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Abstract 

In the present study, we present the results of the modeling of incoming information 

processing in a neuroprocessor that implements a biomorphic spiking neural network with 

numerous neurons and trainable synaptic connections between them. Physico-mathematical 

models of processes of encoding information into biomorphic pulses and their decoding 

following a neural block into a binary code were developed as well as models of the process 

of routing the output pulses of neurons by the logic matrix to the synapses of other neurons 

and the processes of associative self-learning of the memory matrix as part of the hardware 

spiking neural network with long-term potentiation and with the spike-timing-dependent 

plasticity of the memristor. The performance of individual devices of the biomorphic 

neuroprocessor in processing the incoming information is shown based on developed models 

using numerical simulation. 
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1. Introduction 

Spiking neural networks (SNN) have emerged as promising artificial neural network (ANN) types. 

SNNs are more biologically plausible than point-neuron ANNs, have a simpler structure due to the 

lesser number of neurons, and are able to implement biosimilar self-learning mechanisms [1]. 

However, SNNs require higher computing power to calculate the function of each neuron. This issue 

can be solved by hardware implementation of SNN. 

Several studies have reported the hardware implementations of self-learning SNN with discrete 

memristor synapses [2-6]. However, the proposed discrete circuits for hardware implementation of 

SNN cannot be used to construct a super-large hardware neural network due to lack of integration 

of memristors and a significant number of active electronic elements with high power consumption 

in the circuits. 

Currently, existing hardware devices based on memory matrices with an integrated memristor 

crossbar [7-11] perform highly specialized functions, largely matrix multiplication—a weighted 

summation of input voltage pulses. Certain hardware [10, 11] contains integrated memristor 

crossbars; however, its self-learning is delayed due to software calculation of weight adjustment in 

the peripheral system. The weight update procedure results in a loss of information because the 

input information is ignored during this process. The self-learning can occur while input pulses are 

processed in the memristor crossbar, and the activated neuron return pulses to the synapse [12]. 

Building highly integrated hardware SNN can avoid the above issues. Earlier, our team had 

presented the biomorphic neuroprocessor concept [13], which is based on a memristor-diode 

crossbar and implements a hardware SNN with numerous biomorphic neurons [14]. Key nodes of 

the hardware component of the neuroprocessor, super-large memory [15], and logic [13] matrices 

are used, which are an array of synapses and specify the weight and route of communication 

between the neurons, respectively. These matrices must be super-large because each neuron in the 

network can have numerous synaptic connections. The neuroprocessor is unique as it is built based 

on the original electrical biomorphic neuron model and is biomorphic in terms of performing the 

functions of a biomorphic neural network created based on the original software biomorphic 

neuron model. Furthermore, the neuroprocessor contains input encoding [16] and output decoding 

[17] devices built using a universal logic matrix based on a composite memristor-diode crossbar. The 

maximum size of the square logic [13] and memory matrices [15] should be at least 106 cells, 

according to the analysis of input signal attenuation. Thus, it is possible to construct input and 

output devices and a hardware neural network of the appropriate size using these matrices. 

Current memristors are of low stability and reproducibility. Nevertheless, because calculations 

of hardware biomormphic SNN are distributed over the whole network, it lowers requirements to 

maintain each memristor’s performance stability and reproducibility. A hardware implementation 

of a network allows the embedding of an electric circuit and algorithm of the astrocyte, which can 

increase the conductivity of memristors adjacent to the failed memristor [18, 19]. In addition, 

certain methods can increase fault tolerance by adjusting the input signals [20, 21]. 

A previous study [15] reported a physical model of the process of signal processing for weighing 

voltage pulses and summing cell currents by a memory matrix. The physical models consisted of 

processes of encoding the information into biomorphic pulses and their decoding into a binary code 
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following a neural block [16], routing the neuron output pulses by the logic matrix to the synapses 

of other neurons [13], and associative self-learning of the memory matrix as a component of a 

hardware SNN [12].  

The purpose of this study is to construct physico-mathematical models based on the above-

mentioned physical models of individual neuroprocessor nodes. Numerical simulations based on 

the developed models can be used to confirm the performance of corresponding nodes. 

