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Abstract 

Oxidative stress in cerebral ischemia/reperfusion injury (CIRI) involves reactive oxygen and 

nitrogen species (ROS and RNS). Despite efficient antioxidant pathways in the brain, hypoxia 

triggers the production of oxygen free radicals and downregulates ATP, which leads to 
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oxidative stress. Sources of free radicals during CIRI include Ca2+-dependent enzymes, 

phospholipid degradation and mitochondrial enlargement. Upon reperfusion, the abrupt 

increase of oxygen triggers a massive radical production via enzymes like xantin oxidase (XO), 

phospholipase A2 (PLA2) and oxide synthases (OS). These enzymes play an essential role in 

neuronal damage by excitotoxicity, lipoperoxidation, nitrosylation, inflammation and 

programmed cell death (PCD). Endothelial nitric oxide synthase (eNOS) decreases as 

compared to neuronal nitric oxide synthase (nNOS). This is associated with neuronal damage, 

endothelial inflammation, apoptosis and oxidative stress. Strategies promoting activation of 

eNOS while inhibiting nNOS could offer neuroprotective benefits in CIRI. Understanding and 

targeting these pathways could mitigate brain damage in ischemia/reperfusion events. 

Clinically, tissue plasminogen activator (t-PA) has been shown to restore cerebral blood flow. 

However, serious side effects have been described, including hemorrhagic transformation. 

Different treatments are currently under investigation to avoid I/R injury. Baicalin has been 

reported as a potential agent that could improve t-PA adverse effects, which have to do with 

peroxynitrite synthesis and matrix metalloproteinase (MMP) expression. In this review, CIRI 

and interventions in oxidative stress are addressed. Special attention is paid to efficient 

antioxidant mechanisms in the brain and the production of free radicals, especially nNOS-

derived nitric oxide (NO). The primary purpose is to describe accessible radical pathways with 

the activity of Ca2+-dependent oxidative enzymes, leading to membrane phospholipids and 

mitochondrial breakdown.  
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Acute stroke, often referred to as cerebrovascular accident, is one of the leading causes of 

mortality and disability worldwide. Stroke has been categorized into two main types: Ischemic and 

Hemorrhagic. Ischemic type is responsible for 85% of the cases [1, 2]. Restoration of blood flow to 

previously ischemic tissues leads to the paradoxical phenomenon known as Ischemia/Reperfusion 

Injury (I/RI). Pathophysiology and damaging mechanisms in cerebral Ischemia/Reperfusion injury 

(CIRI) have been described in the literature. These include but are not limited to energetic 

metabolism impairment, cellular acidosis, synthesis of replicating excitotoxic amino acids, cellular 

calcium homeostasis, free radical production, and apoptotic gene activation [3].  

Although there are efficient antioxidant mechanisms in the brain, these mechanisms are 

overcome under excessive production of free radicals, and oxidative stress is established [4, 5]. Both 

oxygen free radicals (OFR) and reactive nitrogen species (RNS) are vital mediators of 

ischemia/reperfusion (I/R) injury. Their primary damaging mechanism is oxidative injury to various 

biological molecules, interfering with their function [6]. Irreversible injury is produced through 

mitochondrial dysfunction and failure of energy metabolism [3]. Oxygen free radicals involve 

superoxide anion [O2
-], peroxide [O2

-2], hydroxyl radical [·OH] and hydrogen peroxide [H2O2]. They 

all are collectively known as reactive oxygen species (ROS). ROS and RNS are reactive oxygen and 

nitrogen species (RONS) [7]. 
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During CIRI, calcium-dependent oxidative enzymes, membrane, and mitochondria phospholipid 

degradation are the primary sources of free radicals [8]. While injury resulting from 

Ischemia/Reperfusion can alter protective mechanisms such as glutathione, coenzyme Q10, 

superoxide dismutase, and glutathione peroxidase. Thus exacerbating the production of ROS [9]. 

