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Abstract 

We summarize and discuss a self-consistent screening and magneto-transport theory, 

developed to understand the results of scanning-force-microscope experiments on the 

current distribution in a two-dimensional electron system (2DES), located in a narrow Hall 

bar under the conditions of the integer quantum Hall effect (IQHE) and its breakdown. The 

theory explains why, at low temperatures, at certain intervals of the applied perpendicular 

magnetic field, the current density is confined to “incompressible stripes” (ISs), in which a 

fixed number of Landau levels is occupied, and the longitudinal and Hall resistivity assume 

quantized values. The theory also explains, how the position and shape of these ISs depend 

on magnetic field and temperature, and why the confinement of the current density on 

these ISs leads to precisely quantized values of the macroscopic longitudinal and Hall 

resistance. The theory, which leads, at high temperatures, to the well known Drude results 

for current density and resistance, shows that the IQHE is a consequence of the peculiar 

screening properties of a 2DES in a strong magnetic field at low temperatures, and that it 

can be understood without assumptions about special localization effects. 
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1. Introduction 

The “Quantum Hall Effect” (QHE), discovered 1980 by K. von Klitzing [1], who was honored by 

the Nobel Price in 1985, presents a unique possibility to reproduce, in different materials, the 

electrical resistance       
                (von-Klitzing constant) with extremely high 

accuracy, and is nowadays used as one basic constant for the definition of the international 

system of physical units [2, 3]. The QHE was detected on a quasi-two-dimensional electron system 

(2DES) in a Si-MOSFET (silicon-based metal-oxide-semiconductor field-effect-transistor) in a strong 

perpendicular magnetic field at low temperatures. While changing the electron density with a 

suitable gate voltage, the longitudinal resistance       showed the expected Shubnikov–de Haas 

oscillations, but, in certain density intervals of finite width,       vanished, whereas in these 

intervals the Hall resistance was constant with values            
   with an integer value 

             Later this effect was also found in other materials, e.g., in GaAs/(AlGa)As 

heterostructures, and the quantized values         and            
   could be measured with 

even higher accuracy. Nowadays this effect is usually known as the "Integer QHE" (IQHE), because 

in very high magnetic fields and at very low temperatures, a similar “fractional QHE” has been 

detected, where   is replaced by the ratio of two relatively small integers [4]. Under the conditions 

of the IQHE the resistance of a real 2DES appears as the resistance of an ideal electron gas with an 

integer value of the Landau level filling factor. 

In spite of its practical use, the theoretical understanding of the IQHE still raises some open 

questions. Early attempts tried to understand the IQHE as a single-particle effect and neglected 

the Coulomb interaction between the conduction electrons as irrelevant. In the absence of a 

magnetic field, the conduction electrons need quasi-elastic scattering, in order to respond to a 

constant source-drain voltage with a stationary current. This implies that, at low temperatures, 

only the states with energy eigenvalues near the Fermi energy can be relevant for the current. In a 

strong magnetic field  , the energy spectrum shows Landau quantization and, near the sample 

edges, the Landau energies increase. The resulting Landau bands cross the Fermi energy and lead 

to a decrease in the electron density toward the edges. The increase in the energy band toward an 

edge produces an electric field perpendicular to the edge and thus a Hall current parallel to the 

edge. These edge-currents, which have opposite directions at opposite edges of the sample, and 

can be modified by an applied source-drain voltage, have been considered as responsible for the 

current transport through the sample. 

In order to understand, why at constant electron density, the values of longitudinal and Hall 

resistance are constant in certain  -intervals of finite width, i.e., in the "quantum Hall plateaus" 

(QHPs), it was assumed that certain electron states are localized and do not contribute to the 

current. There are a large number of theoretical papers, presenting different results concerning 

the distribution of an applied source-drain current (ASDC) in the sample (see [5-8] and references 

therein). Some experiments seem to indicate the transport through edge-states, but not all [9]. 

Unfortunately, up to now, there exist no experiments, which can measure the local current 

distribution in macroscopic samples, for which the assumption of constant electron density may 

be a good approximation. 
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This is different in microscopically narrow samples (width       m), which contain a two-

dimensional electron system (2DES) that is not too far below the surface. For these samples, 

scanning-force-microscopy experiments allow measuring the local distribution of the Hall potential 

across the sample under the conditions of the IQHE, and to deduce from these results the local 

distribution of the ASDC [10-13]. These experiments clearly showed that under the conditions of 

the IQHE the ASDC is carried by stripes, which change the position and width as a function of the 

applied magnetic field in the manner, as the “incompressible stripes” (ISs) do, which were 

predicted by Chklovskii et al. [14, 15]. These ISs occur as a consequence of the peculiar screening 

properties of an inhomogeneous 2DES at zero temperature in a high magnetic field, and are 

characterized by integer values of the local Landau-level filling-factor. 

The peculiar screening properties of a 2DES in a perpendicular, high magnetic field   at low 

temperature   result from the Landau quantization and the macroscopic degeneracy of the 

discrete Landau energy levels. For a homogeneous 2DES (with density     at chemical potential  ), 

this leads to a thermodynamic density of states (TDOS)        , which exhibits strong oscillations 

as a function of  . If   coincides (within    ) with a Landau level (LL), the TDOS is very large, the 

screening ability of the 2DES is very good, and (sufficiently week) potential fluctuations are nearly 

perfectly screened by a suitable rearrangement of the 2D electron density. But if   is deep in a 

Landau gap, separated by more than     from the adjacent LLs, there exist no states with energy 

near  , the TDOS is very small, potential fluctuation cannot be screened, and the electron density 

is determined by the integer number of completely filled LLs. 

In an inhomogeneous, laterally confined 2DES, where confinement potential and electron 

density vary so strongly that in different parts of the system a different number of LLs is occupied, 

both screening situations occur. In “compressible” regions with position-dependent electron 

density        the total potential is well screened so that a LL is “pinned” (within    ) to the 

electrochemical potential   , which is constant in thermodynamic equilibrium. Neighboring 

compressible regions, in which adjacentLLs are pinned to   , are separated by an “incompressible” 

region, in which the potential varies by a cyclotron energy (if we neglect spin-splitting) and no 

states with energy near    exist. In such an incompressible region the same number of LLs is fully 

occupied everywhere, and thus the electron density        
is constant. Since the energy 

eigenfunctions have a spatial extent of at least the order of the magnetic length    √       , 

the picture of alternating compressible and incompressible regions can be correct only if the 

distance of neighboring compressible regions is everywhere considerably larger than   . 

Such ideas of alternating regions with perfect screening (at zero temperature) or no screening 

have been discussed a long time ago [16] and used to explain experiments revealing an apparent 

background DOS between LLs [17-20]. Similar arguments have also been used to explain [21] 

experiments [22-24] on the breakdown of the IQHE under strong currents. The  -dependence of 

position and width of incompressible stripes (ISs) in translation-invariant half plane and stripe 

geometries have been calculated by Chklovskii et al. [14, 15] for a simplified “perfect screening 

model” at zero temperature. Later self-consistent thermal-equilibrium calculations showed that 

these ISs, which separate compressible regions, in which neighboring Landau levels are pinned 

(within    ) to the spatially constant electrochemical potential, develop already at sufficiently low, 

but finite temperatures [25, 26]. But, as already discussed previously [27], even if one knows 

about the position of compressible and incompressible regions in thermodynamic equilibrium, it is 

not so clear, where an ASDC will flow: in the compressible regions, where states exist near    and 
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quasi-elastic scattering is possible, which is important for the stationary transport at    , or in 

incompressible regions, where no empty states near    exist and such scattering is not possible. In 

incompressible regions, electric fields and, therefore, Hall currents, exist even in thermal 

equilibrium, but these cannot lead to dissipation. 

In order to investigate the effect of ISs and compressible regions on the spatial distribution of 

an ASDC, this equilibrium theory was modified by a standard transport theory, assuming that 

current density and the gradient of the electrochemical potential as driving electric field are 

connected by a local form of Ohm’s law *28, 29]. Moreover, only stationary, current-carrying 

states were considered, so that the dissipative non-equilibrium states can be described assuming 

local equilibrium. This results in a strongly non-linear self-consistent theory of screening and 

magneto-transport, in which the current distribution depends strongly on parameters like 

magnetic field, temperature, and strength of the ASDC. This theory is able to explain many of the 

results obtained by mentioned experiments [10-13], as has been explained in detail in several 

introductory publications [30-32]. We refer to these articles for experimental details and a 

qualitative comparison of experimental and theoretical results. 

The purpose of the present work is to summarize this theory, including some later 

modifications, which allow discussing Joule heating, as a possible reason for the breakdown of the 

IQHE, and a lateral modulation of the charge density, as a possible reason for the existence of 

several parallel ISs with the same filling factor. It will present the basic equations, explain how to 

solve them numerically, and compare some of its interesting results with the experimental data. 

This theory gives reasonable results for current distribution and resistances for all temperatures of 

interest, and the special results observed in the regime of the IQHE are caused by the peculiar 

screening properties of the 2DES in high magnetic fields at low temperature, i.e., finally by the 

Coulomb interaction of the electrons, and no assumptions of localization effects are necessary. 

The calculations reported in the following discourse are based on the Hartree-type 

approximations, in which the electron-electron interaction is replaced by the interaction of an 

electron with the electrostatic field produced by the total 2DES. The exchange and correlation 

effects and the spin-splitting of Landau levels are neglected. If the exchange effects are considered 

in a naive approximation, they lead to an unrealistically strong enhancement of the spin-splitting 

[34] and to the suppression of screening effects [35]. In order to avoid these artifacts and to 

obtain reasonable results for the exchange-enhancement of spin-splitting and for the effective 

screening, the self-consistent Hartree-Fock approximation was suggested, in which screening of 

the interaction potential is also considered in the exchange terms [34, 36]. From such an 

approximation, one expects similar results for ISs as from a Hartree-type approximation; however, 

with even and odd integer values of the filling factor, whereas neglect of spin-splitting will always 

lead to even integer values. The aim of the present review is to recall the explanation of the ISs 

and their importance for the local distribution of an ASDC. To this end simplifying approximations 

are made, which reduce the numerical effort enormously but make a quantitative agreement 

between the calculated and the experimental results impossible. For instance, the assumption of 

translation invariance can only be a good approximation for the interior of a long sample, far from 

source and drain contacts. Thus, since we can expect only qualitatively correct results, we also 

neglect the exchange and correlation effects and spin-splitting; this also simplifies the calculations 

considerably. 
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2. Thermal Equilibrium 

2.1 Model 

Our aim is to describe magneto-transport in narrow Hall bars. Due to the lateral confinement, 

the electron density in such a bar will not be homogeneous but, in general, will decrease from the 

center of the sample toward its edges. This inhomogeneity of the electron density will lead to the 

situations, where in different parts of the sample, different numbers of Landau levels will be 

occupied, and this will affect the current distribution in the sample. In order to describe such 

situations, we follow previous work [15,26] and model the Hall bar as a two-dimensional system in 

the plane     with translation-invariance in  -direction, metal plates in the half-planes      

and    , and a charge density          in the stripe       , with 

                      (1) 

where       and        denote the donor and electron densities, respectively, and    is the 

charge of an electron. Here the idea is that the metal gates are on the surface of the sample and 

the donors and electrons occupy different planes in the sample, which are so close to the surface 

that their distances from the surface are much smaller than the width    of the stripe between 

the metal plates, and can be neglected [15, 26]. One can expect that such a model gives a 

reasonable description of the center region of a long sample, at a sufficiently large distance from 

the source and drain contacts, which of course destroy the translation invariance. 

