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Abstract  

Traumatic brain injury (TBI) is a significant source of brain deficit and death among 

neurosurgical patients, with limited prospects for functional recovery in the cases of 

moderate-to-severe injury. Until now, the relevant body of literature on TBI intervention has 

focused on first-line, invasive treatment options (namely craniectomy and hematoma 

evacuation) with underwhelming focus on non-invasive therapies following surgical 

stabilization. Recent advances in our understanding of the impaired brain have encouraged 

deeper investigation of neurostimulation strategies, owed largely to its demonstrated livening 

of damaged neural circuitry and capacity to stabilize erratic network activity. The objective of 

the present study is to provide a scoping review of new knowledge in neurostimulation 

published in the PubMed, Scopus, and Google Scholar databases from inception to November 

2022. We critically assess and appraise the available data on primary neurostimulation 

delivery techniques, with marked emphasis on restorative opportunities for accessory 

neurostimulation in the interdisciplinary care of moderate-to-severe TBI (msTBI) patients. 

These data identify two primary future directions: 1) to relate obtained gain-of-function 

outcomes to hemodynamic and histological changes and 2) to develop a clearer 
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understanding of neurostimulation efficacy, when combined with pharmacologic 

interventions or other modulatory techniques, for complex brain insult. 
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Traumatic brain injury; neurosurgical stimulation; rTMS; tLNS; tDCS; pharmaceutical 

management; interdisciplinary care 

 

1. Introduction  

Traumatic brain injury (TBI), or an acquired insult to the brain via an external force, is a major 

health and socioeconomic concern throughout the world with an estimated 10 million individuals 

affected by TBI annually [1, 2]. In high income countries, TBI is largely a result of falls in older patients 

[3]. In younger patients in these countries, TBI is predominately due to traffic accidents. While 

preventative measures have been shown to decrease this source of injury, it continues to be a 

leading contributor to mortality and disability within this population [3, 4]. Furthermore, TBI due to 

traffic accidents is also of significant concern in low-middle income countries. Current projections 

demonstrate the already high levels of mortality and morbidity are increasing in prevalence with 

the rapid adoption of motor vehicle transportation, signaling an international scale of the crisis [5]. 

The median age of onset of TBI is relatively low, even in high-income countries. Therefore, the 

ensuing fallout of TB is disproportionally costly to productive years lost, resulting in an outsized 

detriment to society [6]. In the USA alone, the financial impact is in excess of $60 billion dollars per 

annum with an estimated prevalence of 3.2 million citizens living with disability after a TBI 

associated hospitalization [7]. 

The pathophysiology of traumatic brain injury is multifactorial, including inflammation, oxidative 

stress, apoptosis, mitochondrial damage, shearing of white-matter tracks, focal contusions, and 

hematomas [8]. More, a diagnosis of traumatic brain injury encompasses a range of severities. Using 

the Glasgow Coma Scale (GSC, TBIs are classified as mild (14-15), moderate (9-13), and severe (3-8) 

[9, 10]. In a systematic review, Buhangiar et. al. delineated the emerging effects of neuromodulation 

in TBI patients with an initial GCS of 13-15 and found neuromodulation had a positive effect on 

measured symptoms and neurophysiological functioning [11]. Consequently, the GCS may be of use 

when considering the relevance of neuromodulation in treatment, although more literature is 

needed to support such a claim. However, the proposed mechanism by which neuromodulation is 

theorized to influence such outcomes as discussed by Buhangiar et. al. is via adaptive neuroplasticity 

[11]. More precisely, neuromodulation can stimulate the cerebral cortex, inhibiting or activating 

neuronal cells. Such an effect has been evidenced to reorganize neural networks following traumatic 

brain injury and even improve cognitive dysfunction [12]. 

Considering the complex disease processes and varied severities, different forms of 

neurosurgical management of TBI are necessary and include operative and non-operative 

intervention. However, as surgical interventions are no longer the gold-standard of TBI 

management, nonoperative interventions such as neuromodulation are of increased relevance in 

the management of TBIs. Further, it is necessary to understand how this novel innovation may be 

combined with other, non-surgical management of TBIs such as pharmacological management [13-
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15]. Currently, there is a paucity of reviews summarizing the results of this neuromodulation in the 

context of current TBI management standards and practices. Thus, the objective of the current 

review is to discuss the current innovative techniques in neuromodulation, what the standard of 

pharmacological management of TBI is and how it can be accentuated by neuromodulation, and 

how best practice of TBI neuromodulation treatment may be within an interdisciplinary setting for 

increased effect. 