Free radical production begins early in ischemia and increases during reperfusion [8]. Upon 

reperfusion, the sudden rise in oxygen levels is a substrate for several previously activated oxidative 

enzymes. Some of the most important are Xanthine Oxidase (XO), phospholipase A2 (PLPA2) and 

neuronal nitric oxide synthase (nNOS). Xanthine Oxidase plays a key role in ROS production, such as 

Superoxide Anion (O2
–) and Hydrogen Peroxide (H2O2). Phospholipase A2 releases arachidonic acid 

during membrane phospholipid degradation, which can further increase the production of ROS and 

lipid second messengers (eicosanoids) [9]. The latter are active promoters of inflammation through 

lipoxygenase and cyclooxygenase pathways, causing endothelial injury and increasing blood-brain 

barrier (BBB) permeability through lipid and oxidized protein reactivity [3, 10]. Neuronal nitric oxide 

synthase produces nitric oxide (NO), which, depending on the oxidative environment, can lead to 

NO·, nitrogen dioxide (NO2) and peroxynitrite (ONOO-) [11]. Within the mitochondria, hypoxia 

increases O2 and ONOO- synthesis, mostly in respiratory complex III and IV [12, 13]. During ischemic 

conditions, ATP levels are insufficient to maintain cellular functions. This triggers H/Na+ exchangers, 

which pump hydrogen into the extracellular space, further increasing ROS (Figure 1) [9].  

 

Figure 1 Roles of Xanthine Oxidase, phospholipase A2, and neuronal nitric oxide 

synthase in Cerebral Ischemia/Hypoxia leading to Neuroinflammation. ROS, Reactive 

Oxygen Species; NO, Nitric Oxide; nNOS, neuronal Nitric Oxide Synthase; O2, Oxygen; 

ATP, Adenosine Triphosphate; Na, Sodium; H, Hydrogen; XO, Xanthine Oxidase; PLPA2, 

Phospholipase A2; O2
-, Superoxid Ion; H2O2, Hydrogen Peroxide; KWFHWR; NO2, 

nitrogen dioxide; ONOO-, peroxynitrite; BBB, blood-brain barrier. 

Nitric oxide (NO) is a gaseous molecule that can be present either as a nitrogen-free radical or as 

a nitrous ion, depending on the cell redox status. This molecule can be produced by three different 
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nitric oxide synthases (NOS). And three isoforms have been described and cloned: neural or brain 

NOS (nNOS/bNOS; type 1), endothelial NOS (eNOS, type 3), and inducible NOS (iNOS, type 2) [7]. All 

three NOS isoenzymes use nicotinamide adenine dinucleotide phosphate (NADPH) and molecular 

oxygen as substrates. Neuronal and endothelial NOS’s are constitutively expressed and their activity 

is Ca2+/calmodulin dependent [9, 10]. A series of complex pathophysiological events result from CIRI. 

These include but are not limited to a burst in ROS, Ca2+ overload and a disrupted mitochondrial 

architecture. Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by 

autophosphorylation and regulates various physiological functions. Synthesis of neurotransmitters 

and current membranes are just some of them. Calcium excess results from a decline in ATP 

synthesis during cerebral ischemia and hypoxia. Oxygen influx, upon reperfusion, restores aerobic 

ATP generation, fuels ROS production, and removes hydrogen ions from the extracellular space. 

Excitotoxicity and cerebral edema are promoted by Ca2+ influx. Furthermore, Ca2+ excess is absorbed 

by mitochondria. This phenomenon develops the mitochondrial permeability transition pore 

(mPTP), which triggers cell death pathways (Figure 2) [13-15]. Nitric oxide plays a key role in different 

physiological processes. Vascular tone regulation, immunomodulation and neurotransmission are 

just some of these processes [14, 15]. Nitric oxide is less reactive than most of the ROS. However, 

the NO and superoxide anion (O2
-) reaction leads to ONOO- a potent lipoperoxidant and protein 

nitrosylating agent [16].  