2. Information Encoding into Biomorphic Pulses Processes Simulation 

It is necessary to transform the incoming information from a number set into a pulse sequence 

because a neuroprocessor is a hardware implementation of a spiking neural network. Biosimilar 

pulses [14] are generated in the input device of the biomorphic neuroprocessor [16], built based on 

a universal logic matrix with a memristor-diode crossbar. 

2.1 Information Encoding Model 

The physico-mathematical operational model of the encoder’s electrical circuit, as well as the 

operational model of the logic matrix (the spikes router), is based on programmable logic circuits 

that form disjunctive normal forms (DNF). The logic matrix should have the functional completeness 

of logical operations to implement a set of DNFs from the operations NAND and NOR. A complete 

logical basis is realized in the logic matrix when logical variables are supplied in the direct and inverse 

form. AND logic gates (conjunctions) are implemented using the diode-resistive logic with the ability 

to disconnect any gate inputs by changing the resistance of the memristor in the memristor-diode 

crossbar. The output inverters restore the logical voltage values. The output conductors of the 

second matrix are connected to pull-up resistors. In the first matrix, delay lines are connected to 

pull-up resistors as a voltage source. The matrices are chained in series and create a perfect 

disjunctive normal form that switches delayed pulses to outputs based on a binary number at the 

input. 

The encoder logic circuit is a perfect disjunctive normal form. The encoding is performed in two 

operations: first, the input binary number is converted into a positional code, and afterward, 

according to the position, the signal from the corresponding delay line is transmitted to the output. 

Thus, the binary address decoder circuit is implemented in the conjunction matrix. 

Decoder commutation matrix elements 𝑚𝑖𝑗  are bound to values of positive integer 𝑗  in the 

binary form. 

𝑗 = ∑ 𝛼𝑖𝑗2𝑖

𝑛−1

𝑖= 0

;  𝑚𝑖𝑗 = {
𝛼𝑖𝑗 , 𝑖 < 𝑛

𝛼𝑖𝑗̅̅ ̅̅ , 𝑛 ≤ 𝑖 < 2𝑛
, 𝑗 ∈ [0, 2𝑛 − 1], 𝑖 ∈ [0, 2𝑛 − 1], (1) 

𝑛 – bit depth of the input number. The conversion of the number 𝑥 into the value of the pulse delay 

from the neuron 𝑙(𝑥) is determined using the Gaussian function. 

𝑙(𝑥) = 𝑊 ∙ (1 − exp (−
1

2
(

𝑥 − 𝜇

𝜎
)

2

)) . (2) 
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Here 𝑊  is the temporal width of the encoding window; 𝜇  is the eigenvalue of the neuron, the 

encoding of which will have the minimum delay; 𝜎 is the parameter that determines the selectivity 

of the response of the neuron. 

Thus, for j line (of j neuron) the delay value is: 

𝑙𝑗 = 𝑊 ∙ (1 − exp (−
1

2
(

𝑗 − 𝜇𝑗

𝜎𝑗
)

2

)) . (3) 

The accuracy of the input number representation depends on the number of used bits – n. The 

number of delay lines determines the transform accuracy. During encoding, the input number is 

sampled by a pulse from the control circuit. The delay circuit consists of two RC circuits and logic 

gates. The time constant of the first integrating RC circuit determines the delay value. The delay is 

a programmable value because a memristor is used in the RC circuit. The second RC circuit is 

responsible for the width of the output pulse. 

2.2 Simulation of the Input Unit of the Neuroprocessor 

Numerical simulation of the operation of the encoder was conducted in the specialized program 

MDC-SPICE (Memristor-Diode Crossbar - Simulation Program with Integrated Circuit Emphasis) 

using Formulae (1)-(3), as well as Formula (5) for the model of the logic matrix cell operation. The 

high resistance state of memristors was 100 kΩ, and the low resistance state was 1 kΩ. Pulses 

formed by the delay line were of 1.5 V magnitude and 1 ms width. The inverter power supply was 

1.5 V. Figure 1 shows the result of modeling the encoding of two input numbers n1 and n2 by a 

population of three virtual neurons into the delay and frequency of the pulses simultaneously 

performed by the electrical circuit [11]. Every 20 ms, the number n1 was sequentially increased from 

1 to 7, whereas n2, on the contrary, was decreased from 7 to 1. 

