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Abstract 

Autism spectrum disorder (ASD) is a neuropsychiatric disorder associated with critical 

challenges related to social, communication, and behavioral issues. Recent studies have 

proposed machine learning (ML) techniques for rapid and accurate assessment of ASD. 

However, the mismatch between the ML techniques and the clinical basis of ASD assessment 

reduces the effectiveness of ML-based assessment tools. The present study proposed an 

approach that utilized the potential of ML modeling and preserved the clinical relevance of 

the assessment instrument used. Experimental results of the empirical scoring algorithm and 

multiple ML models employed revealed the possibility of achieving a clinically valid ML-based 

ASD assessment tool. This study provides a roadmap for real-life implementation of ML-based 

ASD screening and diagnostic tools that comprise few behavioral features and maintain clinical 

relevance. 
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1. Introduction 

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder characterized by 

deficits in social interaction and communication and the presence of repetitive, restricted patterns 

of behavior, interests, or activities. In the United States, the recent prevalence of ASD is 1 in every 

44 children [1], while globally, the prevalence of ASD is estimated to be 1.5% of the entire world 

population [2]. The global increase in the prevalence of autism necessitates the search for effective 

and early diagnostic processes for improved outcomes in socialization and communication and for 

guiding parents to adopt appropriate interventions for their children with ASD [3-7]. Several studies 

have proposed the implementation of machine learning (ML)-enabled systems for rapid and cost-

effective assessment of the disorder [8-11].  

The promising outcomes achieved through the application of ML techniques across several 

research endeavors have motivated the increasing application of ML in assessing ASD on the basis 

of either genetic, physical biomarker, brain imaging, or behavioral data [12-14]. Another stem of 

behavioral studies supported by computer-assisted technologies relies on the use of physical 

biomarkers for assessing stereotypical and repetitive behaviors in people with ASD based on 

movement sensors and other vision-based technologies for facial movement, body movement, and 

eye gaze tracking, among others [15-18]. Specifically, the present research is aligned with studies 

that generate behavioral data based on questionnaire instruments and use ML algorithms to model 

the behavioral data. However, despite the excellent evaluation metrics achieved in ML-based 

behavioral studies, it is evident that the research methods and the generated ML models could lead 

to inaccurate assessments by professionals. For instance, in addition to improving diagnostic 

accuracy, most of the studies focused on reducing or transforming the items of the assessment 

instruments by using various data-centric approaches [12]. However, several studies did not 

investigate the relevance of the data-centric approaches, the sufficiency of the modeling 

parameters, and the resulting ML models themselves against the basic assumptions of clinical 

assessment of ASD symptoms [12, 19]. 

The present study, therefore, aimed to investigate the advances in the application of ML 

techniques to the behavioral assessment of patients with ASD and proposed a novel ML-based 

approach that preserves the clinical validity of the screening and diagnostic tool by adhering to the 

conceptual foundation followed by professionals to assess ASD. A comparative analysis was 

conducted on the classification performance of the empirical scoring algorithm and various ML 

models based on different experimental scenarios that align/misalign with the clinical approach. 

Accordingly, the proposed approach utilized the advantages of ML techniques while preserving the 

clinical validity of the assessment instrument by adhering to the clinical procedures used by 

professionals in administering the diagnostic tool. 
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2. Related Research 

ML techniques are being increasingly applied for rapid and cost-effective assessment of ASD 

based on various datasets that contain data related to genetics, brain imaging, or behavioral 

symptoms [12, 14]. Behavioral symptoms are collected through various modalities, including 

questionnaire-based items and physical biomarkers. Unlike questionnaire-based symptoms, 

physical biomarkers such as facial movement, body movement, and eye gaze are evaluated by 

sensor-based and vision-based technologies [15-18]. For instance, Kowallik and Schweinberger [17] 

reviewed 36 sensor-based studies for improving ASD assessment and intervention. The reviewed 

studies focused on sensory inputs from various biomarkers, including voice, face, and body 

movements. Recently, Negin et al. [18] proposed a vision-based approach by using a novel video 

dataset of human actions to recognize stereotypic ASD behaviors. The predictive study achieved the 

best results by using various ML classifiers based on multilayer perceptron, Naive Bayes, and support 

vector machines together with other data-centric frameworks. Both studies revealed the high 

potential of sensor-based and vision-based behavioral assessment of ASD. 

In particular, the present study is aligned with several studies that utilized questionnaire-based 

behavioral data for ML modeling. Descriptive analyses of the research area indicated that 

streamlining the data collection instruments using various dimensionality reduction approaches of 

feature selection and transformation is the common data pre-processing activity reported in 

previous studies [12, 14]. Specifically, many studies aimed at streamlining the assessment 

instruments by reducing the dimension of the datasets, followed by ML data modeling and 

performance evaluation on the reduced datasets [12, 20-24]. Some of the common dimensionality 

reduction techniques used are Trial-Error Feature Selection [10, 21, 24-26], Variable Analysis (Va) 

[27, 28], Chi-Square testing (CHI) and Information Gain (IG) [29], Correlation-Based Feature 

Selection (CFS) [11], and ML-Based Feature Selection [23, 30]. Furthermore, data-centric studies 

conducted ML modeling using various ML algorithms such as Random Forest [11, 27, 31, 32], 

Support Vector Machines (SVMs) [22, 23, 30, 33, 34], Decision Trees [21, 24-26], and Logistic 

Regression [10, 22, 29]. 

The data collection or assessment instruments form the basis of behavioral studies on ASD 

symptoms. Previous studies used retrospective datasets of various assessment instruments such as 

Autism Quotient (AQ) [9, 10, 27-29, 31, 32, 34-36], Q-CHAT [9, 28, 35, 36], Autism Diagnostic 

Observation Schedule (ADOS) [21-23, 26, 30, 37], Autism Diagnostic Interview-Revised (ADI-R) [24, 

33, 37], and Social Responsiveness Scale (SRS) [33, 38, 39]. Accordingly, the most utilized sources of 

the datasets include Autism Genetic Resource Exchange, Boston Autism Consortium, Simons 

Simplex Collection [21, 22, 24, 26, 30, 38, 39], National Database for Autism Research (NDAR) [21, 

22], Simons Variation In Individuals Project (SVIP) [21, 22, 30], and UCI ML repository [9, 10, 27-29, 

31, 32, 34-36]. 

