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Abstract 

Traditional approaches to EEG modelling use the methods of classical physics to reconstruct 

scalp potentials in terms of explicit physical models of cortical neuron ensembles. The 

principal difficulty with such approaches is that the multiplicity of cellular processes, with an 

intricate array of deterministic and random influencing factors, prevents the creation of 

consistent biophysical parameter sets. An original, empirically testable solution has been 

achieved in our previous studies by a radical departure from the deterministic equations of 

classical physics to the probabilistic reasoning of quantum mechanics. This crucial step 

relocates the models of elementary bioelectric sources of EEG signals from the cellular to the 

molecular level where ions are considered as elementary sources of electricity. The rationale 

is that, despite dramatic differences in cellular machineries, statistical factors governed by the 

rules of the central limit theorem produce the EEG waveform as a statistical aggregate of the 

synchronized activity of multiple microscale sources. Based on these innovations, we 

introduce a method of comprehensive computerized analysis of event related potentials 

directly from single trial recordings. This method provides a universal model of single trial ERP 
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components in both frequency and time domains. For the first time, this tool provides 

effective quantification of all significant cognitive components in single trial ERPs and 

represents a viable alternative to the traditional method of averaging. We demonstrate the 

clinical significance of the additional information provided by the new method, using ERP data 

from patients with borderline personality disorder and schizophrenia. Referring to the P300 

as an important objective marker of psychiatric disorders, we show that the new method 

reliably identifies P3a and P3b as the major components of the P3. The diagnostic significance 

of differentiating the P3a and P3b components of P3 is that it provides an objective 

electrophysiological measure that distinguishes borderline personality disorder from 

schizophrenia.  

Keywords  

Single trial ERP; P3a; P3b; borderline personality disorder; schizophrenia; quantum analysis; 

birth and death process; fragmentary decomposition; transient deterministic chaos  

 

1. Introduction 

The recording of human electroencephalogram (EEG) by means of electrodes on the scalp is one 

of the most widely used functional tests of neural function with excellent temporal resolution. The 

exquisite sensitivity of EEG to changes in mental activity has been documented in numerous studies. 

A fundamental criterion used to link electrophysiological and cognitive variables is a concomitant 

variation of neurophysiological and psychological processes. In consequence, the key to 

understanding of the information processing context of EEG signals is provided by detection of the 

changes in ongoing EEG activity which is time-locked to a particular cognitive event. 

The EEG peaking waveform which frequently appears at specific time intervals linked to the 

application of a cognitive stimulus is known as an event-related potential (ERP). 

An overlap of ERP components with the ongoing oscillations of the EEG is a factor which obscures 

the morphology of ERPs. Therefore, signal extraction methods are absolutely essential in ERP 

analyses. 

The most common method is ensemble averaging which consists in summation of a series of EEG 

epochs (trials), each of which is time-locked to the event of interest. The basic assumption of the 

method is that pertinent EEG fragments are the summands of two sources: (i) the ERPs which are 

constant over trials, (ii) random constituents that are not time-locked to the event. The first 

assumption asserts that identical time-locked ERPs are expected in response to repeated cognitive 

events. However, there is a great deal of experimental evidence that this assumption is an 

oversimplification which disregards the fact that ERP composition consists of multiple components, 

each of which is subject to trial-to-trial variability governed by different probabilistic laws. 

The fact that the same event can elicit somewhat different signals has been evident for a few 

decades and is clearly seen from the following general psychophysiological definition of endogenous 

ERP components: “The components must be nonobligatory responses to stimuli. The same physical 

stimulus, presented to the same subjects, sometimes will and sometimes will not elicit the 

component” [1]. 
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Consequently, the conventional ensemble average would not necessarily correspond to any of 

the individual single-trial responses. This means that without an account of stochastic factors, 

ensemble averaging creates ambiguity with respect to the analysis and interpretation of ERPs. An 

account of the diversity of single trial ERPs provides more information related to changes of 

cognitive state in response to the stimulus. 

A lot of effort has been invested in inventing methods of estimating ERPs directly from single 

trials. The difficulty in developing this approach relates to the basic mechanisms that underlie the 

generation of the EEG signal. 

It is generally accepted that EEG signals are distant manifestations of synchronized activities in 

populations of cortical neurons. The processes involved are complex and their interpretation rests 

mainly on an empirical understanding. The development of EEG models has been widely researched 

and, until recently, has been approached using the methods of classical physics [2, 3]. The major 

proposition is that cortical neurons are the elementary microscale sources of the EEG waveforms. 

Such an approach assumes that, in principle, EEG dynamics can be deduced from physical models 

of neuronal ensembles [2]. On these grounds, the membrane potentials produced in some way by 

the cortical neurons appear as the “building blocks”, from which the EEG waveforms are composed. 

In particular, the proposition that EEG waves are constituted primarily by the postsynaptic 

potentials of cortical neurons is widely accepted. 

However, because electrical activity associated with a single neuron is small, it is only possible, 

using scalp electrodes, to detect the integrated activity of many neurons. The creation of a 

corresponding model using the methods of the classical theory of electromagnetism would need to 

be supported by the parameters of all participating neurons. Significant difficulties are created by 

the anatomical complications posed by the multiplicity of cellular elements, along with an 

insufficient knowledge of their morphological details and functional relationships. This leads to an 

intractably large number of degrees of freedom and prevents a unique determination of mass 

effect. Under conditions of such uncertainty no single model of EEG dynamics has yet achieved the 

goal of integrating the wide variety of parameters of separate neurons or neuronal ensembles into 

the dynamics of EEG waveforms. In a review of the state of art, Michael Cohen notes that, 

“surprisingly little is known about how the activity in neural circuits produces the various EEG 

features” [4]. 

A radically different approach to the treatment of mass potentials, the category of signals to 

which the EEG and single trial ERP belong, has been achieved by a departure from the deterministic 

equations of classical physics to the probabilistic formalism of quantum mechanics [5]. The crucial 

step is relocation of the microscale origins of the macroscale potentials from a cellular to a 

molecular level. Instead of the continuous time membrane potentials implemented in previous 

theories, the key role for elementary cortical sources of electricity is attributed to ions, positively 

and negatively charged particles, the size and stochasticity of which conform to quantum mechanics. 

A major outcome supported by the probabilistic formalism of quantum mechanics and the central 

limit theorem is a link between the global scale mass potential and the underlying microscale events 

[5]. 

The quantum theory of mass potentials has been subsequently elaborated in several ways for 

EEG and single trial ERP analyses [6]. A crucial outcome of this novel methodology is its ability to 

create remarkably accurate models of single trial ERPs and effectively disclose the multiplicity of 



OBM Neurobiology 2023; 7(3), doi:10.21926/obm.neurobiol.2303174 
 

Page 4/32 

ERP components. This is particularly important for detection and measurement of positive ERP 

waves of approximately 300 ms peak latency whose average is known as P3 or P300. 

The P3 has been broadly studied in psychiatric disorders and is widely accepted as the most 

important marker of cognitive functions [1]. Conventional utilization of average P3 ignores the 

complex component composition of this component, specifically the P3a and P3b sub-components, 

reflecting contributions of various generators to the ERPs. 

The significant clinical value of additional information provided by single trial ERP analysis and 

identification of the P3a and P3b components has been demonstrated in the study of cortical 

arousal in children and adolescents with functional neurological symptoms [7]. It was shown that 

specific changes of the P3a and P3b amplitudes disclose pathology of the coordination between 

frontal and posterior generators of brain electrical activity. 

The importance of the account of component composition of P3 has been demonstrated in the 

study of single trial auditory ERPs in BPD patients [8]. The P3a, which depends on the circuitry having 

prefrontal connections, was significantly larger than in normal controls and similar in amplitude to 

young adolescents. In addition, the P3a failed to habituate, which suggested a failure of pre-frontally 

mediated inhibitory mechanisms. 

It is widely acknowledged that prefrontal deficiencies are also evident in schizophrenia.  

