in a first peak due to this frequency shift.  

Second, the damage introduced results in difference in the wavenumbers between the 

damaged and undamaged waveguides. This is clear in E10350 and E13000. In both cases, the 

wavenumbers of the undamaged section are higher than the damaged ones for each step 

frequency after the cut-on. This means that the waves group velocity of is higher in the damaged 

waveguide than the undamaged ones. This difference have led to a high reflection coefficients in 

the last peaks of these wave modes as illustrated in Figure 12.  

Third, the remaining of the peaks of wave modes with high reflection coefficients occur at 

frequencies where the wave mode propagating in the undamaged section interferes with another 

mode in the damaged section. Both wave modes possess the same wavenumber at this particular 

frequency. For example, in Figure 14, both waves modes E14150 in the undamaged waveguide 

and C15100 in the damaged one share the same wavenumber value at the frequency of 14150 Hz 

at which the wave mode E14150 had shown a high magnitude of reflection coefficient. Travelling 

at the same group velocity at 14850 Hz, E14150 had established major nodal displacement in the X 

direction. However, C15100 had shown minimal nodal displacement in the X-axis. This 

interference between the two modes and the difference in the wave modes displacement lead to 

high reflection of E14150. The same scenario occurs for the remaining peaks associated with 

E9100, E11800, E13150 and C13250. 

 

Figure 14 Dispersion curve of E14150 – undamaged section and C15100 - - - damaged 

section with their associated nodal displacements in the major direction. Magnitude of 

reflection coefficients of E14150. Vertical lines indicate the frequencies of peaks of 

reflection coefficients. 

Subsequently, higher order modes as evanescent and complex wave modes have shown 

sensitivity to partial debonding between the CFRP and concrete over a specific length. This was 

highlighted by their reflection coefficients due to the debonding near the mode cut-on frequencies. 

Those wave modes had shown a dominant displacement in one of the X, Y and Z directions at their 

cut-on frequencies. 
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5. Conclusions 

The WFE method was applied to the CFRP-strengthened RC beam sections with and without 

damage in order to extract the associated wave characteristics. The damage was introduced as 

partial debonding between CFRP and concrete through reduction in the value of the ultimate 

shear stress associated with the interface element. For least attenuated waves, dispersion curves 

and mode shapes are plotted. It has been seen that partial debonding of the interface between 

CFRP and concrete causes changes in some of evanescent and complex wave modes 

wavenumbers especially at cut-on frequency. These wave mode shapes have revealed 

distinguished nodal displacement around the interface CRFP-concrete compared to the whole 

cross section deformed shape. Then, scattering matrix was formulated via the WFE-FE-WFE 

coupling approach and the reflection coefficients associated with the partial debonding were 

calculated at each step frequency. Higher order modes as evanescent and complex modes had 

demonstrated sensitivity to partial debonding through high magnitude of reflection coefficients. 

This was related to the shift in the cut-on frequencies, difference in the wavenumbers values and 

wave mode interference at the same frequency between damaged and undamaged waveguides. 

Future work should focus on picking up those wave modes at particular frequencies in 

experimental validation. 
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