Apart from the common aim of dimensionality reduction and ML modeling, other previous 

studies focused on ML algorithm optimization [32, 34], input optimization [27, 28, 31, 35], and 

implementation of ML-based screening applications (apps) [9, 11]. For instance, Goel et al. [32] 

improved the performance of a Random Forest classifier by using a proposed Grasshopper 

Optimization Algorithm. The modified classifier outperformed commonly used ML models by 

predicting ASD with almost 100% accuracy, specificity, and sensitivity. Similarly, Suresh Kumar and 

Renugadevi [34] investigated input optimization by using the Differential Evaluation (DE) algorithm. 
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The proposed DE optimized SVM parameters and achieved superior performance over commonly 

used SVM and artificial neural network (ANN); the DE also optimized ANN for the correct 

classification of ASD cases. Other studies focused on the comparative performance of various 

dimensionality reduction techniques. For instance, Thabtah et al. [28] reported a comparative 

evaluation of Va, IG, and CHI in decreasing AQ items where Va outperformed other techniques by 

deriving fewer items that lead to excellent ML models. Pratama et al. [27] replicated this study and 

recorded higher sensitivity and specificity values of 87.89% in AQ-Adults with RF and 86.33% in AQ-

Adolescents with SVM, respectively. Despite the superior performance metrics reinforced by the 

dimensionality reduction techniques, none of the preceding studies justified the conformity of the 

data-centric techniques with the conceptual foundation for the clinical diagnosis of ASD. 

Furthermore, because of the absence of standardized medical tests for numerical quantification of 

ASD [2], clinical assessment of the disorder relied on the careful application of the common 

diagnostic scales based on human knowledge and experience. Accordingly, ML-based studies must 

balance the trade-off of streamlining behavioral scales on the one hand and implementing clinically 

valid diagnostic systems on the other hand. In other words, implementing valid scales that 

adequately cover the human knowledge for the clinical diagnosis of ASD is critical to the real-life 

deployment of ML-based tools [12]. Thus, innovative approaches that could be tracked by 

professionals based on clinical relevance are required. 

Several challenges impede the real-life deployment of ML-based ASD screening and diagnostic 

tools [12, 14, 40]. Specifically, the good performance of the data-centric approaches based on the 

commonly used evaluation criteria cannot ensure the clinical relevance of the resulting ML models. 

Accordingly, the commonly used performance metrics of specificity, sensitivity, and classification 

accuracy cannot adequately capture the human knowledge employed by professionals in identifying 

behavioral symptoms of ASD. Therefore, promising studies on the real-life deployment of ML-based 

ASD assessment systems must be supported by a clear understanding of the clinical foundation of 

the screening and diagnostic tools and the logical concepts of the data-centric techniques. 

Specifically, none of the previous studies aimed to preserve the clinical validity of the assessment 

instruments. The novelty of the present study is the preservation of the clinical validity of the 

assessment instrument while benefitting from the precision of the ML algorithms employed. The 

present study retained all the items of the data collection instrument and treated each item as an 

integral part of computing a few clinically valid input parameters. It also explored a novel data 

intelligence technique that accomplished both excellent performance metrics and conformity with 

the conceptual basis for the clinical diagnosis of ASD. 

3. Methodology 

3.1 Proposed Research Methodology 

The primary aim of the present study is to demonstrate the predictive performance of various 

ML models on a novel screening instrument and propose a promising approach that ensures rapid 

and accurate screening of patients with ASD while preserving the clinical validity of the screening 

instrument. For this purpose, a scientific procedure was carefully implemented to achieve the 

research aim and objectives, as shown in Figure 1. 
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Figure 1 Flowchart of the proposed research methodology. 

3.2 Participants 

The study data were collected through web-based and printed questionnaires administered to 

voluntary caregivers, parents, and other relatives of children who were diagnosed to have 

neurodevelopmental disorders, including ASD, based on a purposive sampling approach. Some of 

the control cases were, however, drawn from participants with no symptoms of ASD or no comorbid 

neurodevelopmental disorders. Nonetheless, because of the lack of direct access to a sufficient 

number of patients with ASD through parents and caregivers, some of the responses were collected 

from teachers and clinicians of children with ASD. By using both data collection approaches, 411 

anonymized responses were obtained. Cases with missing values were eliminated, which reduced 

the number of responses to 380 valid cases containing 171 ASD cases and 209 controls. 

3.3 Data Collection Instrument 

The data collection instrument named Child Development for Household Survey to Estimate 

Burden of ASD (CDHSEBA) is a questionnaire with an empirical scoring algorithm for assessing 

children “at-risk” of ASD. CDHSEBA can be used by parents, caregivers, clinicians, and researchers 

to screen ASD symptoms in children. Researchers at the Childhood Neuropsychiatric Disorders 

Initiative (https://cndinitiatives.org/) developed this instrument with its empirical scoring algorithm 

on the basis of the diagnostic criteria described in DSM-5. The empirical scoring algorithm provides 

logical and numerical measures for ASD symptoms. Sensitivity, specificity, and classification 

accuracy are the commonly used evaluation metrics for confirming the scientific rigor of a diagnostic 

https://cndinitiatives.org/
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instrument in health-related studies [41]. In the present study, the data collection instrument 

achieved a high sensitivity of 97%, with classification accuracy and specificity of 56% and 23%, 

respectively. Figure 2 shows the procedure for computing the ratings of ASD symptoms. The rating 

scale is based on 0 and 1; if the response is NO (i.e., the behavior being probed is not present), it is 

coded as 0, while if the response is YES (i.e., the behavior being probed is present), it is coded as 1. 

The total score for the symptoms is then calculated, and YES or NO decision is provided on each 

section of the questionnaire. Consequently, the overall decision is computed by following the 

criteria for the diagnosis of ASD given in DSM-5, as shown in Figure 2; this summarizes how the 

empirical scoring algorithm validates whether the questionnaire responses meet the two conditions 

for “at-risk” ASD. 