Both BPD and schizophrenia are disorders of integration [9]. Though the form of disintegration 

in the two conditions differs functionally, the pattern of symptoms can sometimes overlap. For 

example, both may experience hallucinations [10]. Misdiagnosed patients may risk being exposed 

to the wrong treatment.  

The possibility to improve diagnostics using electrophysiological tools is supported by the fact 

that reduction in amplitude of the average P3 from the standard auditory oddball paradigm is one 

of the most replicable biological observations of schizophrenia, present regardless of medication 

status [11].  

A similar abnormality in BPD has been reported in a comparative study of patients with BPD and 

schizophrenia, where the authors report, “The ERP abnormalities found in patients with BPD are 

indistinguishable from those found in patients with schizophrenia” [12]. However, the methodology 

of average ERPs used in the study ignores the complex component composition of P3, specifically 

its P3a and P3b sub-components, reflecting contributions from various generators.  

These facts indicate a need, unfulfilled by traditional methodologies of average ERPs, to enhance 

the comparative analysis of BPD and schizophrenia by reliable identification of the dynamics of 

single trial P3a and P3b as well as the trial-to-trial variability of these components.  

2. Methods and Materials 

2.1 Quantum Analysis 

It is generally assumed that EEGs are distant manifestations of electrical phenomena occurring 

on the microscopic scale, consisting of cortical ensembles of multiple excitable cells immersed in 

interstitial fluid. This activity can be recorded on the surface of the scalp because the tissue that lies 

between the source and the scalp acts as a volume-conductor.  

The elementary sources of the EEG are ions, both positively and negatively charged particles the 

passages of which across membranes are governed by probabilistic rules [13]. 
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The contribution of a single ion to the changes in electrical potential differences between various 

locations in the extracellular space is vanishingly small. This means that measurable changes of the 

extracellular potentials (field potentials) are produced by the mass effects of multiple elementary 

sources [14]. Two requirements must be fulfilled for this integration to occur: a) the cells must be 

closely located and comprise an ensemble with functional connectivity of its elements; (b) the 

activation of the cells must be synchronized or at least closely related in timing. We call such a 

cellular ensemble a local cortical generator (LCG). 

Previous models of elementary sources of EEG waveforms considered the continuous time 

membrane potentials as constituents of scalp potentials. As detailed elsewhere [6], the major 

innovative aspect of the methodology which we call the quantum EEG (QEEG) is that the elementary 

cortical sources of electricity are attributed to ions, positively and negatively charged particles, the 

size and stochasticity of which conform to quantum mechanics. 

QEEG refers to the fact that the interior and exterior of a cell from a LCG, be it a neuron or a glial 

cell, are both varieties of saline solution (water with ions dissolved in it) separated by membranes. 

Considering the membrane as a border, the tissue can be divided into an extracellular and 

intracellular space. To a good approximation, the extracellular space can be considered independent 

of the intracellular space, because its boundaries, the cell membranes, have high resistances 

(several kΩ∙cm2), compared with the resistance of the extracellular space (~200 Ω∙cm). An important 

factor is that, within the range of frequencies of physiological interest (0-1 kHz), the capacitive, 

inductive, magnetic, and propagative effects of bioelectrical phenomena in the extracellular space 

can be neglected [15]. Thus, the extracellular space may be regarded with reasonable accuracy as a 

resistive medium. 

The populations of ions separated by membranes are illustrated by the schematic diagram in 

Figure 1. The whole-colored cloud in the left panel shows the LCG, i.e. a cell ensemble which is 

capable of producing changes in field potentials. 

 

Figure 1 Schematic diagram of LCG and its E and I compartments. 

The ions inside the cells of the LCG are considered as contents of the interior compartment I, 

shown by the circle. The ions from the exterior of the cells composing the LCG are considered as the 

contents of the external compartment E.  

Since the I and E compartments are separated by membranes working as insulators, they are 

shown in the right panel of Figure 1 as isolated, separate sources of electricity, E and I, respectively. 
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The exchange of particles between the compartments is regarded as a birth and death process (BDP). 

An increase of the compartment size by a unit represents birth, .as a decrease by a unit represents 

death. A probabilistic theory of similar transport processes developing in chemical synapses has 

been introduced in the previous papers [16, 17]. We use this theory for introduction of the rules 

which govern the transmembrane ion transport. 

To evaluate the contribution of ions from the E and I compartments to generation of field 

potentials, the reference is made to the potential differences V1 and V2 between the compartments 

and electrical ground shown in the top of the right panel as a small green circle. This element is 

associated with the cortical electrode.  

In fact, it is not the voltages themselves but electric currents flowing in the extracellular space, 

that define the influence of the LCG on field potentials. To a good approximation these currents are 

defined as:  

i1 =  V1/r1 and i2 =  V2/r2. 

Here r1 is the resistance of the extracellular space, while r2 = r1 + rM, where rM is the resistance 

of the membrane. The internal structure of such systems may be almost impossible to delineate 

precisely. The power of the QEEG methodology is that probabilistic methods deal with statistical 

properties and do not demand detailed descriptions of specific circuits. The supporting basis of 

QEEG, which is not particularly concerned with the morphology of the LCG, is the fact that 

rM ≫ r1. 

Accordingly, i1 ≫ i2 , which means that currents produced by the extracellular sources are 

remarkably larger than the currents from intracellular sources. Separating the interior of the cells 

from the extracellular space, membranes prevent the ions located inside the neurons from 

producing measurable changes of the current flow in the extracellular space. In contrast, the 

cumulative effects of the charges of ions released from the cells during synchronized activation of 

cellular ensembles may influence the dynamics of the global scale EEG.  

On these grounds the global scale potential is linked to the net charge of positive and negative 

ions released from LCG cells and existing in the extracellular space. Such an ensemble of ions was 

termed STION (STochastic IONs) in an earlier paper [6]. 

Physically, the aggregate of particles considered as a STION represents a thin cloud of cations 

and anions spread over the outer surfaces of membranes of the cells composing the LCG. 

Functionally, the ensemble of particles composing a STION represents the sum of the primary and 

secondary particle populations, the behavior of which is governed by the following rules.  

Rule 1. During resting conditions, transmembrane ion transport is balanced. The behavior of both 

particle populations develops as simple BDP with constant birth and death rates 

𝜆 = 𝜇 = η σ2.⁄  

Rule 2. After activation at t = t0 by the triggering event the transient behavior of the primary 

particle population develops as a non-homogenous BDP with a constant rate of birth  

λP = η σ2⁄ ,  
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and time-dependent rate of death 

μP
(𝑡) = (t − t0) σ2⁄ .  

Rule 3. After activation at t = t0 by the triggering event, the transient behavior of the secondary 

particle population develops as a non-homogenous death process with a time-dependent rate of 

death 

μS
(𝑡) = (t − t0 + η) σ2⁄ = μP

(t) + λ𝑃.  

Unique tools for reconstruction of the time courses of particle populations predicted by these 

rules are numerical simulations which deal with the number of particles XN(t) composing the net 

charge, and the numbers of particles in the primary and secondary populations, XP(t) and XS(t), 

respectively [6]. The results of a typical simulation [6], reproduced in Figure 2, extend over the time 

interval from -10 to 70 ms with t = 0 corresponding to the instant at which the transient condition 

starts. As an initial condition, an equal size of 50 particles was prescribed for both populations. The 

parameters were σ = 13.3 ms and η = 26.2 ms. 

 

Figure 2 Numerical reconstructions of the temporal evolution of particle populations in 

a typical trial. The resting conditions computed from -10 ms are turned at t = 0 to the 

transient conditions. The blue, red, and black lines in the top panel show the functions 

XP(t), XS(t) and XN(t). The time courses of the underlying transition probabilities are 

shown in the middle and bottom panels. 
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During resting conditions (interval from -10 ms to t = 0) the transport of particles between the 

primary and secondary populations is balanced. A rapid change of the net charge induced by onset 

of the transient condition is due almost entirely to the change of the birth and death rates in the 

primary particle population.  