 

Figure 1 Simulation of encoding modes by a population of three neurons into the 

frequency (1) and delay (2) of pulses, as well as simultaneously into delays and into the 

frequency of pulses by a population of neurons: (a) change in input numbers in time; (b) 

- output pulses. 
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Simultaneous encoding of the pixel brightness value and its spatial derivative into delay and 

frequency, respectively, by a population of virtual neurons, allows the transfer of more visual 

information for the same amount of time than frequency or delay encoding. Although biological 

neural networks display similar coding, it does not take into account the time derivative [22]. 

3. Simulation of the Logic Matrix Operation in the Mode of Neurons Unit Output Signals Routing 

The physico-mathematical model of the cell operation was created based on simplified electrical 

models of the memristor and Zener diode to develop and numerically simulate an extra-large logic 

matrix based on a composite memristor–diode crossbar. 

3.1 Logic Matrix Cell Operation Model 

The electrical circuit of a logic matrix cell is a combination of a memristor and a selective Zener 

diode, connected to one of the crossbar conductors. In turn, this conductor is connected to a 

transistor-based CMOS inverter gate [13]. 

An idealized current–voltage characteristic was built for the Zener diode: it is a piecewise linear 

function of three straight lines. The differential electrical resistance of the Zener diode is set large 

ranging from reversible breakdown voltage to the opening voltage of the p–n junction. In the areas 

of the plot far from strong non-linearity, the piecewise linear current–voltage characteristic 

coincides with the current–voltage characteristic in the diode model [23]. The total voltage at the 

input of the inverter is described by the following formula: 

𝑉𝑗 =

𝑉𝑏

𝑅𝑏
+ ∑

𝑉𝑖

𝑅𝑖 + 𝑅𝑑(𝑉𝑑𝑖)𝑖

1
𝑅𝑏

+ ∑
1

𝑅𝑖 + 𝑅𝑑(𝑉𝑑𝑖)𝑖

;  𝑉𝑑𝑖 = 𝑉𝑗 − 𝐼𝑖𝑅𝑖;  𝑅𝑑 ≈ {
0, 𝑉𝑖 =  0,

∞, 𝑉𝑖 ≈ 𝑉𝑏 .
(4) 

Here 𝑉𝑏  is the bias voltage, 𝑅𝑏  is the pull-up resistor, 𝑅𝑑  is the Zener diode resistance, 𝑅𝑖  is the 

memristor resistance, and 𝑉𝑖 is the input voltage of the cell. Given that the input voltages, within a 

small error, can only have two values corresponding to logical 0 and 1, it is sufficient to consider the 

work at the level of logical variables. Every j-th crossbar column within a logic inverter performs the 

NAND function of input bits 𝑥𝑖: 

𝑦𝑗 = ⋀ 𝑚𝑖𝑗𝑥𝑖

𝑛

𝑖= 0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

. (5) 

Commutation matrix elements 𝑚𝑖𝑗 ∈ [0,1] determine will 𝑥𝑖 be used in conjunction or not. 

3.2 Operational Model of Logic Matrix in the Mode of Pulse Routing 

The neural unit sends pulses to the logic matrix to transmit the information [13]. The shape of 

pulses is highly distorted due to previous transformations and the magnitude decreases, thereby 

degrading the entire signal. The best solution, in this case, is using a routing pulse using a digital 

circuit element that brings pulses into a normalized form by amplifying them and limiting their 

magnitude. The degradation of the signal can be avoided using a logic matrix due to the presence 
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of inverter gates in it. Inverters amplify the signal, i.e., the output splitting factor of the neuron is 

large, which is an advantage in the case of extra-large block size. 