 

Figure 2 Flowchart of the empirical scoring algorithm of the study. 

The proposed questionnaire contains less than 30 items (Appendix A) upon which the symptoms 

of ASD are scored, and the scoring algorithm follows section-by-section computations to meet the 

DSM-5 diagnostic criteria. Part 1 of the questionnaire captures demographic information (i.e., items 

1, 2, and 3), while part 2 is categorized into sections A and B, described as follows. 
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3.3.1 Deficits in Social Communication  

This section of the questionnaire contains items 4, 5, 8, 9, 10, 11, 12, 13, 14, and 15, which cover 

deficits in social communication and can be further grouped into three major categories in 

accordance with the DSM-5 criteria: 

A1: Deficits in socio-emotional reciprocity (items 4, 5, 8, and 9)  

A2: Deficits in nonverbal communication (items 10, 11, and 12)  

A3: Deficits in developing, maintaining, and understanding relationships (items 13, 14, and 15)  

Condition A: The patient is said to be presenting with social communication deficits if they 

receive a score of YES in 3/10 of these symptoms, and the symptoms must be from at least two 

different categories, i.e., the response must have a YES in at least A1 and A2, A1 and A3, or A2 and 

A3.  

3.3.2 Restricted Behavior  

This section of the questionnaire captures information on the presence of restricted and 

repetitive patterns of behavior, activities, or interests. Items in the questionnaire covering these 

aspects are 6, 7, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25, and these items can be further grouped 

into four major subcategories in accordance with the DSM-5 criteria: 

B1: Stereotyped movements, language, or use of speech (items 6, 7, 16, 17, and 18)  

B2: Insistence on sameness and inflexibility thought (item 19)  

B3: Highly restricted, fixated interests and abnormal intensity in focus (items 20, 21, 22, and 23)  

B4: Sensitivity to sensory input (items 24 and 25)  

Condition B: The patient is said to be presenting with repetitive and stereotyped behavior if they 

present with 3 of the above-listed symptoms, with the symptoms being elicited from two different 

subcategories, i.e., a combination of the positive screen in B1 and B2, B1 and B3, B1 and B4, B2 and 

B3, B2 and B4, or B3 and B4. 

In the present study, CDHSEBA was chosen because of the following three reasons that align it 

with the aim and settings of the research. First, CDHSEBA has fewer items, which meets the 

requirement for a rapid screening instrument with fewer items than the common gold standards. 

Second, the clinical empirical scoring method of the data collection instrument involves some form 

of dimensionality reduction; specifically, it has customized rules for feature transformation, in which 

the complete set of items are transformed into fewer dimensions (i.e., A1, A2, A3, B1, B2, B3, and 

B4) that subsequently lead to the main conditions upon which at-risk ASD cases are identified. Third, 

the data collection instrument is being used in an environment similar to the data collection units. 

Thus, there will be little or no environmental effect on the interpretability of the study findings.  

3.4 Data Analysis 

For data analysis, SPSS 25, Microsoft Excel 2016, and MATLAB R2019b were used. Before the ML 

modeling of the collected data, additional variables were computed using the data transformation 

feature of SPSS. The SPSS syntax used for computation is shown in Table 1. 
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Table 1 SPSS syntax for computing the variables. 

GET FILE = ‘C:\Users\hp\Google Drive\Researches\PHD CIS\Thesis report\Data\Data.sav’. 

DATASET NAME DataSet1 WINDOW = FRONT. 

COMPUTE Q18 = Q18A | Q18B | Q18C | Q18D | Q18E. 

EXECUTE.  

COMPUTE Q24 = Q24A | Q24B. 

EXECUTE.  

COMPUTE A1 = Q4 | Q5 | Q8 | Q9. 

EXECUTE.  

COMPUTE A2 = Q10 | Q11 | Q12. 

EXECUTE.  

COMPUTE A3 = Q13 | Q14 | Q15. 

EXECUTE.  

COMPUTE B1 = Q6 | Q7 | Q16 | Q17 | Q18. 

EXECUTE.  

COMPUTE B2 = Q19. 

EXECUTE.  

COMPUTE B3 = Q20 | Q21 | Q22 | Q23. 

EXECUTE.  

COMPUTE B4 = Q24 | Q25. 

EXECUTE.  

COMPUTE condition AA = (Q4 + Q5 + Q8 + Q9 + Q10 + Q11 + Q12 + Q13 + Q14 + Q15) >= 3. 

EXECUTE.  

COMPUTE condition AB = (A1 & A2) | (A1 & A3) | (A2 & A3). 

EXECUTE.  

COMPUTE condition BA = SUM (Q6, Q7, Q16, Q17, Q18, Q19, Q20, Q21, Q22, Q23, Q24, Q25) >= 3. 

EXECUTE.  

COMPUTE condition BB = (B1 & B2) | (B1 & B3) | (B1 & B4) | (B2 & B3) | (B2 & B4) | (B3 & B4). 

EXECUTE.  

COMPUTE condition A = condition AA & condition AB. 

EXECUTE.  

COMPUTE condition B = condition BA & condition BB. 

EXECUTE.  

COMPUTE computed ASD status = condition A & condition B. 

EXECUTE. 

COMPUTE TP = (clinical Status = 1) & (computed ASD status = 1). 

EXECUTE. 

COMPUTE TN = (clinical Status = 0) & (computed ASD status = 0). 

EXECUTE. 

COMPUTE FP = (clinical Status = 0) & (computed ASD status = 1). 

EXECUTE. 

COMPUTE FN = (clinical Status = 1) & (computed ASD status = 0). 

EXECUTE. 



OBM Neurobiology 2022; 6(3), doi:10.21926/obm.neurobiol.2203138 
 

Page 9/24 

Here, Q18 is the summarized value derived from the sub-items Q18A, Q18B, Q18C, Q18D, and 

Q18E using the OR (i.e., |) Boolean operator. Similarly, Q24 was computed based on Q24A and Q24B. 