The size of the primary population is governed by the complex interplay of the birth and death 

transition probabilities. The onset of transient conditions gives rise to both probabilities. Initially, 

from t = 0 to the time instant indicated in the middle panel of Figure 2 by the arrow, the birth 

probability prevails over the death probability. At this stage nearly a tenfold increase of the size of 

the primary population occurs. After the peak, the death probabilities take a progressively larger 

share. As a result, the size of the primary population declines and returns to the initial conditions. 

The effect of the transients in the secondary particle population on the net charge is minor and brief 

compared with the primary population.  

A general picture emerging from quantum analysis is that under resting conditions the STION 

develops as a stationary process. The triggering event induces specific changes of particle 

movements, the summary effects of which determine EEG component waveforms.  

The essential outcome of quantum analysis is a description of the behavior of multi-particle 

systems of the STION with many degrees of freedom in terms of global scale EEG components with 

few “macroscopic” degrees of freedom. The reference is made to the central limit theorem as a tool 

that defines the limiting behavior of ensembles of random variables [18]. A specific aspect of the 

methodology of the QEEG is that the limiting distributions are estimated using both time and 

frequency domain variables [6].  

The time domain solution is given by 

ψ(𝑡) = (𝜎√2𝜋)
−1

[ψP(𝑡) − ψS(𝑡)] (1) 

where, 

ψP(𝑡) = exp[− (𝑡 − 𝜂)2 2𝜎2⁄ ],  

ψS(𝑡) = exp[− (𝑡 + 𝜂)2 2𝜎2⁄ ].  

The equation (1) is consistent with the wave function in a general form of the d'Alembert's 

solution to the wave equation [19]. In this context ψ(t) is the sum of a right traveling wave ψP(t) and 

a left traveling wave ψS(t). A crucial difference is that the d'Alembert's wave function is defined on 

an infinite time scale while ψ(t) is zero at t < 0. In the context of this specific feature the ψ(t) is called 

a half-wave function (HWF). The two terms from which the ψ(t) is composed are considered as 

products of the primary particle population associated with ψP(t) and the secondary particle 

population associated with ψS(t). These functions are illustrated in Figure 3.  
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Figure 3 Given σ = η = 1, the black, blue, and red solid lines show ψ(t), ψP(t), and ψS(t), 

respectively. The dotted lines are Gaussian functions which indicate that ψP(t) and ψS(t) 

are fragments of the two shifted curves of normal distributions.  

2.2 Component Analysis 

There is general agreement that the EEG is a complex signal composed from multiple 

components produced by activation of various cortical processors. ERP components are 

conventionally defined as the peaks which are labelled according to the polarity (N-negative, P-

positive) and the peak latency (L). Thus, N1 (abbreviation of N100) refers to a negative peak with L 

of about 100 ms, and P3 (abbreviation of P300) refers to a positive peak with L of approximately 

300 ms. 

A universal model of single trial ERP component is described by equation 1 [20]. The fact that η 

and σ, defined as the parameters of macroscale HWF, also govern the molecular events creates a 

bridge between the EEG and underlying micro-scale phenomena. Using a model component in the 

form of HWF, the model of an EEG segment with “N” components is given by the following sum of 

weighted HWFs  

h(𝑡) = ∑ zk(𝑡)

𝑁

𝑘=1

(2) 

where zk(𝑡) = g𝑘 ∙ ψ𝑘
(𝑡 − 𝜏𝑘−1). 

The index “k” in this formula labels different HWFs with corresponding σk and ηk parameters. gk 

is the weighting coefficient and τk is the time instant from which the development of the 

corresponding component starts.  

The specifics of the QEEG methodology is that the estimation of the parameters of each term in 

the right-hand side of equation (2) are performed by the method of high resolution fragmentary 

decomposition (HRFD) which consists of two stages: the spectral analysis and parametrization [21, 

22].  
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2.2.1 Spectral Analysis 

The spectral analysis starts from adaptive segmentation. Considering the EEG as a time function 

v(t), the procedure deals with the series of samples 𝑣𝑚 = 𝑣(𝑡𝑚) at regular, discrete time points 

𝑡𝑚 = 𝑚∆,  where Δ is the sampling interval. The segmentation points are estimated as zero-

crossings and points of global and local minima of |v(t)|. By ordering the segmentation points, both 

zero-crossings and minimums, as consecutive time points, the sequence of the segmentation points 

τ0, …, τk, …, τK is formed. The EEG segment between sequential segmentation points is called an 

empirical half wave (EHW). Given a segment of the length Tk = τk-τk-1 between the points τk-1 and τk 

(i = 1, …, K), the EHW is defined as  

w𝑘(𝑡) = {
v(𝑡 + 𝜏𝑘−1)    if    0 ≤ 𝑡 ≤ 𝑇𝑖,

0    otherwise.
 

In the interval from 0 to Ti this function reproduces the EEG fragment between the segmentation 

points τk-1 and τk.  

The frequency domain counterpart of w(t), the complex spectrum, is defined by the exponential 

finite Fourier transform  

𝑊(𝑖𝜔) = W𝐶(𝜔) − i𝑊𝑆(𝜔) = ∫ 𝑤(𝑡)exp(−𝑖ω𝑡)

𝑇

0

𝑑𝑡, (3) 

where ω = 2 πf, f is frequency and i = √-1. Since manipulations with various EHWs are universal, the 

number of EHWs is omitted, 

Because w(t) is an empirical entity, the calculations of such integrals are performed numerically. 

A serious computational problem is that readily available techniques of digital spectral analysis, such 

as the Fast Fourier transform, is devoted to the estimation of the power spectrum. It is not suited 

for short-term spectral decompositions. As an adequate tool the SBF algorithm is employed, a novel 

version of the Filon-type methods that provide maximum precision in the estimation of 

trigonometric integral [23]. The SBF algorithms deals with continuous Fourier spectra instead of the 

discrete spectra utilized by conventional spectral analysis. Of crucial importance here is that dealing 

with EEG segments of different lengths, the SBF algorithm does not demand windowing, zero-

padding or other techniques for reducing the errors produced by the spectral leakage.  

2.2.2 Parametrization 

The choice of time-frequency analysis as a tool for adequate estimation of the EEG model in the 

form of equation 2 has been supported by the finding on an empirical basis of an appropriate 

approximant of the frequency domain images of EHWs in the form of a universal complex spectrum 

𝐺(𝑖𝜔) = 𝑌(𝜔) ∙ exp[−𝑖𝜑(𝜔)], (4) 

where, 

𝑌(𝜔) = exp[− (𝜎𝜔)2 2⁄ ], (5) 
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𝜑(𝜔) = 𝜂𝜔. (6) 

Y(ω) and 𝜑(𝜔) are considered as the models of the amplitude spectrum and the phase function 

of the system associated with HWF. The amplitude spectrum and frequency are normalized to 

express these entities in dimensionless units.  

The normalized amplitude spectrum is defined as 

Y∗(ω) = Y(ω) Y(ω0)⁄ , 

where Y(ω) is the computed amplitude spectrum and ω0 is a sufficiently small value of angular 

frequency selected to satisfy the condition: Y(𝜔0) ≈ Y(0). The red line at the middle panel of Figure 

4 illustrates a typical normalized amplitude spectrum. It was calculated from the EHW depicted at 

the top of the figure. The red line shows the fit of the theoretical amplitude spectrum (5) to the 

empirical Y*(ω). 

 

Figure 4 Top panel: the blue line shows 800 ms segment of a typical EEG, the vertical 

dotted lines delineate the EHW. The red lines in the middle and bottom panels show the 

normalized amplitude spectrum and the phase function calculated from selected EHW. 

The black line in the middle panel shows the Gaussian template at position defined by 

the best fit. The black line in the bottom panel is a regression line which illustrates the 

typical linearity of the phase function in the frequency range from F0 to 1.4∙FC. 

An important factor supporting the fitting procedure is that Y∗(ω) can be considered as the 

frequency response of a low pass filter, the conventional parameter of which is the cut-off frequency 

FC. At this frequency the attenuation of the amplitude spectrum drops by 3 dB, i.e. Y∗(𝜔𝐶) = 1 √2⁄ , 

where ωC = 2 πFC.  
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The cut-off frequency serves as a basis unit, the use of which defines the relative frequency as γ 

= ω/ωC. 