An advantage of this quasi-two-dimensional model is that the electrostatic potential       , 

which, in regions without charges, has to satisfy the Laplace equation, can be explicitly expressed 

as a function of the boundary conditions at    , i.e., the charge density      and the constant 

potential values           and           on the metal gates at     and    , respectively. 

The mathematical derivation of this result is summarized in Appendix A. Here we need only the 

resulting potential in the plane    , which can be written as the sum of two terms,        

               , where 

        
     

 
 
     

 
       

 

 
  (2) 

results from the gates and interpolates between the constant gate-potentials, and where 

       
 

 
∫   
 

  
              (3) 

with the kernel 

          
√                    

      
 , (4) 

and an effective dielectric constant  , describes the contribution of the charges in the stripe    , 

      (compare Appendix A). The normal component of the potential         on the metal gates 

leads to induced charges on the gates. The total induced charge on the right gate at     is 

    
 

 
∫   
 

  
           √

   

   
   (5) 

The corresponding result    for the left gate is obtained from Eq.(5) by replacing   by    in the 

argument of the square root. Thus, the sum of the induced charges,        ∫    
 

  
   , 

compensates the free charges, and their difference vanishes, if the charge density in the Hall bar is 

symmetric,            (see Appendix A). 

Concerning the self-consistent calculation of electron density and effective potential, we follow 

most of the previous work and treat this self-consistency problem in the Thomas-Fermi 
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approximation (TFA), i.e., we assume that relevant macroscopic lengths like the scale on which 

potential and electron densities vary spatially, are much larger than typical microscopic lengths, 

like the magnetic length    √     , with            the cyclotron frequency, or the extent 

of Landau eigenfunctions in strong magnetic fields  , or like the Fermi wave length or the mean 

distance between electrons at    . In the TFA the electron density is given by 

       ∫                    
           (6) 

with      the density of states (DOS) of the 2DES,           e p     the Fermi function, 

                     is the effective confinement energy and    is the constant electro-

chemical potential of the thermal equilibrium state. For a Hall bar in the absence of a magnetic 

field,    , we take            , with         
  , and for strong, quantizing magnetic 

fields we take a collision-broadened Landau DOS 

     
  

    
 ∑   
                

 

√  
e p  

      
 

  
   (7) 

where               denotes the Landau energies without spin-splitting and      the spin 

degeneracy. The level broadening is usually taken as       √      with      . This Gaussian 

model for the spectral function, as the corresponding model for the conductivities [37], which will 

be given in section 3, is not accurate [34], but gives reasonable results for all temperatures of 

interest. Another model, the “self-consistent Born appro imation” *34+, has also been investigated 

in this context [29] and leads to essentially the same results under the conditions of the IQHE. This 

is not surprising, since in the IQHE electron scattering is suppressed. 

Inserting Eq.(6) into Eq.(3) one obtains the, in general non-linear, integral equation 

     
   

 
∫   
 

  
                             (8) 

for the effective confinement energy     . 

2.2 Results 

2.2.1 Homogeneous Donor Density 

The simplest form of the self-consistency problem occurs for vanishing magnetic field and zero 

temperature, since Eq.(6) reduces to             
                 . If we assume that the 

electron density is confined to the interval         , with           , and anticipate 

             
 , the self-consistency problem reduces to the linear integral equation [26, 28] 

     
 

   
∫   
  
  

                             (9) 

where      
         is a screening length.                 describes the effect of the metal 

gates, see Eq.(2), and          √        with       
       describes the bare 

confinement energy provided by the donors, which, for constant donor density         , is 

given by Eq.(31). 

The efficiency of screening depends strongly on the screening parameter 

         (10) 

The smaller the value of  , the more effective becomes the screening [26]. 

In the following sections, we use the parameters adjusted to GaAs/AlGaAs samples, i.e., 

          
    meV cm   for the (   )-DOS and           nm for the effective Bohr radius 

[29]. Then, for constant donor density              
   cm   and        m, which leads to 

      
            eV, we obtain        and the results of Figure 1. Here we assumed 
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vanishing gate-potential,        , and anticipated that the constant donor density will lead, in 

thermal equilibrium, to a symmetric electron density,               . Apparently the bare 

confinement potential          √       , created by the donors and indicated by green 

lines in Figure 1, is heavily screened by the 2DES, so that the screened effective confinement 

potential appears nearly flat in the region occupied by electrons. 

 

Figure 1 Self-consistent solutions of Eq.(9) for the constant donor density          

       cm   and two symmetric choices of the electron distribution. (a) Electron 

densities       , (b) effective confinement potentials      (solid lines) and chemical 

potentials       (dashed lines);        m,       .  

At finite temperature Eqs.(6) and (8) lead to a non-linear integral equation, to solve by the 

Newton-Raphson iteration method. One starts with a suitable approximation       of the desired 

solution     , writes                 in the integral equation, assumes      to be small, and 

linearizes it with respect to     . The solution of the linear integral equation for      is added to 

     , and the sum is taken as new starting approximation. In each iteration step the average 

electron density 

      
 

  
∫   
 

  
        (11) 

is kept constant. The iteration usually converges, if the starting value       is close enough to the 

solution. The results of Figure 2 are obtained in this manner, starting with the result for    , 

   , and            , shown in Figure 1 and in Figure 2 as black lines. Starting with this, the 

result for     and       (red lines) was calculated. This took many iterations but converged 

with high accuracy. Starting from this result, the calculation for      and       (broken blue 

lines) took only a few iterations. To get the results for      and lower temperatures,   was 

lowered in small steps, and in each step, only a few iterations were needed. Since the problem is 

symmetric,               and           , Figure 2 shows only results for       . Parts 

(a) and (b) in Figure 2 refer to the electron density and panels (c) and (d) to the self-consistent 

confinement potential. Apparently the overall changes in the electron density profile with 
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changing temperature and magnetic field are relatively small, but the inset in Figure 2(a) shows, 

that the sharp onset of       , seen for     at        , is broadened at finite temperatures. 

Most important for the following is the appearance of incompressible stripes (ISs) near          

for     and     . As part (b) and (d) show (for       ), an IS occurs where the chemical 

potential is located well between the two lowest Landau energy bands       and      , where 

                     . Since we neglect spin-splitting, these ISs have local filling factor 

      . Figure 2(c) shows the enlarged part of the interesting region of     . For          

these curves are nearly equal and increase monotonously towards        . 

 

Figure 2 Electron density, (a) and (b), and screened confinement potential, (c) and (d), 

for     and temperatures     and      , and for      and several 

temperatures, as indicated. Parameters                      ,      

        ,             ,       . For      the DOS is taken from Eq.(7) with 

     and      .  

Figure 2 demonstrates nicely that near the sample edges, where the electron density decreases 

rapidly, the effective confinement potential shows a characteristic spatial variation, even for 

vanishing temperature and magnetic field. This potential variation, which is small compared with 

its variation between the center of the stripe (at    ) and the metal gates (at     ), was 

neglected in the “perfect screening appro imation” *14, 15], to enable an analytical solution of the 

problem. Near the sample edges, these analytical solutions deviate considerably from the results 

of the self-consistent treatment, but far from these edges, nearly the same results for the position 

and width of the ISs are obtained. This has been discussed in detail in an earlier study [25].  

The width of the ISs and the pinning of the Landau bands to the electrochemical potential   , 

shown in the right panels of Figure 2, become more impressive, if a smaller collision broadening is 

considered [38]. This is shown in Figure 3(a), which indicates the lowest Landau bands for     , 

       and two values of the collision broadening. For the smaller value,        (red lines), the 

energy bands       and       are closely pinned to the electrochemical potential and the ISs are 

wider than for the larger collision broadening       (green lines). In general, the width of the ISs 
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decreases with increasing temperature and increasing collision broadening, and for              

and           no ISs exist [27]. 

 

Figure 3 Self-consistent potential (a) and electron density (b) in thermal equilibrium. 

Black lines are for    ,    ; other lines for     ,        and two values of the 

Landau level broadening,       (green) and        (red); other parameters as in 

Figure 2. Broken lines:   ; dash-dotted lines: Landau energy bands. The inset (c) shows 

       near        .  

In view of the ISs, a modification of the TFA should be mentioned, that was used in most of the 

numerical calculations. Replacing the Hartree approximation by the TFA, one neglects the spatial 

extent of the Landau eigenfunctions, which for the low-energy eigenfunctions is of the order of 

the magnetic length   . As a consequence, the TFA may predict very narrow ISs, which are not 

reliable. Careful investigations of several modifications of the Hartree approximation [29, 33] 

showed, that the TFA gives reasonable results, if in each iteration step the quantities, which in 

principle are determined by eigenfunctions, are averaged spatially over a length of the order of   , 

i.e., if one replaces        by 

       
 

  
∫   
 

  
           (12) 

for instance with     . This modification was used in the calculation of Figure 2, but not in 

Figure 3, and will be used in the following. For     , i.e.,        nm, one obtains ISs with 

       of a width            nm. When   becomes larger, the ISs become wider and move 

towards the center    . For        the filling factor in the center becomes less than 2, 

      , and no ISs exist. As   decreases, the ISs become narrower and move towards the sample 

edges. 