The logic matrix has two functions: as a router, it directs output pulses between the neurons and 

protects signals from degradation. In the case of complex routing of pulses, the logic matrix can be 

made in a 3D topology containing sufficient layers. Inside the layer, signals are routed horizontally 

through conductive buses; between the layers, the signal is switched in the vertical direction 

through memristors. The 3D logic matrix solves the problem of transmitting the signals from one 

layer to another vertically without using the complex technology of 3D assembly of wafers or 

through-silicon vias. 

The physico-mathematical model of the router that directs the output pulses of neurons to the 

synapses of other neurons is implemented in a logic matrix of two functional layers. Memristors on 

the primary diagonal of the first layer of the logic matrix are programmed to have low resistance. 

Therefore, the NOT element is formed by a set of one-input NAND elements in the first layer of the 

matrix. Low-resistance memristors in the second layer of the logic array connect the required 

outputs from the first layer to the input bus of the output inverter. Next, the commutation matrix 

is diagonal: 𝑚𝑖𝑗 = 𝛿𝑖𝑗 , where 𝛿𝑖𝑗 is the Kronecker symbol. 

𝑦𝑗 = ⋀ 𝑚𝑖𝑗𝑥𝑖

𝑛

𝑖= 0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ⋀ 𝛿𝑖𝑗𝑥𝑖

𝑛

𝑖= 0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

= 𝑥𝑗̅. (6) 

One inverter and memristors connected to it perform conjunction with negation over the signals 

inverted in the first layer, which is equivalent to a disjunction over them. 

𝑦𝑗 = ⋀ 𝑚𝑖𝑗𝑥𝑖̅

𝑛

𝑖= 0

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

= ⋁ 𝑚𝑖𝑗𝑥𝑖

𝑛

𝑖= 0

. (7) 

Consequently, the logic matrix consisting of two functional strata allows routing signals from any 

of its inputs to its random output. The signal routes programmed in the logic matrix determine the 

neural network architecture to be installed into the neuroprocessor. 

3.3 Numerical Simulation of Pulse Routing 

The performance of a 3D logic matrix as a router was analyzed by SPICE simulation of a fragment 

consisting of two layers, which, for example, contains two logic cells. The low resistance state of 

memristors was 10 kΩ and the high resistance state was o 1 MOhn. The inverter power supply was 

1.5 V. Figure 2 shows the voltage levels at the inputs and outputs of the matrix obtained during the 

simulation. 
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Figure 2 Diagrams of voltage at the inputs and outputs of the layers of the logic matrix: 

a) input of the upper layer; b) outputs of the upper layer/inputs of the lower layer; c) 

output of the lower layer; and d) output of the lower layer. 

Corresponding commutation matrices are: 

𝑚𝑖𝑗
(1)

= (
1 0
1 1

) ; 𝑚𝑖𝑗
(2)

= (
1 0
0 1

). 

Input variables X1 и X2 are provided in the inverted form. Thus, the following logic functions are 

being implemented using the higher layer: 

𝑌11 = 𝑉(𝑥111) = 𝑋1 𝑉 𝑋2 и 𝑌12 = 𝑉(𝑥112) = 𝑋2, 

The logic functions of the lower layer are: 

𝑌21 = 𝑁𝑂𝑇 (𝑌11) = 𝑁𝑂𝑇 (𝑋1 𝑉 𝑋2) и 𝑌22 = 𝑁𝑂𝑇 (𝑌12) = 𝑁𝑂𝑇 (𝑋2). 

Figure 2 shows that the output matrix signals obtained by simulation correspond to the 

programmed logic functions: the signal at Y11 is the disjunction of X1 and X2, and the signal at Y12 

is the inversion of X2. Signals Y21 and Y22 are gated by pulses supplied to power the output inverters. 

The redirection of signals from any inputs of the logic matrix of two functional layers to its 

arbitrary output was shown by numerical simulation. 

4. Associative Self-Learning of a Memory Matrix as Part of Hardware Spiking Neural Network  

Self-learning of synapses in the memory matrix follows Hebb’s rule, as in a real synapse: the 

strength of the connection between simultaneously activated neurons increases. The change in the 



OBM Neurobiology 2022; 6(3), doi:10.21926/obm.neurobiol.2203134 
 

Page 8/16 

weight of a synapse depends on the difference between the firing times of the presynaptic and 

postsynaptic neurons ∆𝑡 = 𝑡𝑝𝑟𝑒 − 𝑡𝑝𝑜𝑠𝑡. 