Using the dimensionless amplitude and frequency, the empirical amplitude spectrum is defined 

in relative units as Z(γ) = Y∗(𝜔𝐶γ). The corresponding model is the Gaussian spectrum  

G(𝛾) = exp(−𝛾2). (7) 

Note that Z(𝛾) = G(𝛾) at 𝛾 = 1, the relative frequency which corresponds to f = FC.  

In most cases combining Z(γ) and G(γ) at γ = 1 provides a close agreement between these entities. 

In a systematic manner the comparison is performed more fully by a fitting procedure, the goal of 

which is to find the best match of analytical G(γ) to empirical Z(γ). 

Starting from the frequency F0 = ω0/2π, the accuracy of the fit is evaluated by the value of the 

mean square error between Z(γ) and G(γ). The position of the best fit defines the boundary 

frequency FB. Numerous trials with various EHWs revealed that typically the template from the best 

fit virtually coincides with the amplitude spectrum in the range of standard frequencies from 0 to 1. 

At γ > 1 the errors increase with increases in frequency.  

The larger FB is in comparison with F0, the more accurate the Gaussian model of the amplitude 

spectrum. For assessing goodness of fit, the dimensionless extension ratio ε = FB/FC is used. The fit 

in the middle panel of Figure 4 gives a visual idea of how the FC and FB are related.  

Calculations of σ are followed by the estimation of phase functions. It was found that the initial 

part of the phase function φ(ω) shows consistency with a simple linear model  

φ(ω) = ξω  

where ξ is a parameter. 

Numerous calculated linear fits indicate that deviation from linearity can be neglected over the 

frequency range from 0 to 1.4∙FC. A typical result is illustrated in the bottom panel of Figure 4. Thus, 

the estimation of η is reduced to the calculation of the linear regression line using φ(f) samples from 

f = f0 to f = 1.4∙FC. The slope of the regression line ξ serves as the estimate of the parameter η.  

Given particular wk(t) from equation 2, the estimated σ and η define the corresponding ψk(t) 

term. Using these data, the weighting coefficients are derived from the following interpolation 

conditions separately applied to each pair of EHW and HWF:  

ak ∙ ψk(Pk) = wk(P𝑘), 

where Pk is the peak latency of the kth EHW. Consequently,  

a𝑘 = wk(Pk) ψk(Pk).⁄  

Thus, the peak latencies and amplitudes of the model are equalized to the peak latencies and 

amplitudes of EHW. 

2.2.3 Single Trial Analysis 

Creation of adequate models of EEG segments by the methodology of QEEG is supported by an 

original method of single trial analysis of ERPs [20]. The procedure starts from the extraction of EEG 
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segments time-locked to the target stimuli. Given a particular EEG channel with a digitally stored 

data set, for each of the first 40 target stimuli, standard 2 s EEG segments were extracted, from 1 s 

pre-stimulus to 1 s post-stimulus. The segments were digitally filtered (moving window averaging) 

to remove irrelevant low (<0.5 Hz) and high (>50 Hz) frequency components. For each channel these 

procedures provided a time series with 500 samples v[nT], where n takes values –250,..,0,..,249 (n 

= 0 is the time of the target stimulus onset) and T = 0.004 s.  

The application of the high-resolution fragmentary decomposition (HRFD) [22] provides a model 

of a single trial in the form of equation 2. The parameters σi and ηi of each identified HWF are 

transformed to conventional parameters: Ai = 0.356σi-peak amplitude and L = ti + 1.2ηi - peak latency. 

Physically, 1.2η is the rise time, the time interval during which the component increases from zero 

to its maximum value. This measure becomes available due to the shape estimate (parameter η) 

provided by the HRFD technique. 

An extended system of parameter windows has been developed for identification of 

conventional late ERP components N1(00), P2(00), N2(00), P3a and P3b. Given L - peak latency, A - 

peak amplitude and η - shape constant as the major parameters, the identified HWF is qualified as 

a meaningful ERP component if it satisfies the conditions specified by the following windows:  

Condition 1: L1 ≤ L < L2 (latency window), 

Condition 2: A1 ≤ A < A2 (amplitude window), 

Condition 3: ρ1 ≤ ρ < ρ2. (shape window). 

The L1 and L2 (ms) parameters of the latency windows were as follows: P50 from, -20 to 75, N1 

from, -80 to 120, P2 from, -160 to 220, N2 from, -180 to 235, P3a from, -240 to 299, P3b from, -300 

to 360. The parameters of the shape windows for all components were: ρ1 = 8 ms and ρ2 = 50 ms. 

The A1 and A2 (μV) parameters of the amplitude windows were -45 and -2 for negative and 2 and 45 

for positive components, respectively.  

2.2.4 Averaging Procedures 

Contemporary understanding of endogenous potentials is mostly based on the visual 

examination and quantitative analysis of average ERPs. The traditional method of averaging 

assumes that single trial recordings consist of identical time-locked ERPs and random constituents 

that are not time-locked to the event. However, it is widely accepted that this assumption is an 

oversimplification which discounts the reality that ERP composition is made up of multiple 

components, each of which is subject to trial-to-trial variability which may be governed by different 

factors. Elucidation of the nature of these components requires explicit analysis of various 

ensembles of identified single trial ERP components.  

Our methodology of HRFD identifies ERP components in each single trial and creates a model of 

the single trial ERP in the form of equation 2. This solution provides a basis for a novel method of 

averaging which we call selective component averaging (SCA). The averaging is applied to identified 

HWFs which satisfy conditions 1-3 for the component of interest. The SCA of selected components 

is defined by the sum 

𝑢𝐷(𝑡) =
1

𝑀𝑖
∑ 𝑒𝑖

𝐷(𝑡 − 𝜏𝐷𝑖)

𝑀𝑖

𝑖=1

, (12) 
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where the symbol “D” stands for the name of the component, Mi is the number of selected HWFs 

and τDi is the time instant from which the HWF starts. The sum of models defined by this equation 

is called a synthetic average. For example, synthetic average of the late positive complex consisting 

of the P3a and P3b has the form,  

𝑢𝐿𝑃𝐶(𝑡) =
1

𝑀𝑎
∑ 𝑒𝑖

𝑃3𝑎(𝑡 − 𝜏𝑃3𝑎𝑖)

𝑀𝑎

𝑖=1

+
1

𝑀𝑏
∑ 𝑒𝑖

𝑃3𝑏(𝑡 − 𝜏𝑃3𝑏𝑖)

𝑀𝑏

𝑖=1

, 

where 𝑀𝑎 and 𝑀𝑏 are the numbers of 𝑃3𝑎  and 𝑃3𝑏 components delivered through SCA. 

SCA improves the accuracy of average waveforms because it selects the trials with identified (i.e. 

meaningful) components and ignores trials with missing components. 

To account for missing responses, we introduce a novel parameter called an elicitation rate (ER). 

This parameter takes into account the actual number A of the trials in which the component was 

defined: A = T - M where T is the total number of single trials and M is the number of the trials with 

missing components. The ER is defined as PE = A T⁄ . This parameter is the probability of the 

elicitation of a defined component in a single trial. 

2.3 Subjects 

Three groups of age- and sex-matched subjects have been investigated in this analysis, drawn 

from 2 earlier studies [8, 24]: 

17 unmedicated patients with BPD, 17 patients with schizophrenia and 17 healthy controls. The 

BPD patients (4 males and 13 females; range = 20-44 years; mean age = 31.6) came from an ongoing 

program for the treatment and evaluation of BPD patients. The diagnosis was made by two 

independent raters (psychiatrist and psychologist), according to DSM-III-R criteria in a diagnostic 

interview that included the Diagnostic Interview for Borderline Patients. Patients were free of 

medication for at least 30 days at the time of the study. 

The schizophrenia patients (4 males and 13 females; range = 20-44 years; mean age = 31.6) were 

drawn from a larger sample recruited from hospitals and community centres in Sydney. All 

participants had been diagnosed with schizophrenia for at least 4 years. The diagnosis was made 

through concordance between the case file diagnosis and diagnosis based on CIDI Section G, 

according to DSM-IV criteria [25].  