As shown in the code listing, the seven sub-dimensions of the data collection instrument (i.e., A1, 

A2, A3, B1, B2, B3, and B4) were equally derived on the basis of their corresponding items. 

Nonetheless, the sub-conditions for assessing the disorder were correspondingly computed as 

condition AA, condition AB, condition BA, and condition BB. Here, condition AA tests whether at 

least three responses were YES on the items under section A of the data collection instrument, while 

condition AB confirms whether the YES responses were from either of the combinations of items 

under A1 and A2, A1 and A3, or A2 and A3, as explained while describing the manual scoring 

algorithm. Similarly, condition BA tests whether at least three responses from the items in section 

B of the data collection instrument were YES, while condition BB confirms whether the YES items 

were from either of the combinations B1 and B2, B1 and B3, B1 and B4, B2 and B3, B2 and B4, or B3 

and B4, as described in the manual scoring algorithm. 

The code listing showed the computation of the main conditions for diagnosing the disorder (i.e., 

condition A and condition B), where condition A was computed as TRUE if both condition AA and 

condition AB were TRUE, and condition B was computed similarly based on condition BA and 

condition BB. Finally, the code listing captured the key variable used in identifying the screening 

status of the participants (i.e., computed ASD status). Accordingly, the computed ASD status was 

TRUE if both conditions A and B were TRUE. Additionally, the basic evaluation metrics are shown in 

the code listing. Specifically, true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) were identified according to the computed status (i.e., computed ASD status) and the 

previous status (i.e., clinical status) as indicated in the questionnaire response. Evaluation metrics 

of the manual scoring algorithm were computed on the basis of the computed TP, TN, FP, and FN 

values. TP is the number of patients already diagnosed with ASD, and the screening instrument also 

classified them as ASD positive. FP is the number of patients that are truly non-autistic (i.e., 

belonging to the control group), but the screening instrument classified them as ASD positive. FP is 

also called a Type-I error. TN is the number of patients that are truly non-autistic (i.e., belonging to 

the control group), and the screening instrument also classified them as ASD negative. FN is the 

number of patients already diagnosed with ASD, but the screening instrument classified them as 

ASD negative. FN is also called a Type-II error. 

3.4.1 Sensitivity and Specificity Analysis of the Manual Scoring Algorithm 

Sensitivity and specificity are statistical measures that indicate the predictive value of an 

instrument in classifying positive and negative cases in a test [42, 43]. In the present study, the data 

on the predictive performance of the manual scoring algorithm are presented using a confusion 

matrix, while assorted formulae were followed to provide the commonly used evaluation metrics. 

The predictive performance of the scoring algorithm depicted in Figure 2 is, however, empirical and 

based on linear equations. ML models are usually developed to validate the empirical findings 

derived from manual scoring algorithms. Notably, previous studies have shown the improved 

accuracy of ML algorithms over manual scoring algorithms [29, 31, 33]. However, some of the 

previous studies that used various data pre-processing techniques did not preserve the clinical 

validity of the data collection instrument [12, 19]. Accordingly, in the present study, an alternative 

approach to manual scoring was used based on the ML algorithms. Specifically, to provide 
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comparative findings, the present study used both linear and nonlinear ML classification algorithms 

to capture possible nonlinear patterns in the data and to evaluate the performance of the models 

in classifying “at-risk” ASD cases without compromising the conceptual validity of the data collection 

instrument. The technique proposed in the present study grouped items of the collection 

instrument into distinctive dimensions that align with the use of human knowledge in the clinical 

assessment of ASD. Thus, the derived dimensions were used in training the ML models. Various data 

scenarios with a reduced and extended list of items were experimented with to provide more 

comparative results. 

3.4.2 Sensitivity and Specificity Analysis of the ML Models 

Model development in ML is a data-centric process that involves training the model with one 

part of the data and testing with the other part. Figure 3 shows the workflow diagram for 

constructing and evaluating the multiple ML models. 

 

Figure 3 Machine learning-based classification of “at-risk” autism cases for the study.  

The modeling approach began by defining and presenting both input and target parameters from 

the raw data, followed by iterative data resampling using 10-fold cross-validation. Accordingly, in 

each of the 10 iterations employed, the model learner and the model predictor were used in training 

and testing the ML models. Subsequently, evaluation metrics from the 10 cross-validations and 

modeling stages were averaged for comparative evaluation of the performances of the models. 

3.5 Experimental Setting 

This section presents the experimental settings for the comparative analysis of the ML algorithms 

and the empirical scoring algorithm. While the empirical scoring algorithm used the items described 

under the data collection tool (i.e., Q4–Q25), multiple ML algorithms were implemented using a 

different combination of the CDHSEBA raw and processed parameters. Specifically, 25 ML 

algorithms were implemented according to four different data scenarios. Data Scenarios 1 and 3 

involved the raw items of the CDHSEBA, while Scenarios 2 and 4 contained the transformed 

CDHSEBA dimensions, as described in Table 2. These scenarios were meant to provide comparative 

results on the impact of the clinical data transformation on the performance of the ML algorithms 

based on the commonly used evaluation metrics and weigh the results against the trade-off of 

preserving the clinical validity of the data collection tool as well as the developed ML models. The 

study analyzed multiple ML algorithms because each algorithm has a different learning style in 

processing the dataset [42]. 
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Table 2 Highlights of the different data scenarios for the  development of models. 

Data scenario Input variables Target variable Description 

Scenario 1 Q4, Q5, Q6, Q7, 

Q8, Q9, Q10, Q11, 

Q12, Q13, Q14, 

Q15, Q16, Q17, 

Q18, Q19, Q20, 

Q21, Q22, Q23, 

Q24, Q25 

clinical Status The inputs utilized were similarly 

used in the manual scoring method. 

Scenario 2 A1, A2, A3, B1, B2, 

B3 and B4 

clinical Status The inputs used are the dimensions 

derived by categorizing the items in 

scenario 1 and averaging the 

responses. 