A survey over the  -dependence of position and width of the ISs is given in Figure 4. Panel (a) 

of the figure shows parts of the       -profiles for four  -values. For      and     , ISs with 

filling factor        occur near         and        , respectively. For    T and       , 

one finds somewhat smaller ISs with        centered at the same positions. For these  -values 

one might expect ISs with        near         and        , respectively, but these ISs are 
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not well developed. Since these        profiles fall very close together, Figure 4(b) shows the filling 

factor profiles      for a larger number of  -values. 

Because the model has the symmetry               , Figure 4(b) shows only data for 

      . For    T, where         nm, one finds for the ISs near          a width 

          nm. With further decreasing    the width of the ISs rapidly decreases, until no ISs with 

filling factor        exist anymore. For       , where         nm, no ISs with        can 

be clearly identified, but near          narrow ISs with filling factor        and width 

            nm exist, which are embedded in the (   )-ISs for      of width            nm. 

 

Figure 4 Electron density        for     , 3.5  , 6  , and 7   (a) and filling factor      

for the indicated  -values (b); part (c) shows for these  -values the position of the 

incompressible strips, part (d) the calculated longitudinal and Hall resistance in linear, 

and (e) the longitudinal resistance in logarithmic scale.       ,        and other 

parameters as in Figure 2. 

In Figure 4(c) the vertical axis presents the magnetic field and, for the  -fields considered in 

Figure 4(b), the positions of the corresponding ISs are indicated. This plot is similar to the 

experimental plots describing the  -dependence of the local current distribution in a narrow Hall 

bar under the conditions of the IQHE [12, 30-32]. 
In order to emphasize the relation between ISs and the IQHE, Figures 4(d) and 4(e) show the  -

dependence of the resistances in linear response approximation, calculated with the formalism, 

which will be introduced in section 3. Figure 4(d) shows longitudinal and Hall resistance on a linear 

scale, 4(e) shows the longitudinal resistance on a logarithmic scale. In Figure 4(d), we see two 

quantum Hall plateaus, where the Hall resistance has the quantized values            
   with 

    and    , and where       vanishes. Apparently the quantization is more pronounced in the 

plateau with     than in the plateau with    . If we consider the quantization to be well 

pronounced when         
      , the quantum Hall plateau with     covers the interval 

             , and the plateau with     the interval              . A comparison of 

Figures 4(b) and 4(c) shows that, in the  -regime considered in Figure 4, well developed ISs exist 

only for  -values in these quantum Hall plateaus. 
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2.2.2 Modulated Donor Density 

In the analytical model of zero-temperature screening [14, 15] one finds, that the width       

of an IS centered at      is inversely proportional to the slope of the zero-  electron density at 

this center,        
    

  
     

  . This anticipates qualitatively the numerical results just discussed. 

Early scanning force microscopy experiments [11, 12] on narrow Hall bars showed that, under the 

conditions of the IQHE, the ASDC flows through stripes, which change position and width as a 

function of the applied magnetic field in just this manner. Thus it seemed that the current flows 

through these ISs, as will be discussed in the following chapter. The later experiments [38, 39] 

showed that, for magnetic fields in the high-  part of a quantum-Hall-plateau (QHP), the ASDC can 

flow through a wider region than through ISs near the center of the sample. In order to describe 

such situations, a model with a modulated donor density has been considered. 

               cos          (13) 

Some results for        
  cm  ,       and      have been published some time ago 

[39], and some for        
   cm  ,        and      more recently [40]. For these models 

the electron densities at     and    , calculated from the linear integral equation (9) with 

       
  

  
∫   
 

  
            cos           (14) 

are plotted in Figure 5. Because the donor densities have the symmetry             , the 

electron densities have the same symmetry. Therefore we show for      (the right panels of 

Figure 5), only one half of the results, the interval        for       and       for 

      . For comparison, the corresponding results for constant donor density,    , are 

indicated by black lines. 

 

Figure 5 Symmetric donor densities according to Eq.(13), with        
   cm  , and 

with      and        (left), and with      and       (medium) and        

(right panel), respectively, and, for     and    , the corresponding electron 

densities, satisfying          for          and          for         . Black lines 

indicate the corresponding results for    . The horizontal dash-dotted line       

indicates the density, leading at magnetic field   to filling factor    .  
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The dash-dotted horizontal line       in Figure 5 indicates the electron density, at which in the 

magnetic field of strength  , the filling factor of Landau levels becomes    . Where these lines 

cross the        profile, an IS may develop at sufficiently low temperatures. Whereas for the 

constant donor density (   ) for a given  -field at most two ISs with filling factor        can 

exist, for the donor modulation with      up to four ISs are possible. For the modulations with 

     in certain  -intervals up to eight ISs are possible, and for       in a narrow  -interval 

around      T even ten ISs with        seem to be possible. If for a given  -value       has 

several crossings with the profile        and the slope 
    

  
    is different at different crossing 

points, the ISs at these crossing points will have different widths. As an example, Figure 6 shows, 

for several temperatures, the self-consistently calculated electron density and effective 

confinement potential for the modulation with      and      , for     and      . The 

other parameters are chosen as shown in Figure 2. As in this figure, the overall appearance of the 

density profile does not change very much as function of   and  , but the onset of finite electron 

density        near         is smooth at finite temperature, as shown by the inset of (a), and for 

      and temperatures    K six ISs develop near          ,       and      , as shown in 

(b). Due to the screening effects, the self-consistent confinement potential and, as a consequence, 

the Landau energy bands                      , show at      considerably stronger 

oscillations than those at high temperatures. 

 

Figure 6 Electron density, (a) and (b), and effective confinement potential, (c) and (d), 

for     and       and several temperatures, calculated for the donor density 

modulation given by Eq.(13) with        
   cm  ,      and      , and other 

parameters as in Figure 2. 

2.2.3 Equilibrium Currents 

In the Landau gauge, the planar eigenfunctions in a constant, perpendicular magnetic and an 

in-plane constant electric field carry a constant in-plane current perpendicular to both fields. For a 

2DES, laterally confined in  -direction and translation-invariant in  -direction, this leads to edge-
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currents, which can be described by the eigenfunctions, if the confinement potentials vary 

sufficiently smoothly. In the situations considered so far, the opposite edge-currents at opposite 

edges cancel each other. It is, however, possible to describe with the formalism of section 2.1, a 

dissipation-free equilibrium current, if one adds to the argument of the Fermi function in Eq.(6) a 

suitable term proportional to the required net current. The consequences of such a theory have 

been discussed by several authors [41, 26], but they cannot explain the measured distribution of 

an ASDC in narrow Hall bars, and also not the transition of a 2DES in such a Hall bar from a normal, 

dissipative state at higher temperatures to a state dominated by the IQHE at low temperatures. 

3. Stationary Magneto-Transport Theory 

3.1 Local Version of Ohm’s Law 

In order to understand the experimental results on the spatial distribution of the ASDC in a 

narrow Hall sample, a theory is needed that describes the normal dissipative situation of the 

sample at higher temperatures (up to room temperature) as well as the low-temperature limit, 

where the sample shows the IQHE. Such a theory has been developed [27-29, 38] under the usual 

assumption, that a stationary non-equilibrium state can be described as a state with a local 

thermal equilibrium, which is justified if the spatial variations of electron and current densities are 

smooth enough. According to the rules of non-equilibrium thermodynamics one expects that in 

the resulting stationary state the entropy production is minimal. 

A stationary current, imposed on a laterally confined 2DES, will lead to position-dependent 

current densities and electric fields. Following previous work [28], we assume that the relevant 

electric field, driving the density      of the imposed current, is the gradient of the electrochemical 

potential,       , which vanishes in thermal equilibrium. In the presence of an ASDC, on the other 

hand, the    in Eq.(6) becomes position-dependent. Local equilibrium means that all 

thermodynamic quantities satisfy locally the same interrelations as they do in a homogeneous 

system. So, current density                        and electric field should satisfy a local version 

of Ohm’s law, 

 ̂                       (15) 

where the local resistivity tensor  ̂      ̂      , with components                     and 

                    , is the inverse of the local conductivity tensor, which should be 

calculated in an approximation that is consistent with that for the electron density. 

With translation invariance in  -direction,  ̂,   and   are independent of   and the Maxwell 

equations          and          require, that the current density    across and the electric 

field    along the bar are independent of  , 

        
             

   (16) 

Then the electrochemical potential assumes the form                  
   and, in order to 

guarantee the translation invariance in  -direction, we must add in Eq.(6) to the confinement 

energy      a term    
  , which describes the effect of the source-drain voltage along the Hall bar. 

Since in the argument of the Fermi function, only the difference                           

occurs, the electron and current density as well as the transport coefficients to be calculated 

below, are independent of   [27]. 
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We consider only Hall bars, in which the electron density vanishes near the edges, so that no 

current can flow through the edges,   
   . Then Ohm’s law simplifies to 

        
                            (17) 

resulting in                  
   with 

        
     

 ∫    
 

 
                (18) 

Here   
  occurs as a constant determining the average electron density, and   

  is determined by 

the total ASDC,   ∫   
 

  
      , as 

  
    ∫   

 

  
           (19) 

If in the limit    , an IS develops in the Hall bar, where        , the last integral becomes 

extremely large and the electric field and thus the resistance along the Hall bar becomes 

extremely small, and the sample shows the IQHE. But it is clear that this formalism does not work 

at    , since then the relevant integrals diverge. 

Equation (19) yields the longitudinal resistance, calculated for a square geometry with  

         as 

      
    

 

 
    ∫   

 

     

 

  
 (20) 

The Hall resistance follows from Eq.(18) as 

      [                   ∫   
      

      
 ∫

  

     

 

  

 

  
  (21) 

3.2 Conductivity Model 

3.2.1 Homogeneous 2DES 

The scattering of electrons by randomly distributed impurities leads to both, a collision 

broadening of the electronic DOS and resistance against electronic current, and, as a consequence, 

to dissipation. Since electron and current densities are related by the equation of continuity, the 

calculation of DOS and conductivities should obey certain consistency requirements, the so-called 

Ward identities [42]. These requirements are, e.g., satisfied by the self-consistent Born 

approximation, which, together with other approaches, is discussed in the review article by Ando, 

Fowler and Stern [34] and has also been summarized in the present context [29]. Here we use 

another approximation scheme, which relies on a cumulant expansion [37], is mathematically 

easier to handle, and was used in most of our previous work [28, 38, 43]. 