The original cell electrical circuit requires a specific implementation of self-learning rules. The 

presynaptic signal is a pair of voltage pulses of the same amplitude but different polarities due to 

the use of a complementary pair of memristors in the cells in both self-learning models. When 

triggered, the neuron sends a negative voltage pulse (post) back to the synapse. In this case, a 

change in the strength of the synapse occurs when pulses from the presynaptic neuron arrive at the 

synapse. The shape of the presynaptic pulses determines the implemented local learning rule. 

4.1 LTP Rule Self-Learning Model 

The long-term potentiation (LTP) rule assumes an increase in the weight of the synapse when 

presynaptic and postsynaptic signals coincide in time. Therefore, the voltage pulse sign of the 

presynaptic signals is maintained constant in the corresponding model, changing the state of the 

memristors in the cell, always in the direction of decreasing resistance and increasing the weight of 

the synapse. 

Weight of synapse, that is, memory matrix cell is: 

𝑤 =
1

𝑅𝑑
(

𝑅− − 𝑅+

𝑅− + 𝑅+
), 

where 𝑅𝑑 is the Zener diode resistance, and 𝑅+ и 𝑅− is the resistance of cell memristors. 

The implementation of the LTP rule involves the use of voltage pulses, the shape of which is 

shown in Figure 3a. 

 

Figure 3 Pre and postsynaptic voltages of the memory matrix cell: (a) LTP and (b) spike-

time-dependent plasticity (STDP). 

The plasticity function at initial states of memristors from the middle of the possible range 𝑅+ =

𝑅− =  0,5 ∙ (𝑅𝑜𝑓𝑓 + 𝑅𝑜𝑛) = 𝑅0 described by the analytical formula obtained using the memristor 

model: 

∆𝒘(∆𝒕) = [
𝟐𝑹𝟎𝑹𝒅

𝜷𝑽𝒑(𝝉 − |∆𝒕|)
− 𝑹𝒅]

−𝟏

. 
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The analytical representation of the plasticity function allows to select parameters of the 

memristor to achieve the optimal learning rate of the neural network, which ensures the 

convergence of the numerical calculation of the neural network in minimum time. 

4.2 STDP Rule Self-Learning Model 

The STDP rule works similarly to LTP for Δt < 0. According to this rule, the weight of the synapse 

should decrease for Δt > 0. In the corresponding model, a decrease is implemented using alternating 

voltage pulses (Figure 3b). The final direction of change in the state of memristors and the weight 

of synapses are determined by the prevailing signs of the voltage of presynaptic pulses during the 

action of the postsynaptic pulse. 

The width of the initial phase of the presynaptic pulse and the postsynaptic pulse is 𝜏, and the 

width of the second phase of the presynaptic pulse is 𝜏1 > 𝜏. The complex shape of pulses in the 

synapse causes the analytical plasticity function to be piecewise and consist of six curves: 

1) ∆𝑤(∆𝑡) =  0, при ∆𝑡 > 2𝜏; 

2) ∆𝑤(∆𝑡) = [𝑅𝑑 −
2𝑅0𝑅𝑑

𝛽𝑉𝑝(2𝜏−∆𝑡)
]

−1

, when 𝜏 < ∆𝑡 < 2𝜏; 

3) ∆𝑤(∆𝑡) = [
2𝑅0𝑅𝑑

𝛽𝑉𝑝𝜏
− 𝑅𝑑 + 2𝑅𝑑

∆𝑡

𝜏
]

−1

, when 0 < ∆𝑡 < 𝜏; 

4) ∆𝑤(∆𝑡) = [
2𝑅0𝑅𝑑

𝛽𝑉𝑝𝜏
− 𝑅𝑑]

−1

= 𝑐𝑜𝑛𝑠𝑡, when 𝜏 − 𝜏1 < ∆𝑡 < 0; 

5) ∆𝑤(∆𝑡) = [
2𝑅0𝑅𝑑

𝛽𝑉𝑝(𝜏1+∆𝑡)
− 𝑅𝑑]

−1

, when −𝜏1 < ∆𝑡 < 𝜏 − 𝜏1; 

6) ∆𝑤(∆𝑡) =  0, when ∆𝑡 < −𝜏1. 