Scenario 3 Q4, Q5, Q6, Q7, 

Q8, Q9, Q10, Q11, 

Q12, Q13, Q14, 

Q15, Q16, Q17, 

Q18A, Q18B, Q18C, 

Q18D, Q18E, Q19, 

Q20, Q21, Q22, 

Q23, Q24A, Q24B, 

Q25, and Q26 

(severity level) 

clinical Status In this scenario, the complete set of 

items was passed to the machine 

learning algorithms without any 

processing or categorization. Unlike 

scenario 1, Q26 (severity level) was 

included, and the sub-items in Q18 

and Q24 items were not averaged. 

Scenario 4 A1, A2, A3, B1, B2, 

B3, B4, and Q26 

(i.e., severity level) 

clinical Status This is similar to scenario 2 with the 

addition of demographic variable of 

severity level (i.e., Q26) 

The proposed empirical scoring algorithm was implemented on SPSS version 25, as shown in 

Table 1. The variable computation function of SPSS was used for implementing the empirical scoring 

algorithm. The multiple ML classifiers were implemented on MATLAB version R2019b. The 

classification learning module of the MATLAB package was used to train the ML models. In testing 

the models generated by the 25 ML algorithms, 10-fold cross-validation was adopted in each of the 

four experimental data scenarios. Therefore, in each of the 10 cross-validations, the training dataset 

was partitioned into 10 subsets. The remaining nine data subsets were randomly used by the 

classification algorithm for testing the classifier. This validation process was iterated 10 times before 

averaging the classification error rates. Moreover, no hard coding was performed as the algorithm 

module, and the cross-validation procedures were embedded in the MATLAB R2019b platform and 

were selected from the graphical user interface before the learning phase. Finally, all the 

experimental runs were conducted on a personal computer with Microsoft Operating System. The 

different parameter combinations used in each experimental scenario are described in Table 2. 
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4. Results and Discussion 

4.1 Confusion Matrix of the Empirical Scoring Algorithm 

The basic parameters of TP, FP, TN, and FN, highlighted with the help of Table 3, were used for 

deriving different evaluation metrics, including classification accuracy, specificity, and sensitivity, to 

evaluate the performance of both empirical and ML algorithms. 

Table 3 Confusion matrix of the empirical scoring algorithm. 

 
Predicted class POSITIVE 

(“at-risk” of ASD) 

Predicted class NEGATIVE 

(control group) 

Actual class POSITIVE 

(“at-risk” of ASD) 
166 5 

Actual class NEGATIVE 

(control group) 
162 47 

(TP: true positive, FN: false negative, FP: false positive, TN: true negative) 

From the data (i.e., TP = 166, FN = 5, FP = 162, TN = 47), by using the formulae Sensitivity = 

TP/(TP + FN), Specificity = TN/(TN + FP), and accuracy = (TP + TN)/(TP + TN + FP + FN), the 

percentage sensitivity, specificity, and accuracy were estimated to be 97.1%, 22.5%, and 56.1%, 

respectively.  

4.2 Comparative Performance of the ML Models and the Empirical Scoring Algorithm Across 

Various Experimental Scenarios 

Tables 4–7 summarize the TP, FP, TN, and FN rates achieved by the multiple ML models 

implemented under data Scenarios 1, 2, 3, and 4, respectively. Comparative analysis showed that 

the empirical scoring algorithm outperformed the multiple ML models across all the experimental 

scenarios by achieving the highest sensitivity of 97%. However, in the first experimental scenario, 

Fine Gaussian SVM exhibited the highest specificity of 99% with the lowest classification accuracy 

of 57% (only 1% ahead of the empirical scoring algorithm) (Table 4). Overall, Coarse Gaussian SVM 

and Ensemble Bagged Trees achieved the highest accuracy of 78% in this scenario. 

Table 4 Modeling results for Scenario 1. 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 142 67 59 112 0.65 0.68 0.67 

2 Medium Tree 144 65 53 118 0.69 0.69 0.69 

3 Coarse Tree 139 70 71 100 0.58 0.67 0.63 

4 Linear 

Discriminant 

161 48 42 129 0.75 0.77 0.76 

5 Quadratic 

Discriminant 

0 0 0 0 0 0 0 

6 Logistic 

Regression 

163 46 46 125 0.73 0.78 0.76 
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7 Gaussian Naïve 

Bayes 

0 0 0 0 0 0 0 

8 Kernel Naïve 

Bayes 

177 32 57 114 0.67 0.85 0.77 

9 Linear SVM 171 38 50 121 0.71 0.82 0.77 

10 Quadratic SVM 165 44 51 120 0.7 0.79 0.75 

11 Cubic SVM 156 53 58 113 0.66 0.75 0.71 

12 Fine Gaussian 

SVM 

207 2 160 11 0.06 0.99 0.57 

13 Medium Gaussian 

SVM 

174 35 52 119 0.7 0.83 0.77 

14 Coarse Gaussian 

SVM 

172 37 45 126 0.74 0.82 0.78 

15 Fine KNN 148 61 51 120 0.7 0.71 0.71 

16 Medium KNN 161 48 43 128 0.75 0.77 0.76 

17 Coarse KNN 121 88 20 151 0.88 0.58 0.72 

18 Cosine KNN 169 40 59 112 0.65 0.81 0.74 

19 Cubic KNN 161 48 44 127 0.74 0.77 0.76 

20 Weighted KNN 152 57 32 139 0.81 0.73 0.77 

21 Ensemble 

Boosted Trees 

152 57 44 127 0.74 0.73 0.73 

22 Ensemble Bagged 

Trees 

170 39 46 125 0.73 0.81 0.78 

23 Ensemble 

Subspace 

Discriminant 

167 42 45 126 0.74 0.8 0.77 

24 Ensemble 

Subspace KNN 

169 40 64 107 0.63 0.81 0.73 

25 Ensemble 

RUSBoosted Trees 

143 66 46 125 0.73 0.68 0.71 

26 EMPIRICAL 

SCORING 

ALGORITHM 

47 162 5 166 0.97 0.23 0.56 

Table 5 Modeling results for Scenario 2. 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 149 60 58 113 0.66 0.71 0.69 