In order to calculate the resistivity components          
    

   and          
    

  , we 

need the conductivity components            and            . For a homogeneous 

system at temperature   in a sufficiently strong magnetic field  , we approximate these, using the 

filling factor       
     , by 

     
          ∫

 

  
  ∑   

 
                      

   
  

 
∫
 

  
        ∑   

         √        
  

 (22) 

where       is the spectral function from Eq.(7),           e p     the Fermi function, 

             
           and    the constant chemical potential. For a homogeneous 

system,   is an unimportant constant fixing the energy zero. 

Figure 7 shows, for constant magnetic field   and for the indicated constant values of 

temperature (       ) and collision broadening (      ), the filling factor       and the 
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longitudinal conductivity     
   as functions of the chemical potential (upper panel, with     and 

     ) and    as function of   (lower panel), see also [27, 28] 

It is important in the present context to mention that this approximation describes the 

Shubnikov – de Haas effect. If the collision broadening of       is sufficiently small, at integer 

(here even) values of the filling factor  , the chemical potential lays between two Landau levels 

and, at sufficiently low temperatures,    becomes extremely small. This effect, which becomes 

more pronounced with decreasing temperature and collision broadening and disappears at high 

temperatures and large collision broadening of the Landau levels, is important for our 

understanding of the IQHE in narrow samples. 

 

Figure 7 Filling factor   and longitudinal conductivity    as function of the chemical 

potential    (upper panel) for a homogeneous 2DES in a constant  -field at constant 

temperature   for the indicated values         and collision broadening       , 

after Eq.(22) with       and    . The lower panel shows the corresponding 

conductivity values as function of the filling factor.  

3.2.2 Laterally Confined, Translation-Invariant 2DES 

Due to the lateral confinement in  -direction, the electron density of our model system, which 

is assumed to be translation-invariant in  -direction, decays towards the edges at     . If this 

decay is sufficiently smooth, i.e., if   is sufficiently large, we can apply the Thomas-Fermi 

approximation and use Eqs.(22) replacing   by     , the energy due to the effective confinement 

potential. This yields then position dependent values,       and      , for the conductivities. In 

order to avoid the artifacts of the Thomas-Fermi approximation, such as ISs of extremely small 

width, we replace the local conductivities        by the smoothened form 

       
 

  
∫   
 

  
           (23) 

in analogy to Eq.(12). With these smoothed values, we calculate the resistivities       

            
       

   and                   
       

   needed in Sec.3.1. 
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Thermal equilibrium. If we consider thermal equilibrium in the absence of dissipative currents, 

temperature, and chemical potential are spatially constant, and we can use Eqs.(22) with        

and constant   and   , as we did in section 2. The results can also be used to calculate resistances 

for extremely small ASDCs, in the linear response regime, as we will do in section 4.1 below. 

Weak currents. According to section 3.1, a finite ASDC leads to a position-dependent 

electrochemical potential      . If the current is weak enough, the effects of dissipation and Joule 

heating may be small and negligible. Then one can use Eqs.(22) with spatially constant 

temperature   and position-dependent values of      and      . This approximation was used to 

explain the current-induced asymmetries of electron and current densities [27-29]. It is, however, 

not able to explain the breakdown of the IQHE caused by strong currents. 

Dissipative currents. Assuming local equilibrium with a stationary current density      , we 

should take into account the local Joule heating        
       , which will lead to a local 

enhancement of the electron temperature. In a stationary state of the 2DES, the produced heat 

must be transferred to the surrounding lattice. Here we neglect the possibility of heat flow within 

the 2DES and take only the direct local heat transfer       to the lattice into account, which will 

depend on the difference between the local electron temperature        and the homogeneous 

lattice temperature   . Assuming this difference sufficiently small, we take from the literature [44] 

the linearized form         
                  , where   

           
  (meV)  describes the 

effect of electron-phonon scattering and                 
     denotes the thermal density of 

states at position  . The balance of Joule heating and heat transfer to the lattice then yields for 

the local electron temperature [43] 

                             
     

               (24) 

where a parameter   for the coupling strength is introduced (      is taken in [44] and     

neglects Joule heating). 

3.3 Calculation Procedure 

A typical problem, we want to calculate, is the current distribution in a Hall bar with a given 

value of the average electron density at given values of magnetic field  , lattice temperature    

and applied current  . In all considered situations we assume the simple model discussed in 

section 2.1 with translation invariance in  -direction and a symmetric donor density        

     . We start the calculation assuming    ,      and    , i.e., the problem discussed in 

Sec.2.2 and choose the interval         with        so that the average electron density 

      has the desired value. Then, still with    , we increase    so much, that we can introduce 

the desired value of   with the Newton-Raphson iteration described in Sec.2.2. Now we have two 

possibilities to proceed. First, we can introduce the desired current stepwise at the high    and 

then lower, with the desired values of   and  . 

Somewhat simpler is the second way [27]. We decrease the temperature with     and the 

desired value of  , as described in Sec.2.2, until we reach the desired value of   . Then, with    , 

there is no Joule heating, and electron temperature           and electrochemical potential    

are spatially constant. With these results, we can calculate the resitivity components       and 

      as described in Sec.3.2. If the ASDC   is very small,    , one is in the linear response limit 

and the resistances are given by Eqs.(20) and (21). 
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For finite  , one uses the resistivity components calculated according to Sec.3.2 and calculates 

        
  from Eqs.(18) and (19) as well as the electron temperature        from Eq.(24) using 

Eq.(19) and                 
     with        calculated from Eq.(6). Then one replaces, for the 

following, Eq.(6) by 

       ∫                    
                   (25) 

With this, one has to solve the non-linear integral equation for     , Eq.(8) with Eq.(6), keeping 

the average electron density       and the induced charge   , Eq.(35), fixed. This determines 

the constant   
 . For the solution of the integral equation with fixed         

 , one uses again the 

Newton-Raphson iteration. With the solution      and        one calculates again the local 

resistivity components and a new value of         
 . If this agrees, within the required accuracy, 

with the previous value, the calculation for this value of   is ready. If not, one inserts the new value 

into Eq.(25) and solves the integral equation again and calculates a new         
 , until the 

required accuracy is reached. For larger values of  , it may be necessary to approach this value 

stepwise, with sufficiently small steps, and to achieve convergence in each step. 

If one uses the first mentioned possibility and introduces   at the desired   and high   , one has 

to obey Eq.(25) to obtain convergence in each step, while approaching the desired value of   at 

high    and while lowering    at the desired value of  . 

4. Results 

4.1 Weak Applied Currents  

If the ASDC is sufficiently small, one can neglect its feedback on electron density, transport 

coefficients and local electron temperature, and calculate these quantities for    . As already 

mentioned, the occurrence of the IQHE is closely related to the occurrence of ISs. The existence 

and width of the ISs depend not only on magnetic field and temperature, but also on the collision 

broadening of the Landau DOS. The width of ISs and the  -dependence of Hall and longitudinal 

resistance, especially the width of the (   )-QHP, have been investigated [29] on the basis of the 

self-consistent Born approximation and a special impurity model. The results are compatible with 

those [27, 38, 43] for the Gaussian model, Eqs.(7), (22) and (23). The resistance results for a 

modulated system, Eq.(13) with     and       , have also been published [40] and are 

consistent with those shown in Figure 8, which shows the linear response resistance for the 

models with      described in Figure 5. Figure 8 shows Hall and longitudinal resistance as a 

function of the magnetic field for two temperatures and for two donor-density modulations with 

the indicated parameters       (red lines) and        (green lines). Black lines refer to the 

unmodulated case    . For        the QHPs for     and     are clearly seen. The 

resistance values shown in Figure 4(d) and (e) are calculated with the same model, but for the 

smaller collision broadening parameter       . 
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Figure 8 Linear response result for the  -dependence of Hall resistance (upper panel) 

and longitudinal resistance (lower panels), defined in Eqs.(21) and (20), respectively. 

The middle panel shows          on a linear scale and the lower panel on a logarithmic 

scale. The spatial average, Eq.(23), is performed with      √           . The 

Drude result           
       is also indicated for    . 

Apparently, the modulation extends the QHPs to higher  -values. This is immediately 

understood from Figure 5, since the maxima of the        curves for the modulated cases are 

larger than the maximum for the unmodulated case, and thus ISs with the same filling factor exist 

for the modulated cases at higher  -values than for the unmodulated case. Since above a critical 

 -value (     for        and        for    ) no ISs exist, the high-  edge of the (   )-

QHP is not sensitive to temperature. This is very different for the low-  edge of this plateau, 

where ISs exist only near the sample edges. The width of an IS is inversely proportional to the 

slope            at its center, taken at     [14, 15]. According to Figure 5, near the edges, this 

slope is largest for      , intermediate for     and smallest for       , and at a given  , the 

ISs are narrowest, intermediate and widest, respectively. Therefore, the low-  edge of the (   )-

QHP occurs for       at the highest and for        at the lowest  -value. At this low-  value 

of the plateau, the increasing temperature destroys the quantization rapidly. 

Of course, the width of a QHP depends not only on the lateral modulation of the donor density 

and on the temperature. The collision broadening of the Landau levels and the spatial averaging 

according to Eqs.(12) and (23) also affect the width of a calculated QHP, as has been discussed 

previously [27, 29, 38]. 

Near       , Figure 8 indicates the existence of a (   )-QHP for the cases with and without 

modulation, at least for       . The quantization is, however, not well developed              

      for       , and does not exist for     , whereas in the upper part of the (   )-

plateaus we find a good quantization with              
  , at least for the lower temperature 

      . The cusp-structure seen in the logarithmic plot of          (lowest panel of Figure 8) 

results from the fact, that the number of ISs in the system changes at these  -values. These results 

are consistent with those obtained for the modulation with      and      [40]. 
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4.2 Temperature Dependence 

In the following section, we want to present the results of numerical calculations of electron 

and current density for different values of magnetic field, temperature, and strength of the ASDC, 

starting with weak currents, where we can expect results similar to the linear response regime. 

Similar calculations for the samples with homogeneous donor charge density can be found in the 

literature [27, 28, 38, 43]. We will consider here the modulation model introduced above, since it 

allows us to discuss the same physical concepts and some additional phenomena. 

Before we start with the quantum calculation, we should remember the classical Drude model 

of magneto-transport, which describes, in the local version, longitudinal and Hall resistivities as 

                               (26) 

respectively, with         
            and a constant relaxation time  . According to Eqs.(17) 

this implies, that the current density is proportional to the electron density,             , and 

that the electrical field       is constant, i.e.,       increases linearly with  . 