2. Discussion 

2.1 Novel Findings in Neurostimulation for Brain Injury 

Several areas of intense focus in brain stimulation theory and practice have been identified: most 

notably in translingual neurostimulation and transcranial magnetic stimulation (Figure 1). Measured 

success in these domains primarily center on posturography analysis (e.g., Sensory Organization 

Test and dynamic gait index) and physiologic analysis (e.g., wavelet power analysis in 

electroencephalography). 

 

Figure 1 Images depicting targets of translingual neurostimulation and transcranial 

magnetic stimulation. (A) Translingual neurostimulation is achieved though neuroplastic 

changes. These changes are induced by facial and trigeminal nerve stimulation, excited 

by neural impulses to the pons Varolii and cerebellum. (B) During a rTMS session, an 

electromagnetic coil is placed against the scalp and a magnetic pulse is delivered to 

stimulate nerve cells in the brain. Figure created with BioRender.com.  

2.1.1 Translingual Neurostimulation 

Successful translingual neurostimulation (tLNS) is achieved by targeted stimulation of cranial 

nerves V and VII and represents a prime candidate for combination therapy of neurologic disease 

and stroke, inciting deserved interest in its clinical utility for traumatic brain injury [16, 17]. In a 2019 

double-blinded, randomized controlled trial investigating the efficacy of tLNS for improving mild-to-

moderate TBI (mmTBI) outcomes, Tyler et al. first reported that tLNS administered over a 14-week 

period significantly improved related balance deficits from baseline (N = 44) (p < 0.0001) [18]. These 

findings corroborate even newer evidence validating tLNS for adjunct balance and gait rehabilitation, 

as measured by observable increases in Sensory Organization Test score and neuroplasticity, 
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particularly for mmTBI patients with limited response to conventional physical therapy [19, 20]. 

Moreover, available data indicates that tLNS may realistically provide clinical benefits beyond 

traditional therapeutic windows for TBI patients. A longitudinal case study detailing a retired Army 

Captain’s cognitive recovery reported that combined tLNS and physical therapy, delivered 14 years 

after the initial 2006 TBI event, yielded striking increases in basic attention (via P300 response 

analysis) and cognitive processing (via N400 response analysis) [21]. They additionally self-reported 

amelioration of ongoing symptoms related to the TBI event, indicating that incorporation of tLNS 

was commensurate with recognizable clinical benefit.  

2.1.2 Repetitive Transcranial Magnetic Stimulation 

Repetitive transcranial magnetic stimulation (rTMS) provides profound therapeutic benefit via 

unique delivery of focal to diffuse brain stimulation involving brief magnetic pulses generated from 

an iron-core coil. Previous research exploring rTMS protocols revealed its strength for treatment-

resistant depression symptomology, lessening chronic orofacial pains, and obsessive-compulsive 

disorder, among several other ailments [22-24]. A hallmark characteristic of rTMS is its depth-

focality tradeoff, which results in stimuli applied to non-targeted brain structures when probing 

deeper regions [25, 26]. This feature seems to suggest that rTMS may prove highly efficacious in 

repairing dysfunctional neural networks (via activity-dependent modulation of synaptic plasticity), 

particularly in TBI patients with diffuse axonal injury. Supporting evidence reported by Wang et al. 

demonstrated that rTMS delivered to the left motor cortex significantly altered right cerebellar 

activity, which, in addition to specialized balance and coordination, plays established roles in verbal 

[27-29]. Pulse frequency too impacts clinical outcomes. At low frequency, rTMS enables cortical 

inhibition, perhaps by induced suppression of parvalbumin and calbindin, whereas high frequency 

rTMS (3-50 Hz) enables targeted excitation of the lesioned cortex, benefiting stroke patients, though 

the latter finding remains debated in the literature [30-32]. Moreover, emerging data purports that 

TMS can be safely delivered to infants with perinatal brain damage (N = 6) and in persons with co-

occurring TBI and complex neuropsychiatric comorbidities [33-35]. Still, further research is needed 

to establish the safety and scoping efficacy of high-frequency rTMS in seizure-prone (or otherwise 

compromised) patient populations. 