The control group included 17 matched subjects (4 males and 13 females; mean age = 34.3, sd = 

8.6, range = 20-47 years). 

Exclusion criteria for all groups were a recent history of substance abuse, past history of 

substance dependence, intellectual disability or other neurological disorders including epilepsy and 

head injury [assessed using Section M from the Composite International Diagnostic Interview (CIDI) 

and the Westmead Hospital Clinical Information Base questionnaire (WHCIB)]. Subjects were asked 

to refrain from smoking or drinking caffeine for three hours prior to the recording session. Ethics 

approval was obtained for the original projects from the Western Sydney Area Health Service Ethics 

Committee [8, 24]. Written consent was obtained from all subjects prior to testing in accordance 

with National Health and Medical Research Council guidelines.  
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2.4 Procedure 

Subjects were seated in a sound and light attenuated room. Each subject had their eyes open 

and was instructed to fixate on a colored dot in the center of a screen, in order to minimize eye 

movements. An electrode cap [26] was used to acquire data from Fz, F3, F4, F7, F8, Cz, C3, C4, T3, 

T4, Pz, P3, P4, 01, and 02 scalp sites. Linked earlobes served as the reference. Horizontal eye 

movement potentials were recorded using two electrodes, placed 1 cm lateral to the outer canthus 

of each eye. Vertical eye movement potentials were recorded using two electrodes placed on the 

middle of the supraorbital and infraorbital regions of the left eye. All electrode impedances were 

less than or equal to 5 kΩ. A 32-channel continuous acquisition system with DC amplifiers was 

employed. EEG and EOG channels had a range of ±13.75 mV and a resolution of 0.42 μV.  

ERP data were collected according to a standard auditory "oddball" paradigm. Stereo 

headphones conveyed regular tones of 1000 Hz at an interval of 1.3 seconds to both ears. Eighty-

five percent of these were 1000 Hz tones which the subjects were instructed not to respond to (task 

irrelevant). The other 15% were target (task relevant) tones of 1500 Hz. These high tones (targets) 

were intermixed with the lower (background) tones in a pseudorandom sequence, with the 

constraints that two target tones were never presented in succession, and the number of 

background tones between targets was always an odd number between 1 and 11 inclusive. Total 

tone duration was 60 ms, including a 10 ms rise time and 10 ms fall time.  

The subjects were instructed to respond to target tones by pressing two reaction-time buttons, 

as fast and accurately as possible, with the middle finger of each hand (to counterbalance motor 

effects). Speed and accuracy were emphasized equally in the task instructions. All tones were 

presented at 60 dB above the subject's auditory threshold (determined prior to recording). 

The experiments for each subject consisted of a 4 min session during which the stimuli 

application times were recorded simultaneously and continuously with the 32-channel EEG and 2-

channel electro-oculogram (EOG).  

A low pass filter was applied to the analogue voltages prior to digitization. The cutoff of this filter 

was 50 Hz, with the attenuation being 40 dB per decade above 50 Hz. In addition, a 50 Hz notch 

filter was applied to eliminate 50 Hz AC mains power supply interference. 

Filtered voltages were continuously digitized at 250 Hz and digitally stored with the markers of 

the instants of stimuli applications.  

2.5 Statistical Analyses 

2.5.1 Kolmogorov Smirnov Test 

The procedures of parameter estimation described above define the frequency range of the best 

fit of the theoretical amplitude spectrum to the empirical amplitude spectrum of EHW from F0 to 

FB. Comparison of different fits is enabled by the dimensionless extension ratio ε = FB FC.⁄  Given 

the samples of ε in the form of two different ensembles, 𝓔1 = {𝜀1,
1 , . . , 𝜀𝑛

1, . . , 𝜀𝑁
1 } and 𝓔2 =

{𝜀1,
2 , . . , 𝜀𝑘

2, . . , 𝜀𝐾
2}, the Kolmogorov-Smirnov one and two sample tests are used in order to decide 

whether 𝓔1 and 𝓔2  are produced by the same or different distributions. Each of the data sets 

𝓔1 and 𝓔2 is converted to a cumulative frequency distribution. The test is based on evaluation of 

the maximum vertical deviation D between the cumulative frequency distributions. The null 



OBM Neurobiology 2023; 7(3), doi:10.21926/obm.neurobiol.2303174 
 

Page 16/32 

hypothesis that the two distributions are the same is rejected if the value of D exceeds the critical 

value defined by the tables of D statistics.  

3. Results  

The analysis of various EEG and ERP recordings in both the patient and control groups and the 

results of many numerical experiments provide ample evidence that half-wave function ψ(t), 

emerging as the macroscopic scale effect from synchronized chaotic ion movements on the 

microscopic scale, can be regarded as a universal building block from which these signals are 

composed.  

Figure 5 illustrates typical results of the application of QEEG methodology for creation of an 

explicit model of a single trial ERP composed of multiple components. The dynamics of the EEG 

signal shown in the upper panel on the interval from -100 ms to 500 ms is affected at t = 0 by the 

application of the target auditory stimulus. This event produces a single trial ERP which represents 

at t > 0 a specific succession of positive and negative waveform deflections, the 6 species of which 

have been identified as conventional P50, N1, P2, N2, P3a and P3b late component ERPs.  

 

Figure 5 A typical model of single trial ERP from Cz recording site with its components 

identified by the HRFD. 

Normalized amplitude spectra of these components are shown in the middle panel. The line “G” 

is the normalized amplitude spectrum. It appears as a limiting form of the empirical spectra.  

The sum of all identified HWFs is a model single trial ERP which is shown in the top panel by the 

red line. The models of separate ERP components are shown in the bottom panel. 

A remarkably accurate match of the models to empirical curves is typical for the identification 

procedures of the HRFD). The key observation is a mutual coincidence of empirical amplitude 

spectra in a wide range of the relative frequency γ from 0.1 to 100.  
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An appealing feature of these results is that models of various EEG and ERP waveforms are 

obtained without requiring knowledge of the details of the underlying cellular and molecular 

systems. This paradigm is consistent with the phenomenon known in quantum theories as 

universality. Conceptually, universality means that, despite a profound diversity of complex dynamic 

systems observed in nature, particularly biology, their topology may have universal characteristics 

regarded as universal objects. Our methodology for the first time identifies such universal elements 

directly from the dynamics of EEG and single trial ERP signals.  

The universality indicates the stochastic nature of the mechanisms which produce the macro-

scale EEG waveforms and ERP components. The composition of the HWF as a sum of two shifted 

Gaussian functions suggests that the normal distribution governs transitions from the micro- to 

macro-scales. 

The Kolmogorov-Smirnov tests were employed to examine this conclusion (a null hypothesis that 

the corresponding statistical regularities follow the normal distribution). This test has the advantage 

of making no assumption about the distribution of the samples, since it is non-parametric and 

distribution free.  

The ε (dimensionless extension ratio = FB/FC) has been selected as an adequate parameter for 

these tests because this single measure is sufficient to evaluate the fit of results. 

Typical results illustrated in Figure 6 were obtained using single trial recordings from Fz, Cz and 

Pz cortical sites [6]. For each location the values of ε were collected from 20 different identified 

EHWs. The EHW was accepted as eligible for testing the D-statistics if the number of EHW’s samples 

was ≥8.  
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Figure 6 Upper panels show EEGs from Fz, Cz and Pz recording sites and remarkably 

accurate models calculated by the method of the HRFD. In the bottom panel the 

cumulative distribution functions of these processes are compared with the curve of 

cumulative normal distribution.  

The means, standard deviations (SD) and D (K-S statistic) were as follows.  

Fz: mean = 1.756 (SD = 0.205), D = 0.106. 

Cz: mean = 1.712 (SD = 0.152), D = 0.076. 

Pz: mean = 1.721 (SD = 0.182), D = 0.079. 