 

Figure 2 Oxidative stress in cerebral ischaemia/reperfusion. On reperfusion, abrupt 

increase of oxygen triggers a massive radical production. The nNOS-derived NO 

overproduction is associated with excitotoxicity, neural apoptosis, and oxidative stress. 

The reaction between NO and superoxide anion (O2
-) leads to peroxynitrite (ONOO-), a 

potent lipoperoxidant and protein nitrosylating agent. ROS, Reactive Oxygen Species; NO, 

Nitric Oxide; eNO, endothelial Nitric Oxide Synthase; nNOS, neuronal Nitric Oxide 

Synthase; iNO inducible Nitric Oxide Synthase; O2, Oxygen; ATP, Adenosine Triphosphate; 

Ca+, Calcium; Na, Sodium; H, Hydrogen; Fe+, iron; NADPH, Nicotinamide Adenine 

Dinucleotide Phosphate; XO, Xanthine Oxidase; PLPA2, Phospholipase A2; AA, 

Araquidonic Acid; O2
-, Superoxide Ion; H2O2, Hydrogen Peroxide; GMPc, Cyclic Guanosine 

Monophosphate. 
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Nitric oxide is well known for its capacity to stimulate cGMP production when interacting with 

the ferrous ion of the soluble guanylate cyclase hem group. However, some of the effects do not rely 

on cGMP activity. This is the case of lipid peroxidation, oxidative and protein nitration [14]. 

Nitrosylation involves covalently adding a nitrogen monoxide (NO) group into an organic molecule 

without affecting its charge. Therefore, different nitroso groups are categorized as C-nitroso, N-

nitroso, O-nitroso, or S-nitroso compounds. The most common reaction is S-nitrosylation between 

cysteine thiol groups facilitated by the interaction of sulfur and NO. Nitration involves introducing a 

nitro group (NO2) into proteins, particularly tyrosine residues, which results in 3-nitrotyrosine. This 

specific protein nitration uncovers the disturbance of NO signaling towards nitro-oxidative stress 

[17]. Free radical peroxidation of polyunsaturated fatty acids (lipid peroxidation), such as linoleic 

acid and arachidonic acid, is associated with a form of programmed cell death (PCD) known as 

“ferroptosis”. This PCD occurs within the first hour of Ischemia due to high iron levels. And it is 

considered one of the various causes of cell injury/death [18]. 

The role of NO in CIRI has been widely studied since it was first described in the 1990s [15]. 

However, contradictory evidence has been reported regarding its protective or detrimental effects 

on CIRI. Evidence suggests that NO effect may vary depending on concentration, region, source, and 

medium [19]. Under normal conditions, low NO concentrations are maintained through the eNOS 

pathway. The primary purpose is to regulate blood flow and protect the vascular endothelium and 

brain parenchyma from inflammatory, procoagulant, and oxidative stimuli [14, 15]. However, during 

I/RI, eNOS activity decreases compared to nNOS [20]. Animal models of CIRI have shown that eNOS 

downregulation is associated with increased brain damage, endothelial inflammatory phenotype, 

oxidative stress, and reduced FSC [21-23]. Meanwhile, nNOS has a significant role in cell damage. 

This isoenzyme's (nNOS) activity upregulates once Ischemia is established and during the first hour 

post-reperfusion [20, 22]. The nNOS-derived NO overproduction is associated with excitotoxicity, 

neural apoptosis, and oxidative stress [24]. Right after reperfusion, hydrogen excess in extracellular 

space moves back into the cell, carrying calcium (Ca+) ions. While the mitochondria regulate calcium 

levels, massive influx results in organelle swelling, which leads to transient permeability. This 

phenomenon triggers PCD, which leaves unprotected neurons susceptible to injury [25, 26]. 

However, nNOS downregulation has been associated with neuron protection [20, 27-31]. Inducible 

nitric oxide synthases (iNOS) are expressed around 12 hours after reperfusion. Overproduction of 

NO by this enzyme has also been identified as harmful in conditions of cerebral I/R [20, 31-33]. 