2 Medium Tree 149 60 58 113 0.66 0.71 0.69 

3 Coarse Tree 140 69 58 113 0.66 0.67 0.67 

4 Linear Discriminant 153 56 64 107 0.63 0.73 0.68 

5 Quadratic 

Discriminant 

0 0 0 0 0 0 0 

6 Logistic Regression 160 49 71 100 0.58 0.77 0.68 
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7 Gaussian Naïve 

Bayes 

0 0 0 0 0 0 0 

8 Kernel Naïve Bayes 163 46 73 98 0.57 0.78 0.69 

9 Linear SVM 141 68 63 108 0.63 0.67 0.66 

10 Quadratic SVM 150 59 58 113 0.66 0.72 0.69 

11 Cubic SVM 150 59 58 113 0.66 0.72 0.69 

12 Fine Gaussian SVM 150 59 59 112 0.65 0.72 0.69 

13 Medium Gaussian 

SVM 

155 54 59 112 0.65 0.74 0.70 

14 Coarse Gaussian 

SVM 

140 69 57 114 0.67 0.67 0.67 

15 Fine KNN 87 122 26 145 0.85 0.42 0.61 

16 Medium KNN 182 27 142 29 0.17 0.87 0.56 

17 Coarse KNN 138 71 54 117 0.68 0.66 0.67 

18 Cosine KNN 182 27 142 29 0.17 0.87 0.56 

19 Cubic KNN 182 27 142 29 0.17 0.87 0.56 

20 Weighted KNN 176 33 142 29 0.17 0.84 0.54 

21 Ensemble Boosted 

Trees 

148 61 59 112 0.65 0.71 0.68 

22 Ensemble Bagged 

Trees 

147 62 62 109 0.64 0.7 0.67 

23 Ensemble Subspace 

Discriminant 

158 51 65 106 0.62 0.76 0.69 

24 Ensemble Subspace 

KNN 

90 119 29 142 0.83 0.43 0.61 

25 Ensemble 

RUSBoosted Trees 

149 60 58 113 0.66 0.71 0.69 

26 EMPIRICAL 

SCORING 

ALGORITHM 

47 162 5 166 0.97 0.23 0.56 

Table 6 Modeling results for Scenario 3. 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 141 68 56 115 0.67 0.67 0.67 

2 Medium Tree 141 68 49 122 0.71 0.67 0.69 

3 Coarse Tree 138 71 60 111 0.65 0.66 0.66 

4 Linear Discriminant 167 42 33 138 0.81 0.8 0.80 

5 Quadratic 

Discriminant 

166 43 69 102 0.6 0.79 0.71 

6 Logistic Regression 175 34 31 140 0.82 0.84 0.83 

7 Gaussian Naïve 

Bayes 

180 29 24 147 0.86 0.86 0.86 

8 Kernel Naïve Bayes 198 11 33 138 0.81 0.95 0.88 
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9 Linear SVM 185 24 34 137 0.8 0.89 0.85 

10 Quadratic SVM 178 31 32 139 0.81 0.85 0.83 

11 Cubic SVM 175 34 33 138 0.81 0.84 0.82 

12 Fine Gaussian SVM 209 0 169 2 0.01 1.00 0.56 

13 Medium Gaussian 

SVM 

188 21 31 140 0.82 0.90 0.86 

14 Coarse Gaussian 

SVM 

185 24 30 141 0.82 0.89 0.86 

15 Fine KNN 153 56 38 133 0.78 0.73 0.75 

16 Medium KNN 159 50 27 144 0.84 0.76 0.80 

17 Coarse KNN 150 59 14 157 0.92 0.72 0.81 

18 Cosine KNN 177 32 41 130 0.76 0.85 0.81 

19 Cubic KNN 159 50 26 145 0.85 0.76 0.80 

20 Weighted KNN 154 55 25 146 0.85 0.74 0.79 

21 Ensemble Boosted 

Trees 

172 37 43 128 0.75 0.82 0.79 

22 Ensemble Bagged 

Trees 

166 43 45 126 0.74 0.79 0.77 

23 Ensemble Subspace 

Discriminant 

173 36 30 141 0.82 0.83 0.83 

24 Ensemble Subspace 

KNN 

177 32 32 139 0.81 0.85 0.83 

25 Ensemble 

RUSBoosted Trees 

154 55 50 121 0.71 0.74 0.72 

26 EMPIRICAL SCORING 

ALGORITHM 

47 162 5 166 0.97 0.23 0.56 

Table 7 Modeling results For Scenario 4. 

ID Model Name TN FP FN TP Sensitivity Specificity Accuracy 

1 Fine Tree 138 71 53 118 0.69 0.66 0.67 

2 Medium Tree 147 62 47 124 0.73 0.7 0.71 

3 Coarse Tree 135 74 60 111 0.65 0.65 0.65 

4 Linear Discriminant 147 62 53 118 0.69 0.7 0.7 

5 Quadratic 

Discriminant 

0 0 0 0 0 0 0 

6 Logistic Regression 150 59 53 118 0.69 0.72 0.71 

7 Gaussian Naïve 

Bayes 

0 0 0 0 0 0 0 

8 Kernel Naïve Bayes 153 56 61 110 0.64 0.73 0.69 

9 Linear SVM 147 62 62 109 0.64 0.7 0.67 

10 Quadratic SVM 144 65 54 117 0.68 0.69 0.69 

11 Cubic SVM 139 70 56 115 0.67 0.67 0.67 

12 Fine Gaussian SVM 153 56 72 99 0.58 0.73 0.66 
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13 Medium Gaussian 