The blue lines in the upper panels show pertinent EEGs from Fz, Cz and Pz cortical sites. The red 

lines are the models calculated using the HRFD. The bottom panel shows the corresponding 

cumulative distribution functions normalized by sample size. The line denoted by CND is the 

cumulative normal distribution.  

The greatest discrepancy between the CND and the empirical cumulative distribution, called the 

D-statistic, serves as a criterion to reject or accept the null hypothesis. Given that all calculated 

empirical cumulative distributions have been supported by equal numbers of ε (40 values of ε 

employed in the tests), the null hypothesis is rejected if D ≥ 0.189 (5%).  
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The above estimates are well below this value and do not provide any reason to reject the null 

hypothesis. It is important to note the highly stereotypical character of the test results. The 

outcomes of multiple tests using the data from subjects from control and patient groups indicate 

the universality of introduced empirical distributions. Therefore, we can consider HWF an adequate 

universal model of ERP components.  

3.1 Conventional and Synthetic Grand Mean ERPs 

The analysis of specific features of ERPs in different groups of selected subjects conventionally 

uses grand mean averages. The left side panels in Figure 7 illustrate grand mean average ERP 

waveforms calculated by conventional averaging for each group using 40 artefact free single trials 

from Fz, Cz and Pz middle sites. The histograms in the right-side panels show the elicitation rates of 

defined components. Taking the total number of single trials as 100%, the bars show the 

percentages of the sweeps in which components were identified, i.e. the frequencies with which 

different ERP components appear in single trials.  

 

Figure 7 Grand mean averages obtained by conventional averaging. 

One of the most investigated endogenous brain potentials in psychiatric research is the positive 

ERP wave at approximately 300 ms peak latency range, denoted as P3. This component is clearly 

seen on all of these records as a monolithic positive waveform with notable broadening of the shape. 

In all recording sites, the P3s of patients with schizophrenia show a decrease of peak amplitudes. 

For example, at Cz recording site the 8.03 µV amplitude of the P3 in control subjects is reduced in 
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patients with schizophrenia to 4.02 µV. Such a trend is consistent with the general consensus that 

reduced P3 amplitude is one of the most replicable biological observations in schizophrenia [11].  

Phenomenologically, it is generally accepted that P3 is created by the coordinated activity of 

multiple intracranial sources. With regard to the auditory oddball paradigm, there is a good deal of 

evidence that the P300 elicited by a target stimulus consists of two major components called the 

P3a and P3b [27]. 

These are independent and dissociable processes. The main distinguishing feature of the P3a is 

that it has a significantly shorter latency than P3b the peak latency of which is in the range of 300-

400 ms. The morphology of these potentials and their temporal overlap are easily recognizable in 

typical results of single trial analysis as exemplified in Figure 8. 

 

Figure 8 Various morphologies of the late positive component complex in single trial 

ERPs recorded in one and the same control subject from the Cz cortical site. The black 

lines show single trial ERPs induced by target stimuli applied at t = 0. The colored lines 

are the models of the P3a and P3b. 

However, the capacity of conventional averaging to identify the P3 as a composite of the P3a and 

P3b components is quite limited. It is particularly demonstrated by Figure 7 where the composite 

nature of the ERP in the 300 ms range is obscured in conventional averages. For that reason, most 

previous techniques neglected the existence of the P3a and considered the ERP in the 300 ms range 

as a single P3(00) component. 

By contrast to conventional averaging, the HRFD identifies the whole complex of the late ERP 

components. Of crucial importance is that this methodology eliminates the temporal overlap of P3a 

and P3b components, allowing us to treat these ERP components as separate entities with different 

diagnostic features. The individuality and independence of the P3a and P3b components is 

supported by our finding that these components comprise 3 major types of activity pattern, both in 

the control and patient groups. This diversity of ERP patterns in the 300 ms latency range is 

exemplified in Figure 8. s demonstrates that P3a can occur without P3b and P3b sometimes occurs 
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without P3a, suggesting the independence of the two waveforms. The third type in panel C is a 

complex component P3ab which develops as the superposition of P3a and P3b produced in one and 

the same single trial. These data show that there is no basis supporting the assumption of 

conventional averaging that the P3(00) is a monolithic component with an invariant pattern of 

activity. These aspects of the variability of ERP components, particularly the co-existence of P3a and 

P3b components, are obscured in conventional averages. 

The HRFD considers a candidate event-related component as being not just a peak in the EEG 

waveform, but a whole deflection (positive or negative) with a particular shape defined by the set 

of 3 parameters. After the selection of “true” components using conditions 1-3, the procedure 

breaks down a single trial ERP into the sum of HWFs which provides a synthetic model of the single 

trial ERP. The sum of such models for selected components and cortical sites from selected groups 

of subjects provide synthetic grand mean averages. 

Using the same original data as those supporting conventional grand mean averages in Figure 7, 

the synthetic grand mean ERPs are shown in Figure 9. 

 

Figure 9 Synthetic grand mean averages for the same data as in Figure 7. 

We see marked differences between the results of the two methods of averaging. Compared 

with conventional averages, synthetic grand mean averages show significantly increased voltages. 

This indicates a crucial oversimplification in conventional ensemble averaging which assumes that 

the ERP components of interest are present in all single trials. 

Actually, for the control group the numbers of identified components from the Cz recording site 

are: NN1 = 471, NN2 = 304, NP2 = 420, NP3a = 353, and NP3b = 505, where the subscript is the name of 
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the component. Given P3b for example, this means that the synthetic average is estimated by the 

SCA as the sum of 505 identified single trial P3b components divided by an exact number of 

identified components, i.e. the NP3b. For the same situation, conventional averaging divides the sum 

by 680 (i.e. the total number of single trials, 40 single trials for each of 17 subjects).  

Another serious problem with conventional averaging is that significant temporal overlap of P3a 

with P3b creates numerous methodological complications for detection of these components in 

conventional grand mean averages. This situation is exemplified in Figure 10 which compares the 

results of conventional (panel A) and selective component averaging (Panel B) using the data from 

the BPD and control groups.  

 

Figure 10 The panel A illustrates conventional grand mean averages in which P3 appears 

as a unitary component. By contrast, the synthetic grand mean average in the panel B 

reveals the P3a-P3b complex components in the 300 ms range.  

The ambiguities involved in the interpretation of the ERP parameters from conventional grand 

mean averages are twofold. The first is that P3a and P3b components remain unknown. Secondly, 

the variable morphology of these components may affect the amplitude and latency parameters of 

the P3 from conventional averages in unpredictable ways. Without reliable methods for identifying 

the composite nature of late components of the ERP, many investigators evaluate complex average 

waveforms in the 300 ms latency range only for the maximum amplitude and latency, which 

assumes a monolithic average P3. These methodological difficulties and related simplifications may 

explain why the P3a has not been observed in ERP studies across different subject and patient 

populations as consistently as the larger and more prominent P3b. 
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Reliable recognition of both the P3a and P3b components, unfulfilled by the previous methods, 

is achieved in our study through creation of a model-based approach to the component 

identification.  

In the following sections we provide evidence that delineation of the P3a-P3b complex, instead 

of a single P3, has significant potential to enrich the diagnostic power of ERPs. Accordingly, the 

major focus is on features of P3a and P3b components. The synthetic grand mean averages of these 

components are shown in Figure 11.  

 

Figure 11 Grand mean averages of the P3a and P3b components. 

The major parameter which defines single trial EEG deflection as a P3a or P3b component is the 

peak latency. The values of this parameter for middle sites in the 3 groups are listed in the Table 1.  
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Table 1 Shows mean latencies and standard deviations (s.d.) in midline electrode sites 

of subjects from the two patient groups (BPD and schizophrenics) and the group of 

controls. 