Figure 9 shows results for    T, where according to Figure 5 only two ISs near the sample 

edges are possible. The upper panels show current density       and filling factor          
       , 

respectively, on a linear scale. Apparently for      K the prediction of the Drude model is nicely 

satisfied: the current density       is proportional to the electron density        and the lowest 

panel shows the linear position-dependence of the electrochemical potential      . This situation 

can be described by a constant scattering time  , i.e., a conductivity       proportional to the 

electron density        or, at fixed  -field, proportional to the filling factor     . This Drude 

behavior is consistent with the high-temperature behavior of our conductivity model, sketched 

Figure 7, since, for      and      ,                . 

This behavior changes, however, rapidly with a decreasing temperature. The overall shape of 

the density profiles changes very little with decreasing   , until for       two ISs develop near 

        . Therefore the main plot of      shows only the curves for        and        , 

with insets showing the development of ISs. However, the current distribution       changes its 

shape drastically. At         , where the local filling factor becomes two,       , according to 

Eqs.(22) and Figure 7 the longitudinal conductivity      , and thus the longitudinal resistivity      , 

decrease with decreasing temperature and become exponentially small for            . 

According to Eq.(17), then       becomes very large at these positions, and very small elsewhere, 

since the total ASDC   is kept constant. The strong changes of the current distribution with 

decreasing temperature are clearly seen in the linear and the logarithmic plot of       in Figure 9. 

The lowest two panels of the figure also show that even for this small ASDC of        A, the 

current distribution becomes very asymmetric at very low temperatures, here at      . At these 

low temperatures, essentially all the ASDC flows through the edge-near ISs at         , in 

which the intrinsic edge-currents flow due to the finite gradient of the confinement potential. The 

intrinsic Hall current near         has the same direction as the ASDC, the intrinsic current near 

         has the opposite direction. As a result, the induced current in the IS near         is 

stronger and leads to a larger increase in the Hall potential than the induced current on the 

opposite side of the sample. 
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Figure 9 Current density (uppermost and third panel), local filling factor (second panel) 

and normalized electrochemical potential       (lowest panel) for the indicated lattice 

temperatures. The insets of the     -plot show the regions around the ISs near 

         for several  -values.  

Here the situation of the IQHE is approached continuously by lowering the temperature, which 

leads to stripes, in which      approaches the value two, so that the local longitudunal resistivity 

      becomes small (Shubnikov-deHaas effect). Since in a stationary non-equilibrium state, the 

entropy production should be minimal, the current density occupies the regions with minimal 

      and thus minimizes the dissipation. If the ISs are so well developed, that all the ASDC can 

flow through stripes with       , the sample shows the IQHE. 

So far the discussion applies to modulated systems at the lower part of a QHP and to 

unmodulated systems, where in the situation of the IQHE, the current is restricted to two ISs. In 

the modulated systems, some additional effects may occur. There may be more than two ISs with 

the same integer filling factor, as we will discuss below. In the case considered in Figure 9 the 

filling factor      has three local minima near         and in the center at    , where      is 

only slightly larger than two. With the decreasing temperature (     K) at these positions 

relative minima of       and relative maxima of       occur. These relative maxima become, 

however, irrelevant at low temperature,     K, where the IQHE occurs. 

Since the ASDC is rather small, Joule heating, and therefore the local increase of the electron 

temperature, is rather small at high and at very low lattice temperatures. At intermediate 

temperatures, 4K        , the current density       is already enlarged in the regions, where 

ISs start to develop. In these regions is, however,       still relatively large, so that Joule heating in 

these regions leads to        a few per cent larger than   . This heating effect is considered in the 

calculation (     ), but since it is rather small, we do not discuss it here. 

In Figure 10 we consider the results for      and the modulation model of Eq.(13) for      

and       (left panels) and        (right panels). Here the ASDC is twice as large as in Figure 9, 

but the assumed Joule heating is much smaller (     ). For homogeneous donor density one 

would again expect that two ISs develop at low temperature, which then carry all the ASDC, but 

now up to eight ISs are possible. As in Figure 9, the position dependence of current density, filling 
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factor, and normalized electrochemical potential is shown. For high temperatures,       is plotted 

on a linear scale (uppermost panels) and for low temperatures on a logarithmic one (third panels 

from above). Since the     -curves for all considered temperatures would fall very close together, 

we show them only for        and        . Again the results for        are in good 

agreement with the predictions of the Drude model. However, already for       , the structures 

of the      -profiles are rather different from the corresponding     -profiles, which are nearly 

identical with the     -profiles for       . Further, already at rather high temperatures, for 

      , the density of the ASDC starts to concentrate on the regions, where the local filling 

factor is close to two,       , and       becomes small with the decreasing temperature, and 

where at a low temperature,      , the ISs develop and carry the current nearly dissipationless. 

Figure 10 shows clearly, that, in the modulated system, for magnetic fields in the upper part of the 

QHP, the current distribution e tends over a wide region of the Hall bar (“bulk-dominated 

regime”), whereas the unmodulated system, at this  -value, would develop two ISs near 

       , which would carry all the current. The lower panels of Figure 10 show clearly that the 

ISs are not equivalent. Some of the ISs carry more current than others, and at very low   , a single 

IS starts to dominate. Here, two aspects are relevant for the current transport in an IS. As we have 

already discussed, the IS can carry more of the ASDC, if its intrinsic current has the same direction 

as the ASDC. Another aspect is the width of the IS. If, at higher   , the density gradient at the 

center of the IS, where       , is small, the resulting IS will have a larger width than if this 

gradient is large [14]. Since wider ISs can carry more current than narrow ISs, those ISs, which 

evolve at positions with a small density gradient and have an intrinsic Hall current with the 

direction of the ASDC, are most favorable for the transport of the ASDC. This explains the low-

temperature results of Figure 10. Again the effect of Joule heating is rather small and we do not 

discuss it here in detail. 

 

Figure 10 Current density, filling factor, and normalized electrochemical potential 

across the Hall bar, as in Figure 9, but for     ,       A and the modulation 

models of Eq.(13) with      and       . 

Another example of the peculiar interaction of temperature, Joule heating and current strength 

is given in Figure 11 for the donor density modulation model with     ,       . The left 

panels compare the effective confinement energy     , the lowest Landau bands            
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           and the electrochemical potential       with ASDC,       A (black lines), and 

without,     (red lines), at        and      . The confinement energies      at        are 

also indicated for comparison, which show much less structure than the corresponding quantities 

at      . At       and     the electron density has the symmetry                and 

develops two ISs near        , which are considerably broader than those near        , 

because the slope            at         is not so steep as at         [14, 15]. 

 

Figure 11 Left panels: Effective confinement energy     , Landau bands       and 

electrochemical potential       (upper panel) and resulting filling factor (lower panel) 

at       without (red) and with (black) ASDC     A. Right panels: density of ASDC, 

filling factor,                 and normalized electrochemical potential for 

      ,       A and the indicated lattice temperatures. 

The ASDC destroys this symmetry and broadens considerably the IS near        , where the 

intrinsic current has the same direction as the applied one. This current-induced asymmetry is also 

seen in the right panels of Figure 11, which show, from top to bottom, the current density, the 

filling factor, the enhancement of the electron temperature due to Joule heating and the 

normalized electrochemical potential as functions of the position  . These plots also demonstrate 

the strong effect of the lattice temperature. With decreasing    the current density      , here 

plotted in a logarithmic scale, is more and more confined to the regions, where the ISs will appear 

at sufficiently low temperature. In the figure this starts at about        and a confinement of 

comparable amounts of current on the four regions near         and         is seen down to 

     . In this regime the longitudinal resistivity is still so large, that Joule heating increases the 

local electron temperature considerably,           , in the IS-regions for       and   , but 

only            for       . This changes drastically as    is lowered further. At     K the 

conductivity components       and       in the broad IS near         are well quantized, most 

of the ASDC flows with nearly constant current density       and constant Hall field       

             through this stripe and the increase of the local electron temperature is very small, 

           , by orders of magnitude smaller than at       [40]. These drastic changes with 

temperature will, of course, lead to strong variations of the global resistance components, which 

will be discussed in the following sections. For the situations discussed here, we find, for instance, 
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   and                     

   at      , but                   
   

and                     
   at      . 

Another interesting effect is demonstrated by the upper left panel of Figure 11. Due to the 

applied current, near         states of different Landau bands have the same energy, 

              for      . With increasing current  , the distance       will decrease. If this 

distance approaches the extent of the corresponding eigenfunctions, which is of the order of the 

magnetic length   , impurity or phonon mediated quasi-elastic inter-Landau-level scattering 

(QUILLS) may become possible, which has been discussed as a possible breakdown mechanism of 

the IQHE [21, 47]. 

4.3 Effect of Current Strength and Joule Heating 

For the models considered here, the reflection symmetry                holds in the absence 

of an ASDC and in the linear response limit, but is destroyed by a finite applied current. This was 

already indicated in the early experiments [12] and clearly seen in the first calculation, trying to 

explain these experiments [28]. Later this current-induced asymmetry of the current-density was 

investigated systematically, both experimentally [39, 45] and theoretically [38, 43]. 

The strong asymmetry caused by increasing strength of the ASDC is nicely demonstrated in 

Figure 12, which is obtained for homogeneous donor density and neglecting Joule heating [38, 43]. 

For very weak current, in the linear response regime (black lines), at temperature     , two 

symmetric ISs with local filling factor        occur near          . Both of them carry a half 

of the ASDC that is nearly dissipation−less. Since nearly all current flows through these stripes, the 

Hall potential increases in two equally high steps across these stripes. With increasing 

current−strength, the IS near         , in which the intrinsic current has the same direction as 

the ASDC, becomes wider and carries a larger part of the ASDC, while the IS near           

shrinks a little and carries a decreasing part of the current. As a consequence, the step of the Hall 

potential near           becomes smaller than that near         . In this calculation, which 

neglects Joule heating, the main effect of the increasing current-strength is to broaden one of the 

stripes and to concentrate most of the current on this stripe. 

 

Figure 12 Current-induced asymmetry of the normalized Hall potential (lower panel) 

and of current-carrying ISs (medium panels) and the current density (upper panels). 