SVM 

152 57 64 107 0.63 0.73 0.68 

14 Coarse Gaussian 

SVM 

146 63 57 114 0.67 0.7 0.68 

15 Fine KNN 146 63 90 81 0.47 0.7 0.6 

16 Medium KNN 163 46 76 95 0.56 0.78 0.68 

17 Coarse KNN 110 99 31 140 0.82 0.53 0.66 

18 Cosine KNN 164 45 81 90 0.53 0.78 0.67 

19 Cubic KNN 161 48 80 91 0.53 0.77 0.66 

20 Weighted KNN 150 59 63 108 0.63 0.72 0.68 

21 Ensemble Boosted 

Trees 

144 65 45 126 0.74 0.69 0.71 

22 Ensemble Bagged 

Trees 

156 53 64 107 0.63 0.75 0.69 

23 Ensemble Subspace 

Discriminant 

151 58 59 112 0.65 0.72 0.69 

24 Ensemble Subspace 

KNN 

137 72 83 88 0.51 0.66 0.59 

25 Ensemble 

RUSBoosted Trees 

139 70 47 124 0.73 0.67 0.69 

26 EMPIRICAL SCORING 

ALGORITHM 

47 162 5 166 0.97 0.23 0.56 

In the second experimental scenario, the Fine k-nearest neighbor (KNN) achieved the highest 

sensitivity of 85%. Other variants of KNN (i.e., Medium, Cosine, and Cubic KNNs) achieved 

classification accuracy values equal to that of the empirical scoring algorithm (i.e., 56%), highest 

specificity of 87% and a very low sensitivity of 17%. The Medium Gaussian SVM algorithm showed 

the highest classification accuracy of 70%. A noteworthy finding was that the Weighted KNN model 

showed the lowest classification accuracy of 54%, which was lower than that of the empirical scoring 

algorithm (56%). The results for Scenario 2 are further clarified in Table 5. 

As shown in Table 6, the results for the third experimental scenario indicated that Coarse KNN 

achieved the highest sensitivity of 92%. Fine Gaussian SVM exhibited the highest specificity of 100% 

with the lowest sensitivity of 1% and classification accuracy equal to that of the empirical scoring 

algorithms (56%). Overall, for Scenario 3, Kernel Naïve Bayes appeared to be the best performing 

algorithm with the highest accuracy of 88%, specificity of 95%, and sensitivity of 81%. 

Finally, in the fourth experimental scenario, Coarse KNN achieved the highest sensitivity of 82%, 

while Medium and Cosine KNNs showed the highest specificity of 78% each. Table 7 shows the 

experimental findings for this data modeling scenario. 

Overall, variants of KNN and SVM were the best-performing models in all the scenarios, while 

the empirical model achieved better metrics, especially in Scenarios 2 and 4. The training sessions 

of Quadratic Discriminant and Gaussian Naïve Bayes algorithms failed in all the scenarios. Thus, zero 

values were recorded for these algorithms. Furthermore, the ML models achieved higher 

performances in Scenarios 1 and 3, both of which had the highest number of noncategorized input 
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parameters. Thus, the overall performance of the models was reduced in experimental scenarios 2 

and 4, which are aligned to the clinical approach of parameter reduction. 

4.3 Comparative Performance of the ML Models and the Empirical Scoring Algorithm Based on the 

Different Evaluation Metrics 

The ML algorithms evaluated in the present study are not the most sophisticated ones used in 

other classification applications, but they have proved their merits in terms of predictive 

performance and efficiency. Thus, Figure 4(a)-(g) graphically presents the comparative performance 

of the multiple ML models and the empirical scoring algorithm based on the different evaluation 

metrics computed in Tables 4–7. 

 

Figure 4 Comparative evaluation metrics based on the various experimental scenarios. 
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4.4 Discussion 

The obtained results have provided several insights, especially regarding the effect of 

dimensionality reduction on model performance and result interpretation. First, the results 

obtained from the two experimental scenarios that used the untransformed input parameters (i.e., 

Scenarios 1 and 3) indicated better performance of the ML models in the predictive process based 

on the high evaluation metrics recorded. Closely related approaches and findings have shown that 

the inclusion of demographic parameters of severity level has improved the performance of the ML 

models [25, 30]. For instance, with the inclusion of severity level, Fine Gaussian SVM achieved an 

increased specificity of 1% between Scenario 1 and Scenario 3. This implies that apart from the main 

questionnaire items, demographic factors have a significant influence on the performance of the 

models. However, the customized rules in the empirical scoring algorithm do not consider 

demographic factors in the numerical quantification of ASD symptoms and in the final classification. 

Thus, the ML approach proved its merit in determining other influential factors that affect the 

predictive performance of the models. Another comparative analysis of classification accuracy 

verified that demographic factors influence the performance of models. Specifically, following the 

inclusion of the demographic factor of severity level, in Scenario 3, the Kernel Naïve Bayes classifier 

(with an accuracy of 88%, specificity of 95%, and sensitivity of 81%) achieved an increase of 10% in 

the classification accuracy over its performance in Scenario 1. 

Comparative analysis between the original and transformed data provided insights into the effect 

of dimensionality reduction on the performance of the models and result interpretation. Even 

though the approach followed in the dimensionality reduction is based on the expert’s knowledge, 

the results differ with respect to the evaluation metrics. Specifically, the performance of the models 

differed between the original and transformed data. For instance, the highest classification accuracy 

of 78% recorded for Scenario 1 declined by 8% and 7% after data transformations in Scenarios 2 and 

4, respectively. This is in line with the assertion made by many studies on statistical irrelevancies 

that exist between the original and transformed data [44-47]. However, unlike data-centric 

approaches, the present approach preserved the clinical validity of the transformed data, despite a 

reduction in the performance of the models. This was noted in the comparative performance 

maintained by the empirical scoring algorithm across all the experimental scenarios. For instance, 

in Scenario 2, variants of KNN (i.e., Medium, Cosine, and Cubic KNN) achieved classification accuracy 

equal to that of the empirical scoring algorithm (56%), while the Weighted KNN model recorded the 

lowest classification accuracy of 54%, which was lower than that of the empirical scoring algorithm. 