 
Group 1 

BPD 

Group 2 

Schizophrenia 

Group 3 

Controls 

Group 

comparisons, p 

ERP RS Mean latency (s.d.), ms 1 vs 3 2 vs 3 

P3a 

Fz 269 (0.899) 271 (0.889) 268 (1.01) Ns Ns 

Cz 269 (0.801) 270 (0.859) 269 (0.898) Ns Ns 

Pz 271 (0.785) 272 (0.896) 271 (0.863) Ns Ns 

P3b 

Fz 326 (0.801) 328 (0.831) 327 (0.682) Ns Ns 

Cz 328 (0.761) 330 (0.836) 327 (0.693) Ns p < 0.05 

Pz 329 (0.743) 330 (0.807) 328 (0.719) Ns p < 0.05 

The reason for the closeness in values of peak latencies may be the fact that our methodology of 

the HRFD eliminates the component overlap which introduces uncontrolled errors in the estimated 

parameters of average ERPs. The number of trials selected for HRFD can be found in the Table 2 and 

Table 3. A visual impression of the morphological similarities is demonstrated by the graphs in Figure 

11.  

Table 2 Compares the peak amplitudes of the P3a and P3b components for Fz, Cz and 

Pz recording sites in the subjects from the BPD and control groups. RS denotes recording 

site and N is the number of single trials selected for HRFD. The A1 and A2 are the peak 

amplitudes from the BPD and control groups, respectively. 

 Patients with BPD versus controls  

ERP RS N1 A1 (s.d.), N2 A2 (s.d)   

P3a 

Fz 377 15.4 (0.48) 314 10.5(0.35) p < 0.001 

Cz 437 15.9 (0.45) 353 12.3(0.37) p < 0.001 

Pz 421 14.5 (0.42) 385 12.8(0.36) p < 0.01 

P3b 

Fz 385 14.8 (0.44) 512 14.7(0.34) Ns 

Cz 426 13.8 (0.39) 505 14.0(0.32) Ns 

Pz 465 13.7 (0.34) 518 13.9(0.30) Ns 

Table 3 Comparison of peak amplitudes of P3a and P3b at frontal electrode sites. These 

sites are illustrated in Figure 12.  

 Patients with BPD versus controls  

ERP RS N1 A1(s.d.) N2 A2(s.d.) P 

P3a 

Fz 377 15.4 (0.48) 314 10.5 (0.35) p < 0.001 

F3 396 13.6 (0.41) 357 10.0 (0.32) p < 0.001 

F4 409 14.2 (0.42) 353 10.1 (0.36) p < 0.001 

F7 373 8.73 (0.26) 424 7.20 (0.19) p < 0.001 

F8 390 8.90 (0.28) 426 7.14 (0.20) p < 0.001 

P3b Fz 385  14.8 (0.44) 512  14.7 (0.34) p > 0.05 
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F3 400  13.0 (0.35) 519 13.1 (0.30) p > 0.05 

F4 410  13.8 (0.39) 534 13.3 (0.31) p > 0.05 

F7 363  8.11 (0.23) 460 7.91 (0.19) p > 0.05 

F8 356  8.12 (0.26) 474 7.76 (0.22) p > 0.05 

 

Figure 12 Topographic map of electrode sites. The circles rendered in red denote the 

sites of cortical electrodes at which the peak amplitudes of the P3a from the group of 

BPD patients have shown a statistically highly significant increase of peak amplitudes. 

3.2 P3a and P3b in BPD Patients Compared with Controls 

The data from the Table 1 show that the differences in the peak latencies of P3a and P3b from 

the group of BPD patients compared with controls are non-significant for all middle recording sites. 

In contrast, the data from the Table 2 show statistically highly significant increases of P3a peak 

amplitudes at Fz, Cz and Pz middle sites in BPD patients.  

An important feature of these estimates, also evident in Figure 11, is a significant increase of P3a 

amplitudes in the group of BPD patients. In contrast, estimates of the P3b peak amplitudes didn’t 

reveal significant inter-group changes.  

The differences between the values of the P3a peak amplitudes in patient and control groups 

show increases from Pz to Fz sites. These are: Pz-1.7 (μV), Cz-3.7 (μV), Fz-5.0 (μV).  

This trend indicates that the frontal areas of the brain are altered in BPD. Additional support for 

this tendency is provided by the data in Table 3 with similar comparisons of the peak amplitudes 

from Fz, F3, F4, F7 and F8 frontal electrode sites. 
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3.3 P3a and P3b in Patients with Schizophrenia 

The results of inter-group measurements of the P3a and P3b peak amplitudes in patients with 

schizophrenia versus controls are presented in Table 4.  

Table 4 Peak amplitudes of P3a and P3b components for Fz, Cz and Pz recording sites in 

the subjects from the schizophrenia and control groups.  

Patients with schizophrenia versus controls  

ERP RS N1 A1 (s.d.) N2 A2 (s.d.)   

P3a 

Fz 315 11.4 (0.37) 314 10.5 (0.35) Ns 

Cz 373 11.8 (0.35) 353 12.3 (0.37) Ns 

Pz 370 11.3 (0.34) 385 12.8 (0.36) Ns 

P3b 

Fz 430 12.3 (0.34) 512 14.7 (0.34) p < 0.001 

Cz 441 12.7 (0.33) 505 14.0 (0.32) p < 0.01 

Pz 442 12.7 (0.35) 518 13.9 (0.30) p < 0.01 

RS denotes the recording site. N1 and N2 are the numbers of single trials selected from the group 

of patients with schizophrenia and controls, respectively. The A1 and A2 are peak amplitudes from 

schizophrenia and control groups respectively. 

The major outcomes are twofold. First, the P3a amplitudes in schizophrenia patients do not show 

significant changes compared with the data from the group of control subjects. Second, the P3b 

amplitudes in schizophrenia patients are significantly reduced at all middle electrode sites. 

The grand mean averages in Figure 11 give a clear picture of these patterns.  

4. Discussion 

The main findings reported in this paper depend critically on the methodological innovation of 

EEG and ERP analysis using the probabilistic methods of quantum theories. This novel approach, 

introduced in earlier papers [5, 6], provides a means of bridging the macro-scale EEG and ERP signals 

with the underlying molecular events of ion transport at the micro-scale.  

We first discuss the micro-scale results, the main aspect of which is the relocation of the models 

of elementary bioelectric sources of the EEG signal from the cellular to the molecular level. Instead 

of the continuous time membrane potentials implemented in previous models, the elementary 

cortical sources of electricity are now allocated to ions, positively and negatively charged particles, 

the size and stochasticity of which conform in their attributes to quantum mechanics. The 

vanishingly small role of individual charges in the generation of macroscopic scale EEG signals 

reduces the problem to the study of the behavior of large numbers of random variables underlying 

the phenomenon in question. This is realized through the predictions of the central limit theorem. 

The idea of EEG interpretation using probabilistic notions was previously put forward by Elul [28]. 

Based on analysis of the synchronization of EEG sources, Elul proposed that the evolution of brain 

waves may be governed by statistical regularities following from the central limit theorem. Thus, 

the EEG waveform may simply be accounted for as a normally distributed output resulting from the 

combination of the activity of many independent neuronal generators.  
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This hypothesis has never been supported by an adequate empirically-testable mathematical 

theory. However, it raised the possibility that “gaussianity” may be the most promising explanatory 

feature of ERPs. The straight realization of this approach is employment of the normal distribution 

as a model of N1, P2, N2 and P3 components of average ERPs [29]. One of the major factors that 

introduce significant inconsistency between the Gaussian function and real ERP waveforms is that 

normal distribution is a bell-shaped symmetrical function defined on an infinite time scale while the 

ERP component is a transient process the start of which is locked to the cognitive event with 

different rates of rise and decay. To take into account a steeply rising left flank and a slowly 

decreasing right flank the convolution of an exponential and a normal distribution (ex-Gauss 

function) has been used for quantifying the P3 component in average ERPs [30]. The gamma 

function is quite flexible and might be one of a variety of possible shapes that fit the component 

waveforms of average ERPs. However, the ex-Gauss function differs from predictions of the central 

limit theorem and cannot serve as a universal model of ERP components. In this context, the 

fundamental point of our approach is consideration of each ERP component as a statistical limit of 

the underlying microscale processes, the appearance of which, on the global scale, is governed by 

the central limit theorem. The prediction of this theorem is the normal distribution (the Gaussian 

function).  