Other opportunities for functional recovery at the hands of electrical neuromodulation 

techniques have been described for a motley of conditions. For instance, a number of surfacing 

studies have explored the utility of deep brain stimulation for focal targeting of midbrain structures 

implicated in treatment-resistant depression [36-38], however sweeping conclusions remain ill-

generalizable in the TBI patient population [39]. Hofer and Schwab further reviewed the therapeutic 

benefits afforded by electrical stimulation for spinal cord injury patients years after the initial injury 

event [40], owed to previously described activity-dependent restoration of residual brain and spinal 

cord networks [41]. 

2.2 Current Pharmacological Management  

Seizures after TBI cause increased ICP and decreased cerebral perfusion [42]. Therefore, 

treatment with prophylactic anticonvulsant medications such as phenytoin are recommended to 

reduce the number of seizures in the first week following TBI; however, anticonvulsant medications 

do not prevent seizures after one week [43]. Many patients with TBI are placed on psychotropic 
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medications following the TBI due to the presence of psychiatric problems, the most common being 

depression, bipolar disorder, generalized anxiety disorder, and substance abuse [44]. Beta blockers 

and mood-regulating epileptics can be administered as first-line treatments for agitation and 

aggression depending on comorbidities, while antidepressants, buspirone, neuroleptics, and 

benzodiazepines are second-line treatments [45]. SSRIs are considered the first-line treatment for 

TBI-related depression [46]. 

2.3 Emerging Pharmacological Management with Neurostimulation 

At the time of writing, very limited research exists on the efficacy of combining pharmacological 

treatments of TBI with neurostimulation. Bender Pape et al. found that in post-TBI patients with 

disordered consciousness who had low probability of making a significant recovery, combining rTMI 

with amantadine improved neurobehavioral outcomes [47]. Auditory-language skills specifically 

were improved in patients who received rTMS prior to a combination therapy of rTMS and 

amantadine [48]. For psychiatric symptoms post-TBI, some research has looked into the use of rTMS 

after failed pharmacological management of symptoms. A systematic review conducted by 

Narapareddy and colleagues reported that while SSRIs, specifically sertraline, shows the best 

evidence for improving depression symptoms after TBI, rTMS might be effective for those patients 

that do not respond to pharmacological treatment [46]. Included patients took from 25 to 2000 

mg/d of sertraline for time periods ranging from 3-30 weeks and were assessed by results on the 

Hamilton Depression Scale, Patient Health Questionnaire 9, and the Beack Depression Inventory. In 

patients that did not respond to pharmacological treatments of TBI depression, rTMS (Figure 1B) 

showed some immediate improvement in depression symptoms, but the long-term efficacy showed 

mixed results [46]. An independent case study revealed that high frequency DBS to the anterior limb 

of the internal capsule and nucleus accumbens at 100 Hz improved defects from a TBI on a patient 

with severe psychiatric symptoms who had showed no improvement using antipsychotic drugs [49]. 

Frequencies below 100 Hz to the nucleus accumbens improved auditory hallucinations in the patient, 

while high frequency stimulation to the anterior limb of the internal capsule improved emotional 

deficits [49]. While these two studies looked at rTMS after failed pharmacological treatment of 

depression symptoms, future research is needed to investigate the utility of combining 

pharmacological treatment with neurostimulation. 