Joule heating is neglected (   ),     , homogeneous donor density.  
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Consideration of Joule heating, as in Figure 13 for      , changes things considerably. Now 

the current-induced asymmetry is less pronounced and for a larger strength of the ASDC an 

increasing part of this current spreads out from the ISs into the dissipative bulk, leading to a 

breakdown of the IQHE. This is similar to the experimental finding that the longitudinal resistance 

increases continuously with increasing current-strength from nearly zero in the quantum Hall 

regime at small currents to the normal dissipative regime at strong currents. According to Figure 

13, for        the IQHE breaks down for       A: there exist no longer ISs with constant filling 

factor and the Hall potential takes on a finite slope in the bulk. If the thermal contact between the 

2DES and the host lattice is better, so that the Joule heating of the 2DES is weaker, these effects 

are less pronounced. For       the breakdown of the IQHE sets in only for       A, but the 

asymmetry of the current distribution is already much smaller than for     [43]. 

 

Figure 13 Same as Figure 12, but under consideration of Joule heating,      .  

The reason for this breakdown of the QHE is, of course, the local increase of the electron 

temperature in the stripes, where most of the ASDC flows. This local increase of        depends on 

the strength of the heat transfer to the lattice and is shown in the upper panels of Figure 14 for a 

stronger (     ) and a weaker (     ) heat transfer. 
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Figure 14 Upper panels: the increase in electron temperature,                , due 

to Joule heating (for       and      ) for the indicated values of the ASDC  . Lower 

panels: longitudinal resistance       
    

 

 
 and Hall resistance       [       

             versus applied current   without (   ) and with (      and      ) 

Joule heating. All panels are for     ,       and for       and      as in 

Figures 12 and 13. 

The lower panels of the figure show the longitudinal and the Hall resistance as a function of the 

applied current without and with consideration of Joule heating, for a sample with the same 

parameters as in Figures 12 and 13. Without Joule heating (   ), the resistances come with 

increasing ASDC closer to the quantized values         and             
 . With Joule heating, 

on the other hand, the resistances deviate with increasing   increasingly from the quantized values, 

so that an increasing applied current can cause a continuous breakdown of the quantized situation. 

This is the result for the lattice temperature      . At lower   , the Joule heating will, however, 

lead to a much more complicated situation, as is demonstrated in Figure 15 [43]. The upper panels 

in Figure 15 show that, in the absence of Joule heating, for the considered model with 

homogeneous donor charge, at     , the situation of the IQHE is reached for      . 

Increasing the ASDC   changes the resistance values only a little, and slightly improves the 

quantization conditions, in agreement with the result of Figure 14. Since the curves for       A 

are very close to each other, only a few of them are shown. 
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Figure 15 Longitudinal resistance       
    

 

 
 (left panels) and Hall resistance 

      [                    (right panels) as functions of the inverse lattice 

temperature    for             and for several values of the applied current  . The 

upper panels show results without (   ) and the lower panels results with (     ) 

Joule heating. In the lower panels the   -dependence shows a hysteresis for       A. 

If Joule heating is considered, similar results hold only for very low lattice temperatures and not 

too large ASDCs, e.g., for       and     A in Figure 15 (     ). At higher temperatures 

(     ) one finds the behavior seen in Figure 14 for    : the longitudinal resistance increases 

with increasing current and a continuous breakdown of the QHE occurs, if it exists at small  . At 

lower temperatures (       ), the situation becomes different. As   increases towards     A, the 
slopes of the            -curves become very steep, and for       A these curves become 

discontinuous at a temperature          , which decreases with increasing  . If an ASDC   

    A is fixed and the temperature is lowered (from      K) towards       , the 2DES is in a 

normal dissipative state and its longitudinal resistance decreases slightly with decreasing   . If the 

temperature is lowered further, the 2DES undergoes an abrupt transition to a quantum Hall state. 

For            the ASDC flows nearly dissipationless through ISs and       and            
   are 

many orders of magnitude smaller than     , and decrease further with decreasing   . In this 

regime larger currents result, at fixed   , in smaller values of      , i.e., Joule heating plays no role. 

The abrupt transition from a dissipative state at higher    to a quantum-Hall state at lower    

introduces a hysteresis. If one fixes       A and increases   , starting from a value less than 

      , one remains in the quantized state until one reaches an upper critical temperature 

   
  
          . 

For       
  
    the 2DES is again in the dissipative “high temperature state”. The dashed lines 

in Figure 15 show the resistances obtained during this increase of   . In the interval           

   
  
   , two states, namely, a dissipative and a quantum-Hall state, coexist and it depends on 

boundary conditions and on the history of the experiment, in which of these states, the system is 

found. 
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The calculations for Figure 15 have been performed without modulation of the donor charge-

density and without a spatial average of electron density and conductivity. Calculations with such 

spatial averages and without modulation as well as with modulation [40] of the donor density 

have also been performed and yielded qualitatively very similar results. In Figure 15 a  -value in 

the high-  region of the (   )-QHP is considered, and therefore       in the not-quantized 

dissipative states is larger than         (see e.g., Figure 8). For a  -value in the low-  region of the 

QHP, one gets in the dissipative states, the values             
 

 
[40, 43], as is shown in Figure 16, 

which was calculated under due consideration of Joule heating and spatial averaging. 

 

Figure 16 Hall resistance       [                   and longitudinal resistance 

      
    

 

 
 versus inverse lattice temperature for      and different applied 

currents, with Joule heating (     ) and spatial avering (    ); other parameters as 

in Figure 15. Dashes lines are for increasing   . 

4.4 Current-Driven Breakdown 

In the previous section 4.3 we have seen, that the strength of an ASDC strongly affects the 

temperature dependence of longitudinal and Hall resistance. So it should be interesting to 

calculate these resistances at fixed lattice temperature as a function of the applied current, and to 

compare the result with experimental data. Such experiments have been published in figure 3 of 

[39], where a “longitudinal voltage”, proportional to the longitudinal resistance, was measured as 

a function of a bias voltage, which determined the applied current. 

The results for the (   )-QHP can be summarized as follows. The resistance increases with 

increasing current, so that a continuous breakdown of the QHE is observed. As   is lowered from 

the center of the QHP towards its lower edge, for a smaller   the breakdown sets in at a smaller 

current and the slope of the function          becomes steeper. As   is increased from the center 

towards the high-  edge of the QHP, for larger    the breakdown sets in at a smaller   and the 

slope of          increases with increasing  . In general, these slopes are steeper for   in the high-

  part of the QHP than for   in its low-  part. 
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The calculated results for the unmodulated model (   ) at the relatively high temperature 

      K are shown in Figure 17. For these parameters the (   )-QHP is located at 6T   

    T and the medium panel of the figure shows, that for the lower part of the QHP (6T      T) 

the  -dependence of       is in qualitative agreement with the mentioned experiment (figure 3 of 

a previous paper [39]). This is easily understood since the ISs become smaller with decreasing   

and even in the breakdown regime the current is concentrated on a narrower stripe than at larger 

 -values. Therefore, at lower   the same current   leads to a higher current density and a stronger 

effect of Joule heating and, as a consequence, to a larger resistance. This explains the observed 

breakdown-behavior in the low-  part of the QHP. The logarithmic plot in the lowest panel of 

Figure 17 gives some additional information about the quantized situation, where         
     2. 

There, for small  ,          first decreases with increasing  , because Joule heating is not yet 

effective and increasing   just broadens one of the ISs. But at larger  , when Joule heating 

becomes effective, the increase of          with   becomes steeper with increasing   and 

apparently becomes discontinuous for      T. The Newton-Raphson iteration procedure, used 

to calculate the data of Figure 17, was not able to describe these discontinuities, probably because 

it relies on successive small changes of the thermodynamic state of the system. Similar 

calculations for lower temperature,       K, and slightly other parameters for Joule heating and 

spatial averaging, led to similar results, although at somewhat smaller values of   and  , as shown 

in figure 9 of a previous paper [43]. 

 

Figure 17 Hall resistance (upper panel) and longitudinal resistance in linear (medium) 

and logarithmic scale (lower panel) versus ASDC   for the model with unmodulated 

donor charge (   ) at       K; with Joule heating (     ) and spatial averaging 

(    ). 

Convergent result for all  -values in the (   )-QHP are obtained for a model with modulated 

donor density (Eq.(13) with     ,       ), at least for the relatively high temperature 

       , as shown in Figure 18 (compare figure 7 of the earlier study [40]). The linear plot of 

         (lowest panel) shows for  -values in the lower part of the QHP, i.e. for 6.4        , 
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similar behavior as the middle panel of Figure 17: with decreasing   the breakdown of the 

quantized situation sets in at lower values of   and the slope of the         -curves in the 

dissipative regime becomes steeper. The behavior of the         -curves in the upper part of the 

QHP (6.90         ) is different: with increasing   the breakdown sets in at a smaller  -value, 

and, in the dissipative regime, the slope of the         -curves increases with increasing   as in the 

mentioned experiments. However, in contrast to the experimental results, in the upper part of the 

QHP, the slopes of the         -curves are much smaller than in the low-  part. The reason for this 

discrepancy is probably the simple – and unrealistic – modulation model, which leads to maxima 

of the electron density near         , which determine the position of the ISs for  -values in 

the upper part of the QHP (see Figure 5). 

 

Figure 18 Hall resistance (upper panel) and longitudinal resistance on logarithmic 

(middle panel) and linear scale (lower panel) versus ASDC   for a modulated sample 

(    ,       ) at temperature        . Joule heating, collision broadening, and 

spatial averaging are considered. 

At lower lattice temperature also this modulation model leads to convergence problems of the 

Newton-Raphson iteration [40]. At         the QHP, at 6.0         , extends to lower  -

values than at        , due to the existence of ISs near the sample edges. In the low-  range 

6.0         , where only these edge-near ISs exist, the behavior of the         -curves is 

similar to those in the unmodulated case (Figure 17): for small  ,          first decreases with 

increasing  , as long as Joule heating is ineffective, and then suddenly increases at larger   

eventually with a discontinuous breakdown of the quantized state, which leads to the mentioned 

convergence problems. Only close to the high-  edge of the QHP, for 6.90T       T, a 

continuous increase in          from a quantized situation at low   to a dissipative situation at high 

  could be calculated (see figure 9 of [40]). In the quantized regime, the interesting structures in 

the         -curves occur for  -values, for which the current flows through different ISs located 

close to a relative extremum of the electron density profile       . Then increasing current 
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strength   may change the current distribution among these stripes and change their shapes, and 

may even force them to merge to a single incompressible region (see figures 9 and 10 of the 

article [40]). 