Similarly, Fine Gaussian SVM despite achieving the highest specificity of 100%, its classification 

accuracy is equal to that of the empirical scoring algorithm (i.e., 56%). Other instances that could 

prove the worthiness of the transformation approach in preserving the clinical validity of the 

screening instrument are observed in the individual evaluation metrics highlighted in Figure 4(a)-(g), 

in which the empirical scoring algorithm achieved a very high sensitivity of 97% and very low FN rate 

(FN = 5). Thus, despite 160 FPs recorded from the empirical scoring algorithm, its clinical value is 

preserved because previous studies have indicated that the FP rate should be considered a critical 

factor while developing models for the medical diagnosis of ASD [48]. This is because the cost of 

misclassifying a non-autistic person (FP) is mild. Further diagnostic tests could correct such errors. 

Moreover, in medical diagnosis, FN rates bear a higher cost than FP rates. However, one of the 

critical implications of using the empirical scoring algorithm is that the high rates of FP and TP will 
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lead to implausible figures related to at-risk ASD cases. Overall, while the empirical scoring 

algorithms achieved outstanding performance in the correct classification of true ASD cases 

(sensitivity), the best-performing ML models outperformed the empirical method in the correct 

classification of non-ASD cases while achieving considerable classification accuracies. 

5. Conclusion and Recommendations 

5.1 Conclusion 

Assessing the behavioral symptoms of patients with ASD by screening is a common preliminary 

stage for identifying people at risk of ASD and a crucial approach to fasten diagnostic referrals. 

Nonetheless, scoring autistic traits with the current screening instruments, such as the Autism-

Spectrum Quotient (AQ) and ADI-R, relies solely on customized rules that have been associated with 

subjective interpretations. Thus, the trade-off in ASD screening and diagnostics studies is on 

improving the speed of the assessment processes and providing accurate and objective decisions. 

Previous studies have indicated that the merit of automated models based on ML techniques 

depends on accurate assessment systems from retrospective cases and controls. Recently, ML 

models for behavioral assessment of ASD have been broadly developed on the basis of a variety of 

pre-processed input data. Notably, previous studies mainly focused on rapid and accurate screening 

and diagnosis of ASD. However, to achieve rapidity of the process, various data selection and 

transformation techniques were used despite evidence of insufficiency of the reduced items and 

the inability of the transformation techniques to preserve the clinical validity of the screening and 

diagnostic instruments. Moreover, none of the previous studies investigated the sufficiency of the 

reduced parameters against the basis on which clinicians diagnose ASD. Consequently, clinical 

validity and real-life applicability of the ML models are at stake despite the superior evaluation 

metrics recorded in preceding studies. The performance of the models was evaluated based on the 

metrics of specificity, accuracy, sensitivity, and other variables. In essence, the multitudes of 

challenges for rapid and accurate ASD assessment are yet to be resolved by the preceding ML 

approaches. In the present study, ML was applied to behavioral screening and diagnosis of ASD by 

using a novel procedure that comprises a few behavioral features and preserves the clinical validity 

of the assessment instrument. Consequently, comparative analyses were performed between the 

empirical algorithm of the ASD screening instrument and multiple ML models. The study findings 

revealed the possibility of developing ML-based ASD assessment systems with excellent 

classification accuracy and adhering to the conceptual knowledge used in the clinical assessment of 

ASD. In the present study, an ML model based on Kernel Naïve Bayes was found to be the best-

performing model, with a classification accuracy of 88%. The study findings and approaches pave 

the way for developing clinically valid ML-based systems that clinicians, parents, and other 

stakeholders can rely on for cost-effective screening and diagnosis of ASD symptoms.  

5.2 Recommendations 

Although several studies have demonstrated the use of the ML approach to assess ASD, future 

studies should establish the clinical relevance of the data-centric approaches and readjust the 

scientific use of the assessment instruments. Accordingly, future studies should investigate the best 

practices of scale development and feature reduction in line with the professional basis of ASD 
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diagnosis in categorizing and evaluating the clinical validity of robust ML models. Moreover, vital 

recommendations based on the findings of the present study were proposed based on the 

utilization of different experimental scenarios. Specifically, the best-performing ML models could 

be embedded in any ASD assessment app on the basis of the parameters used in the four data 

scenarios. In the first scenario, the ML-enabled ASD assessment app can have at most 30 input 

parameters. Although this scenario cannot streamline the parameters, the cost of implementation 

will be cheaper than that of the commonly used instruments such as SRS and ADOS, which have 65 

and 93 items, respectively. Comparative analysis of the performance of the superior ML model 

against the empirical scoring algorithm indicated that among the key benefits of implementing the 

ML model is its excellent 72% increase in the TN rate over the 23% recorded for the empirical 

algorithm. Similarly, implementing the superior ML model of Scenario 3 could translate to the same 

benefits achievable in Scenario 1. However, implementing ML models with fewer input parameters 

can lead to reduced cost of the physical gadgets required and an improvement in the speed of 

administering the assessment tool. Specifically, implementing the superior models in Scenario 2 or 

Scenario 4 can provide an ML-embedded ASD screening app with at most eight input parameters 

with an overhead of implementing the empirical feature transformation rules. A comparative 

analysis between the ML models and the empirical scoring algorithm indicated that the best-

performing ML model in Scenario 2 (i.e., Medium Gaussian SVM) achieved a 14% increase in 

classification accuracy over the empirical scoring algorithms. Moreover, despite having fewer items, 

the best-performing model in Scenario 4 outperformed the empirical scoring algorithm with 

increased accuracy and sensitivity of 15% and 47%, respectively. Another vital recommendation is 

concerning the present dimensions of the data collection instrument used in the present study. 

Future studies should look at the possibility of redesigning the data collection instrument and 

improving its scientific robustness on a behavioral scale. Recommendable approaches to categorize 

and establish valid dimensions from CDHSEBA include principal component analysis. Furthermore, 

future studies should implement enhanced instruments with more complex and robust algorithms, 

as well as some of the optimization techniques demonstrated in previous studies. Moreover, the 

visibility of the clinical validity of the proposed approach will enable clinicians to trust the worthiness 

of the evaluation metrics recorded. The present study is limited by the few cases sampled in the 

data collection stage and the possible factors that might have influenced the data responses. Other 

limitations include the use of a novel instrument that is not validated by multiple studies similar to 

other reputable scales employed in ASD assessment. Future studies should consider applying this 

research approach to the gold standard scales. 
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