2.4 Neuromodulation in Interdisciplinary Care: Alternative Avenues 

A growing body of evidence in TBI literature supports the application of interdisciplinary care 

models acutely as well as during the rehabilitative phase for achieving the most favorable patient 

outcomes. Frequent associations of the disease with comorbid diagnoses of a related etiology (i.e., 

accidental trauma, post-deployment conditions) such as post-traumatic stress disorder (PTSD) and 

major depressive disorder (MDD) require the simultaneous management of multiple clinical 

sequalae, often by different specialists (primary care, psychiatry, neurology, and others), in the 

same patient [50, 51]. Beyond the management of comorbidities, addressing the complex 

pathophysiology of TBI alone has also been demonstrated to benefit from multidisciplinary care. As 

just one example, a quasi-experimental study of 56 TBI patients who were assigned to either 

multidisciplinary rehabilitation or single specialty care showed that patients who were cared for by 

multidisciplinary teams demonstrated significantly higher gains in independent living, cognitive and 
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motor skills at the end of a 2-year rehabilitation period [52]. These findings have been consistent 

with the results of other experiments involving combinations of neuropsychologic and family, 

occupational as well as speech-language pathology therapy [53-56]. 

In this context, the application of neurostimulation needs to be considered alongside other 

therapeutic and rehabilitative approaches which are likely to be deployed concurrently for the 

holistic management of a patient with TBI. Recent advances in our understanding of TBI pathology 

and management have given rise to several new in-hospital TBI treatment innovations which 

likewise rely on interdisciplinary involvement. Alongside tLNS and rTMS, applications of transcranial 

direct current stimulation (tDCS), low-level laser therapy (LLLT), and transcranial doppler 

sonography (TDS), which were originally intended for medication-resistant depression, pain, 

spasticity, hand-eye coordination, gait, and speech and language pathologies are increasingly 

emerging as powerful complementary and/or alternative therapeutic modalities for TBI [57, 58]. 

Among these, TDS (Figure 2A) provides particularly strong support for the synergistic effects of 

interdisciplinary collaboration as the development of this typically diagnostic method for 

therapeutic purposes in TBI is an apt example of convergent technological evolution with another 

emerging technique, focused ultrasound (FUS) (Figure 2B), which was first used in oncological 

surgery and later adapted to neurosurgery and TBI [59-61]. While most efforts around FUS are still 

centered validation of different adaptations of the technology to TBI in animal models, TDS therapy 

has already been demonstrated as clinically effective in humans [62-66]. It is conceivable that 

neurostimulatory approaches such as tLNS and rTMS will likewise benefit from technological 

integration with these new therapeutic alternatives in order to provide patient-centered care 

encompassing TBI as well as multiple comorbidities which may be present within the same 

individual. Despite this potential, a recent review by Marklund et al. reports that there is still a 

relative lack of robust trial data demonstrating the clinical efficacy of neurostimulation in the 

context of other simultaneous therapeutic approaches for TBI and/or comorbidities [67]. More 

research needs to be done to define the role and guide the development of neurostimulation as a 

standard of care tool within the toolbox of precise, patient-centered TBI care. 

 

Figure 2 Ultrasound applications in TBI. (A) transcranial doppler sonography in humans. 

(B) focused ultrasound adaptations from animal tumor models. Figure created with 

BioRender.com.  
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3. Concluding Remarks 

Here we rigorously reviewed the current state of neurostimulation with due emphasis on its 

potential role in treatment of mild-to-severe TBI patients. Recent advances suggest that 

neurostimulation stands to immensely benefit our understanding and treatment of TBI and related 

neurological deficit. Notable data points in the field include the following: tLNS evidences unique 

neuromodulation benefits for stroke victims and widens the traditional therapeutic window; rTMS 

shows early signs of promise for treatment of diffuse axonal injury; the potential for pharmacologic 

co-intervention represents a gravely understudied area; alternative (namely non-electrical and non-

magnetic) neuromodulation techniques remain promising, suggesting a role for co-administration 

possibilities. The present review is limited by the scarcity of available literature (at the time of 

writing) and inconsistent measured outcomes reporting. Still, the authors maintain that the body of 

evidence shared here provides meaningful insights into stimuli management for complex brain 

injury. Key advantages to this study are its focus on impactful discoveries in the neurostimulation 

arena for an understudied neurosurgical patient population, due reflection on prior landmark 

advancements, and the breadth of the literature search. These all represent salient points to 

clinicians and researchers alike. Future research should focus on bridging inconsistencies in 

measured outcomes and correlating realized motor improvements with histological results. Finally, 

we hope that the present review serves to inspire continued investigation of neurostimulation 

theory and practice towards the ultimate benefit of the TBI patient population. 
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