If for a QHP the number of available ISs changes with changing magnetic field, the structure of 

the corresponding         -curves may also change. An example is given in Figure 19 for the 

modulation model of Eq.(13) with      and      . At lattice temperature       the (   )-

QHP extends from        to       . For      T the current density is concentrated on two 

edge-near stripes, which may become incompressible and carry the current dissipationless at 

lower temperatures. In the low-  region of the QHP, for 6.0T       , where six ISs exist, a 

more or less continuous breakdown of the quantized situation is observed, similar to that in an 

unmodulated sample. In the interval 6.4T       , where number and position of the possible 

ISs change, the logarithmic plot of          indicates several discontinuities and convergence 

problems of the Newton-Raphson iteration. At the high-  end of the QHP, for       , one 

observes again a continuous increase of          from a quantized state at very low   to dissipative 

states at larger  . 

 

Figure 19 Hall resistance (upper panel) and longitudinal resistance on logarithmic 

(middle panel) and linear scale (lower panel) as a function of the ASDC for the 

modulated model with      and       at lattice temperature      , with Joule 

heating (     ) and spatial averaging (    ). 

4.5 Dependence of Current Distribution on Lattice Temperature and Joule Heating 

The distribution of the imposed current among the available incompressible stripes depends 

sensitively on several parameters, such as lattice temperature   , strength   of the current, and 

the effectiveness of Joule heating, modeled by the parameter  . The current density       in ISs is 

proportional to the gradient of the Hall potential, and its spatial distribution is easily read off from 

the position dependence of the normalized Hall potential                 , where      
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            . Since in the absence of imposed current, our model has the inversion symmetry  

              , the inversion of the current direction leads to                  , and in the 

linear response limit of weak imposed current,    , the symmetry               , and 

consequently                     , must hold. In the following we show, how        

changes with the above mentioned parameters. 

Figure 20 shows        for several values of   and two values of the magnetic field at lattice 

temperature     K. In the upper panels Joule heating is neglected,    , and in the lower 

panels it is assumed to be weak,      . The upper panels show that with increasing   the 

symmetry                  is rapidly destroyed [46]. For larger  , most of the imposed 

current, which for small   is more or less homogeneously distributed over the available stripes 

with       , flows through a single IS, which is located in the deepest minimum of the self-

consistent effective potential and has an intrinsic Hall current in the direction of  . This is in 

agreement with the results of Figures 9 and 10. But these results are drastically changed due to 

Joule heating, which turns out to be important at this relatively high lattice temperature of 

     . The lower panels of Figure 20 show that, due to Joule heating, for        , i.e., closely 

below the high-  edge of the (   )-QHP, the imposed current is nearly equally distributed over 

the available stripes with       , indicating a higher effective electron temperature than   . For 

      near the low-  edge of the plateau, Joule heating leads to a leaking of the imposed 

current out of the ISs near the sample edges into the bulk, and the finite slope of        in the 

bulk region indicates the current-induced breakdown of the QHE. 

 

Figure 20 Position dependence of the normalized Hall potential in Hall bars with 

modulated donor charge density, Eq.(13) with      and       (left panels) and 

       (right panels). Joule heating is neglected (   ) in the upper panels and 

weak (     ) in the lower panels. Solid lines refer to        , dashed lines to 

    , for different currents   as indicated.      ,      ,     . 
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The results of Figure 20 show that Joule heating counteracts the current-induced asymmetry of 

current distribution and Hall potential. Since the longitudinal conductivity in the ISs, and therefore 

the dissipation, becomes smaller with decreasing temperature, we expect that with decreasing    

the effect of Joule heating becomes less important. This is indeed shown by Figure 21, which 

considers Joule heating with      , which in principle is more efficient than      . The results 

for        (upper panels) are very similar to those of Figure 20 for       and        : due to 

the Joule heating, the current-induced asymmetry is largely suppressed, the Hall potential profiles 

are nearly independent of the strength of the imposed current and close to the linear response 

limit. For         (lowest panels) and       (medium panels), on the other hand, the imposed 

current leads to strong asymmetries, which do, however, not evolve in a continuous manner with 

increasing  . For          A most of the imposed current flows through the second IS (from the 

left side), similar to the results of Figure 10 (where      ) for        , and of Figure 20 for 

      and    . For stronger imposed current,        A, most of the current flows, to similar 

amounts, through this and the next but one IS to the right (in which the intrinsic current has the 

same direction). Such splitting of the increasing ASDC into essentially two parts has also been 

found in figures 8 and 10 of [40], in both cases for        . 

 

Figure 21 Normalized Hall potential as in Figure 20, but for Joule heating with      , 

    T, and lattice temperatures    as indicated. 

It should be mentioned that the data of Figure 21 were obtained by a procedure, in which 

magnetic field and imposed current are introduced at high temperature,       , and then the 

temperature is lowered stepwise, and in each step self-consistency of the effective potential, 

electrochemical potential, electron density, position-dependent conductivity tensor, current 

density and local electron temperature is obtained by iteration. For      and        A, we 
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obtained convergence down to temperatures      . An alternative procedure is to start with 

the equilibrium state with an applied magnetic field at low temperature, and then to increase the 

imposed current stepwise. Again self-consistency must be achieved at each step. For      and 

    , this procedure converged for         A. 

4.6 B-dependence of the Current Distribution 

Since at low temperatures and for magnetic field values within the (   )-QHP the current is 

carried by incompressible stripes, and since their position changes with   (see Figure 5), we expect 

that the spatial distribution of the ASDC changes strongly with changing magnetic field  . A survey 

over the  -dependence of the current density is given in Figure 22. To keep things simple, not the 

current density is shown, but the normalized Hall potential                              

       , so that finite current density is indicated by finite slope of       . Since        increases, 

for each value of   and of  , from           to         , in Figure 22 results for neighboring 

 -values are shifted by one. Since in thermal equilibrium,    , the models have inversion 

symmetry,               , the current density in the linear response limit has the same 

symmetry,             , and          increases at    by the same amount as at  . This 

symmetry is rapidly destroyed with increasing ASDC. 

 

Figure 22 Normalized Hall potentials for the two modulation models with     : left 

panel for      , right panel for       . The colors indicate the linear response 

results (black) and the results for three finite values of  , given in  A. The results for 

adjacent  -values are vertically shifted by one;      ,      ,      ,     . 

Broken lines indicate states with poor quantization,         
     ⁄ . 

Figure 22 shows, for lattice temperature       and the indicated values of the ASDC, how the 

normalized Hall potential        and thus the current distribution changes as the magnetic field 

sweeps through the (   )-QHP. The left panel refers to the model of Figure 5 with      , the 
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right panel refers to the model with       . In order to obtain the data, first the equilibrium 

state at       and the required  -value are calculated, and then the ASDC is increased stepwise. 

Only relatively small ASDCs (    A) are considered to avoid convergence problems. For the 

indicated  -values, calculations up to higher  -values are performed and the resulting resistance 

values are calculated. The results for        are shown in Figure 19. If we require as criterion 

for the IQHE         
       , in the left panel of Figure 22 this is satisfied for       A only in 

the interval     T       . For       A and        and       , this criterion is not 

satisfied and the corresponding results are indicated by broken lines. For the right panel, similar 

calculations show that the criterion for       A is not satisfied for       . For       , it is 

not satisfied for any value of  , but for       A, it is satisfied for       . 

5. Summary and Discussion 

In this article, a theory with numerical calculations is presented, which is able to explain many 

experimental results obtained on narrow Hall bars in the situation of the integer quantum Hall 

effect (IQHE) and its breakdown enforced by strong applied source-drain-currents (ASDCs). In 

order to simplify the calculations, a 2DES was considered in a Hall bar with translation-invariance 

in  -direction and lateral confinement in  -direction. Spin-splitting was neglected and the 

Coulomb interaction between electrons was considered in a Hartree-like approximation, 

neglecting exchange and correlation effects. We will comment on these approximations below. 

5.1 Thermal Equilibrium 

The basic ingredient of the theory is the peculiar screening behavior of a 2DES in strong 

perpendicular magnetic fields at low temperatures, which is approximated by the interaction of an 

electron with the electrostatic field generated by the total density of the 2DES. If the spatial 

variation in the resulting screened confinement potential      is slow on the scale of the magnetic 

length   , this Hartree approximation can be simplified to the Thomas-Fermi approximation, in 

which the Landau quantization leads to a position-dependent energy-band-structure of the type 

                     . The corresponding thermodynamic density of states (TDOS) exhibits, 

at fixed position  , sharp maxima of the energy-dependence at the energy-eigenvalues       and 

it is very small in-between these values. Its collision broadening should be calculated consistently 

with the conductivity tensor, e.g., in the self-consistent Born approximation [29, 34] or the simpler 

Gaussian approximation [37] considered here. 

If the average electron density is fixed and sufficiently large, self-consistent calculation of 

electron density        and screened confinement potential      leads to alternating compressible 

and incompressible stripes. In the compressible stripes, one of the energy bands is “pinned” to the 

spatially constant electrochemical potential    (        
      ), so that at sufficiently low 

temperatures (and small collision broadening) the band energy       is nearly constant, whereas 

the electron density varies (compare Figure 3). In the incompressible stripes (ISs), located between 

two compressible stripes, in which neighboring Landau bands are pinned to   , the electron 

density        is spatially constant, because a fixed number of Landau bands with energies 

       
  is occupied [25, 26]. The number of ISs, which can develop at sufficiently low 

temperatures, depends on the magnetic field and on the confinement potential, which in the 
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present context are determined by the position-dependence of the donor density. Figure 6 shows 

an example with six ISs. 

5.2 Stationary, Dissipative Currents 

To describe the response of such a system to an ASDC, two basic assumptions were made. The 

first assumption is that a stationary non-equilibrium state carrying an imposed, dissipative current, 

can be treated as a state in local equilibrium, i.e. with position-dependent thermodynamic 

quantities, like energy eigenvalues, temperature, and electrochemical potential, which satisfy 

locally the same thermodynamic relations as in thermodynamic equilibrium. The second 

assumption is a local, linear relation (Ohm’s law) between the density       ̂        of the ASDC 

and the gradient of the electrochemical potential,              , as “driving electric field”. The 

position-dependent conductivity tensor  ̂    should depend on the local thermodynamic variables 

in just the same way as it would in a homogeneous equilibrium system. The desired solution 

should satisfy both assumptions self-consistently. Since an ASDC generates a finite current density 

in the sample, this leads to a position-dependent electrochemical potential and, as a consequence, 

to a dependence of electron density, confinement potential, and conductivity tensor on the ASDC. 