A single Gaussian function defined on an infinite scale is not a proper approximation of the ERP 

component, which is a transient starting from the moment of activation of the underlying cellular 

machinery by a cognitive event. This feature of ERP components is adequately described in our 

theory by equation 1 composed of a sum of two shifted Gaussian functions the profile of which 

appears as an adequate form of the shape of the ERP component. We interpret this paradigm as 

indicating two ensembles of elementary charges that can be considered as the primary and 

secondary particle populations.  

Physically, cell membranes, which separate intracellular from extracellular space, play a crucial 

role in the creation of the microscale model. Due to their high electrical resistance, membranes act 

as a border which prevents intracellular ions from noticeably changing extracellular field potentials. 

This means that extracellular ions appear to be the source of the global scale EEG and ERP. The 

impact of a single ion to the field potential is vanishingly small. Therefore, the changes of macroscale 

potentials are considered as cumulative effects produced by the transport of ions during 

synchronized activation of ensembles of closely located excitable cells.  

In keeping with this, the modelling tools are changed from the deterministic equations of classical 

physics to the probabilistic formalism of non-homogenous BDPs with time dependent rates of birth 

and death. This specific amalgamation of deterministic and stochastic factors on the microscopic 

scale has been called the transient deterministic chaos [6]. 

We now turn from microscale events to the macroscale phenomena which they produce in the 

form of EEG and ERP waveforms. The major achievement provided by the methodological 

innovations of single trial ERP analysis and the creation of synthetic grand mean averages is reliable 

identification of the P3a and P3b endogenous potentials in the 250-450 latency range. In general, 

on the basis of conventional averaging, the ERPs in this region have been conceptualized as the P300 

arising from a single neural generator. This concept has shaped virtually every aspect of P300 

research, including the way it is used in clinical studies. In this context, P300 has been used as an 

aid to diagnose neuropsychiatric disorders, sub-types of disorder and to evaluate the effects of 

medication on aspects of cognition. In reference to higher-order cognitive processes, no other 
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endogenous potential has received as much attention from researchers in the last two decades as 

the P300. However, converging evidence from a number of experimental and clinical studies has 

made it evident that significantly different combinations of neural generators contribute to the P300 

activity elicited by different combinations of experimental variables. This means that the P300 is not 

a monolithic component. 

The most commonly recognized subcomponent in “oddball” tasks is the classical P3b which has 

a parietal maximum scalp distribution and a peak latency of 300-400 ms. This is often preceded by 

a subcomponent, identified as a new component [27]. This component was labeled “P3a”, to 

distinguish it from the classical Suttonian P300 [31] which was re-labeled “P3b”. These P3 

subcomponents usually overlap in time, making it difficult to recognize them in the time course of 

average ERPs. A specific problem is that ERP waveforms are not measured in single trials and then 

averaged, but are measured only once, in the average curve. This leads to the loss of crucial 

information about the morphologies of P3a and P3b components and the rates with which they 

respond to cognitive stimuli. Hence, the potential for the ERP to provide objective 

electrophysiological measures of cognitive variables to a large degree depends on our ability to 

analyze ERP component composition directly from single trial records. Though various filters and 

templates have been employed, comprehensive single trial ERP analysis has not been achieved using 

existing methods.  

As far as we are aware, our study is the first to provide an empirically testable, adequate model 

of single trial ERP components. This methodological innovation allows us to eliminate the temporal 

overlap of P3a and P3b components in single trials and significantly improve the accuracy of the 

corresponding amplitude and latency parameters. An important and somewhat unexpected finding 

is the stability of the latencies of both the P3a and P3b components. As the data from the Table 1 

indicate, in the control and BPD patient groups the mean peak latency of the P3a at all midline sites 

is in the range from 268 to 271 ms. For P3b the range is from 326 to 329. For both the P3a and P3b 

no statistically significant inter-group differences were found. 

In schizophrenia patients the inter-group differences in the peak latencies of P3a (the range from 

268 to 272 ms) are non-significant. For P3b (the range from 327 to 330 ms), small statistically 

significant differences in comparison with the control group were documented at Cz and Pz sites. 

In contrast to the latency findings, we found profound changes in the peak amplitudes of the P3a 

and P3b in both patient groups. A critical finding is that there is a qualitatively different character of 

ERP morphology in the groups of patients with schizophrenia and BPD, suggesting functional 

differences in the underlying neuropathological processes.  

The main distinguishing feature of ERP changes in BPD patients is an abnormal increase of the 

P3a peak amplitudes compared with control subjects. Table 2 shows a statistically highly significant 

increase of P3a peak amplitudes at Fz, Cz and Pz middle sites in BPD patients.  

The data from Table 3 and Figure 12 demonstrate the frontal origins of this abnormality. Failure 

of inhibitory control may be the factor that accounts for the missing increase in amplitude of the 

P3a. In a wider neuro-psychiatric context, our recent aetiological model of BPD suggests that 

impairment of inhibitory control in prefrontal networks may underlie the disorder [32, 33]. 

This P3a enlargement gives support to Meares’ hypothesis that the sense of disconnectedness, 

or disintegration, that is a core phenomenon of BPD, is the outcome of deficient higher order 

inhibitory function. This hypothesis is based upon a Jacksonian model of dissociation, developed 

further in current texts on the subject [33, 34].  
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Our data demonstrate that the main distinguishing feature of ERP changes in patients with 

schizophrenia is an abnormal decrease of the peak amplitudes of P3b, while the voltage of P3a is 

not affected by this pathology. The reduction in amplitude of the average P3 from the standard 

auditory oddball paradigm is one of the most replicable biological observations of schizophrenia, 

present regardless of medication status [11].  

Our study indicates that the voltage reduction of the average P3 depends on two factors. The 

first factor is a replication of previous analyses, where the voltage reduction of P3 components is 

identified in single trials. This indicates a reduced impact of microscale sources on the macroscale 

P3. A second factor, newly identified in this study, is the demonstration of a decreased number of 

single trials which contain the P3b component.  

The techniques of single trial ERP analysis employed in previous studies were limited in terms of 

capturing the P3a and P3b sub-components of the P3. The investigation of spatiotemporal 

distributions of single trial P3a and P3b using the methodological innovation of HRFD suggests a 

distinct character of these components. The major properties of the average P3 resemble single trial 

P3b. However, the temporal overlap of the P3a and P3b components and their changing patterns 

from trial-to-trial cause unpredictable changes of the latency and amplitude parameters of average 

P3s. 

The P3a has been studied in patients with schizophrenia much less frequently than P3b. Usually, 

lower or unchanged amplitudes of P3a have been described in schizophrenia [35]. Consistent with 

these findings, our study did not reveal significant changes in the voltages of P3a in schizophrenia. 

A main inference from these results is that BPD and schizophrenia are physiologically different. 

Since they are disorders which have in common the identifying feature of disconnectedness, it is 

sometimes argued that they are the same. However, this study demonstrates an abnormality of P3a 

which is clearly defined in BPD but absent in schizophrenia. 

5. Conclusions 

In this study we have applied original methods of quantum and component signal analysis, 

introduced previously [5, 6], allowing advanced ERP analysis, which has created an opportunity for 

the development of remarkably accurate models of ERP waveforms directly from single trial 

recordings. These solutions are of great significance, because they provide additional information 

about the organization of cognitive processes within the individual, demonstrating specific 

disturbances of information processing. Given that the P300 is seen as a robust marker of psychiatric 

disorders, these novel illustrations of single trial recordings constitute evidence that demands 

reconsideration of the old concept of P300 as an ERP component arising from a single neural 

generator. Our methodology indicates that significantly different combinations of neural generators 

contribute to the P300 activity elicited by different experimental variables. In the studied subject 

groups, the P3a and P3b have both been identified as major components of P300. This improved 

recognition of patterns in the electrophysiological data enables differentiation of borderline 

personality disorder from schizophrenia. The methodology is universal and can be applied to 

different types of ERPs. A basic limitation, which in the relaxed state is unlikely to present difficulties, 

is that the muscular components of recorded potentials need to be significantly lower than the 

potentials produced from neuronal sources. 
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