Therefore, promoting eNOS activity while blocking nNOS and iNOS could bring neuroprotective 

effects under conditions of CIRI (Figure 1, Figure 2). 

Inflammatory cytokines have also been reported to have a role in Ischemia/reperfusion injury 

(I/RI) [15]. However, their effect can be either neuroprotective or neurotoxic. During CIRI, IL-6 is 

upregulated, which triggers an inflammatory response [3]. Nevertheless, excessive production of 

this cytokine has been demonstrated to alter the BBB, which results in secondary edema and injury 

to brain tissues [34]. A correlation between the production of free radicals and damage to the central 

nervous system has been demonstrated. Therefore, investigations have focused on 

inhibiting/blocking ROS pathways to mitigate oxidative stress in the brain [3]. In Asian Countries, 

Edaravone® is the most common drug utilized in conditions of CIRI. This drug has anti-apoptotic, 

anti-necrotic, and anti-inflammatory properties [3]. Therefore, it improves mitochondrial edema and 

eNOS upregulation and reduces free radical synthesis, stroke size, and delayed neuronal damage [3]. 

The FDA-approved tissue plasminogen activator (tPA) has been described as a clinical treatment for 
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ischemic stroke. It spontaneously restores cerebral blood flow when administered within the first 

4.5 hours [35]. However, delayed tPA treatment can have serious side effects [35, 36]. An increased 

risk of hemorrhagic transformation has been reported when indicated after 4.5 hours of ischemic 

stroke [35]. That is, delayed tPD treatment induces peroxynitrite synthesis, which promotes Matrix 

metalloproteinase (MMPs) activation. MMPs mediate both BBB disruption and hemorrhagic 

transformation [35, 36]. Metalloproteinases are a group of zinc-dependent proteolytic enzymes 

mainly expressed in the brain. Activation of MMPs results in the breakdown of tight junctions (TJs) 

and extracellular matrix (ECM) adjacent to cerebral blood vessels and neurons. This biomolecular 

degradation finally leads to endothelial hyperpermeability and BBB disruption. The peroxynitrate 

effect was confirmed following the use of Baicaline. Hemorrhagic transformation was increased by 

inhibiting MMPs on an ischemic stroke model after delayed tPA treatment [35].  

Specific drugs capable of reducing neuroinflammation have been unsuccessful since irreversible 

mitochondrial damage is the result of a wide range of pathways [13]. That is, Ca2+ overload, 

mitochondrial DNA deficiencies and oxidative stress characterize the pathophysiology of CIRI. 

Antioxidants provide neuroprotective effects by eliminating reactive oxygen species while inhibiting 

lipid peroxidation. Accordingly, future research should be aimed at identifying innovative drugs 

capable of eliminating free radicals and with good synergy with anti-inflammatory medications. 

Natural products known for their antioxidant, anti-inflammatory, and free radical scavenging 

properties in treating cerebrovascular diseases have been investigated in animal models of 

ischemia/reperfusion injury [37]. Ginkgo Biloba significantly reduced nitric oxide levels in an 

experimental muscle ischemia/reperfusion injury model. Since radical scavenging drugs are 

expensive, investigating natural anti-inflammatory drugs becomes an exciting line of research [38]. 

Agents targeting mitochondrial dysfunction and programmed cell death would also be promising 

neuroprotective therapeutic strategies. Another critical element is to continue studying the 

pathophysiological mechanisms involved in acute stroke. Targeting neuroinflammation involved in 

the ischemic cascade has become an attractive therapeutic intervention [39]. However, protective 

strategies are time-dependent when inhibiting acute stroke pathways. Interventions occurring at the 

wrong time could worsen acute stroke pathophysiology. This is the case of the stroke-heart 

syndrome [40]. Treatment interventions rely primarily on thrombolytic intravenous drugs. 

Nevertheless, the time frame between acute ischemic stroke and acute myocardial infarction is 

different. Therefore, studying brain-heart interactions and signal pathways has become another 

important line of investigation.  
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