Because of Joule heating, also a position-dependent increase in the electron temperature        

over the constant lattice temperature    has to be expected. 

If the ASDC is not too large, one may neglect the heating effect and put in the considered stripe 

geometry          . The calculations with this approximation [28, 29, 33] could already explain 

the physical basis of many of the experimental results [12]. They showed, firstly, that at 

sufficiently low temperatures in certain magnetic field intervals, i.e., the quantum Hall plateaus 

(QHPs), incompressible stripes exist, in which the filling factor assumes an integer value,       , 

and in which longitudinal and Hall resistivity assume the quantized free-electron values, because 

in the ISs no quasi-elastic scattering and, therefore, no dissipation is possible. Secondly, they 

showed that, with decreasing temperature, the ASDC becomes increasingly confined to these 

developing ISs (as is also shown in Figures 9 and 10), thereby minimizing the entropy production, 

so that the quantization of the global resistances,         and            
  , is approached 

with exponentially small deviations. Thus, the dissipation-less current in the IQHE is carried by 

states far below the local value of the electrochemical potential. 

As discussed previously [27], confinement of the applied current to incompressible stripes, 

which occupy only a small fraction of the sample width, can explain several astonishing 

experimental observations, which we will not discuss in detail, e.g., the frequency of 

magnetoplasmons in special, narrow Hall bars [48], or the avalanche-like position-dependence of 

the breakdown of the IQHE in Hall bars, into which a supercritical current is injected [22-24], or 

the breakdown of the IQHE caused by quasi-elastic inter-Landau-level scattering (QUILLS) [47], 

mentioned earlier. 

Joule heating becomes more important if the ASDC becomes larger. One example is the 

current-induced asymmetry of the spatial distribution of the ASDC. With increasing current 

strength, the ISs, in which the intrinsic Hall-current has the same direction as the ASDC, become 

wider and contribute more to the total current than the ISs, in which the intrinsic current has the 

opposite direction. This asymmetry effect, which becomes more effective with decreasing 

temperature (see Figures 9, 10 and 11), has been observed [11] and investigated [39] 
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experimentally, and first calculated [28] and explained [38] without considering Joule heating. 

However, at larger currents, when Joule heating becomes more important, it may reduce the 

asymmetry and, eventually, lead to the breakdown of the IQHE (see Figures 12, 13 and 20) [43]. 

The current-induced, continuous breakdown of the IQHE, calculated for the low-  part of the 

(   )-QHP, where only ISs near the sample edge e ist (“edge-dominated” region), is in good 

qualitative agreement with the experimental finding: for larger   the breakdown happens at a 

larger critical current       , and in the resistive regime          the derivative of the function 

         decreases with increasing   (see Figures 17, 18 and 19 and figure 3 of of the experimental 

study [39]). For the high-  region of this QHP the situation is different. Experimentally, one finds 

under the conditions of the IQHE, a current distribution over a wide part of the sample (“bulk-

dominated” region) and a critical current       , which decreases with increasing  . In the resistive 

regime         , the derivatives of the measured         -curves increase with increasing   and 

are much larger than the corresponding slopes in the edge-dominated regime. The corresponding 

calculations for samples with homogeneous donor charge did not converge (Figure 17). The 

calculation for a modulated donor charge-density, which leads to a        with two maxima and a 

minimum in the center, yields also a critical       , which decreases with increasing   but with 

much smaller derivatives of the         -curves than in the low-  part of the QHP (see Figure 18). 

Other modulations of donor and electron density, which were considered to simulate a bulk-

dominated behavior, could also not reproduce the experimental findings (see Figure 19). However, 

it seems that the details of the current-induced breakdown of the IQHE in the “bulk-dominated” 

regime depend strongly on the spatial variations of the electron density in the region near its 

maxima. 

5.3 Some Final Remarks 

In order to keep the calculations manageable and approximations reliable, we considered a 

2DES with translation-invariance in one direction. This makes, of course, a quantitative agreement 

of the calculated results with experiments on a Hall bar with source and drain contacts practically 

impossible, but may yield a reasonable approximation of the behavior of a long sample far from 

these contacts. Due to the lateral confinement, the electron density in the Hall bar will change 

with position, and in different parts of the sample, a different number of Landau levels will be 

occupied. If, in a homogeneous perpendicular magnetic field, somewhere in the sample several 

Landau levels are occupied and the collision broadening of the Landau levels is not too large, the 

peculiar screening properties of the system at low temperatures will separate the sample into 

compressible regions, in which a single Landau level is pinned to the electrochemical potential, 

and incompressible regions between two neighboring compressible regions, in which adjacent 

energy levels are pinned. Of course, in real Hall bars, strong magnetic fields lead to spin-splitting of 

the Landau energies. It is well known that, in GaAs(AlGa)As-heterostructures, the electron-

exchange interaction leads to a large exchange-enhancement of the spin-splitting [34]. In a naive 

Hartree-Fock approximation, the obtained spin-splitting is unrealistically large [34] and the 

Hartree-type screening is partly destroyed [35]. To get reasonable results for spin splitting and 

screening, a much more ambitious treatment of the many-body Coulomb interaction, e.g., the 

self-consistent Hartree-Fock approximation, is necessary [34]. This will also lead to similar 

screening results as the Thomas-Fermi approximation [36]; however, with compressible stripes, in 
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which Landau energies with the same spin-direction are pinned to the electrochemical potential, 

and ISs, which are spin-polarized if their integer filling factor        is odd, and not spin-

polarized if   is even. 

The experimental results in the bulk-dominated regime indicate spatial fluctuations of the 

electron density near its maxima, perhaps generated by fluctuations of the donor distribution 

generating the confinement potential. These fluctuations certainly destroy the translation-

invariance but will give rise to a structure of alternating compressible and incompressible regions. 

In the compressible regions, the current-driving electric field is totally screened, whereas in the 

incompressible regions dissipation-less Hall currents can flow. In order to understand the IQHE, 

one needs to assume an incompressible region between current source and drain, which 

transports the total ASDC and has everywhere the same integer value of the local filling factor. 

This incompressible region may be connected, perhaps with enclosed compressible islands, or 

disconnected like parallel ISs. 

An interesting aspect of the presented theory is that it is very plausible for the dissipative high-

temperature regime, where it essentially reproduces the well-known Drude results, and that it 

needs no other modification as a reasonable treatment of screening effects to explain the IQHE. 

There is no localization assumptions or similar hypothesis required. 

There remain, of course, some interesting questions. Is it possible to repeat the calculations in 

the self-consistent Hartree-Fock approximation? Some results based on a local parameterization 

of the exchange potential have been published [49, 50]. Can one do similar calculations for a 

rectangular sample with source and drain contacts? What are the consequences of screening 

effects for the fractional QHE? 

There are also some questions, which arise from the calculations. For a sufficiently large ASDC, 

the calculated temperature-dependence of the longitudinal resistance shows discontinuities, 

indicating hysteretic discontinuous transitions between resistive “high-temperature” states and 

states showing the IQHE (Figures 15 and 16). Is it possible to verify this situation experimentally? 

Usually the scanning-force-microscope experiments are carried out at fixed temperature. Perhaps 

one can find interesting behavior as a function of the current strength, while keeping the magnetic 

field and (sufficiently low) temperature fixed. This would probably require to measure longitudinal 

and Hall resistance very precisely. 

Appendix A. Mathematical Details 

The model assumptions of metal plates in the halfplanes     and       and of a charge 

density          in the stripe        allow to express the electrostatic potential       , 

which has to satisfy, in regions without charges, the Laplace equation, in terms of this charge 

density and the constant potential values           and           on the metal gates at     

and    , respectively. To this end,               is written for     as imaginary part of a 

holomorphic function of       , which automatically satisfies the Laplace equation. To satisfy 

the boundary conditions for    , one writes the potential                        as the sum 

of two term, where                , with 

          
     

 
    
 

 
 √          (27) 
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is determined by the constant values            and            on the metal gates at     

and    , respectively, and         is determined by the charge densities in the stripe    , 

     . 

Since      =            and                , and the derivative           is purely 

imaginary for      ,    is not affected by the requirement of electrostatics, that for       

  
  

  
           

  

  
                  (28) 

must hold, where    and    are the dielectric constants of the half-spaces     and    , 

respectively. Anticipating 
  

  
           

  

  
         and defining                  

   , the potential generated by the charge density in the stripe,                , is obtained 

from a holomorphic function satisfying 

  
   

  
             if |       

   

  
             |     (29)

 These requirements are satisfied by [26, 28] 
   

  
    

 

 √     
∫   
 

  

√     

   
       (30) 

If      in Eq.(30) is replaced by a constant   , the  -integral can be carried out analytically, with 

the result                √      . As a consequence, a constant donor density          in 

the stripe    ,       generates an electrostatic potential       
      √ 

     in       

and       
     for       (up to an irrelevant constant, which is taken to vanish). With 

            and            , this leads to the donor-produced potential energy 

                 √   
            

        (31) 

of an electron in the stripe [26, 28]. If       is not constant,       must be calculated numerically. 

In the stripe       the potential       
            

   can be calculated from Eq.(30) as 

       
 

 
∫   
 

  
              (32) 

with the kernel 

          
√                    

      
  (33) 

With                             equations (32) and (33) allow to calculate the 

electrostatic potential created by the charge densities of donors and electrons. On the other hand, 

the position dependence of the electron density in thermal equilibrium is determined by the 

effective electrostatic potential. Thus we have to calculate        and       self-consistently. 

The presence of the metal gates requires, according to Eq.(29),                         

if      , that the potential created by the charges in the Hall bar is constant on the metal plates. 

On the other hand, this potential induces charge densities         on the metal plates, according 

to 
   

  
         

   

  
         

  

 
                    (34)

 

 

The total induced charge on the right gate,    ∫   
 

 
       , follows from Eq.(30), with 

  √              √     , as 

    ∫   
 

 

 

 
∫   
 

  

√     

     √     
     

  
 

 
∫   
 

  

     (
 

 
 arcsin

 

 
)   

 

 
∫   
 

  

     arctan√
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The corresponding result    for the left gate is obtained from Eq.(35) by replacing   by    in the 

arguments of the        and of the square root. Thus, the sum of the induced charges,       

 ∫    
 

  
   , compensates the free charges, and their difference vanishes, if the charge density in 

the Hall bar is symmetric,            [28]. 
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