4.3 Numerical Simulation and Testing of a Hardware Pulsed Perceptron 

Hardware perceptron electrical circuit [12] is based on a memory matrix with complementary 

memristor synapses [15] constructed using a memristor–diode crossbar with four pairs of input 

conductors and two output buses [24]. Accordingly, the crossbar contains eight cells, which act as 

synapses of the neural network. The average resistance of memristor–diode half-cell after 

fabrication was 18.8 MΩ with a standard deviation of 31.6 MΩ.  

The neural network is a single-layer perceptron that consists of four virtual input neurons and 

two hardware output neurons. The output layer of the perceptron consists of two hardware 

neurons based on operational amplifiers. The electric circuit of a neuron consists of a current–

voltage converter, an analog integrator, a comparator, a delay circuit in the form of an integrating 

RC circuit, and a field–effect transistor. The current–voltage converter is the input of the neuron 

and maintains a virtual zero potential on the output buses of the crossbar, providing the summation 

of the output currents of synapses. A voltage proportional to the input synaptic current is supplied 

to the integrator, simulating charge accumulation on the neuron membrane. 
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A neural network consisting of four virtual input neurons and two hardware output neurons was 

trained (Figure 4) to recognize a set of input images with a resolution of 2 × 2 pixels. The input 

picture pixel brightness values were converted into the average frequency of the uniform input 

pulse sequence using the PIC family microcontroller. The pulse magnitude was 6 V and the width 

was 1 ms. The resulting frequency of the pulse was proportional to the brightness value of the pixel. 

The simulation was performed in the MDC-SPICE program, in which the averaged experimental 

current–voltage characteristics of these states were used as table functions instead of constant 

resistances in the low-conductivity and high-conductivity states of the memristor. The experimental 

and model learning curves presented in Figure 4 show the proportion of correctly recognized input 

images from the number of learning cycles (epochs). Each training cycle contained 128 pictures 

obtained by adding noise to the two original reference pictures. 

 

Figure 4 Self-learning curves of the hardware neural network: green color is for 

experiment and blue is for SPICE simulation. 

The model learning curve is smoother than the experimental one, which could be attributed to a 

change in the conductivity in the memristor model occurring smoothly, without jumps. The 

difference between the experimental and calculated curves is attributed to the unequal 

characteristics of individual memristors in the crossbar. 

The new association generation occurs during retraining due to the receipt of new input 

information. It manifests itself as new impulse at the input of the neuron, as shown in Figure 5. Such 

generation has already been shown on discrete memristors in associative memory circuits [2, 3], 

reproducing the formation of a conditioned reflex according to Pavlov. An increase in the input 

voltage of a neuron, proportional to the synaptic current, is due to an increase in the synapse during 

the generation of a new association. 
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Figure 5 Generation of a new association with the known one: green color is for 

experiment and blue is for SPICE simulation. 

The overlapping of output pulses in time is due to the assignment of the corresponding identical 

input voltage pulses in the experiment and during the simulation. The difference in the rate of 

increase in the voltage amplitude of the pulses is attributed to the change in the conductivity of the 

memristor in the experiment, which has a probabilistic spread. 

5. Simulation of Decoding Biomorphic Pulses into a Binary Code 

5.1 Pulses Decoding Model 

The physico-mathematical model of the output device operation is based on the pulse signals 

processing in a universal logic matrix [13], one layer of which is a set of logic gates “AND” or “OR” 

with arbitrarily connected inputs. An information value or its modification was set by routing pulse 

signals and combining them according to the NAND logic on one line. The logical element “OR” 

increases the frequency by combining the pulses of the input signal with the pulses of another signal 

or generator. This is equivalent to the operations of the summation of information values. The 

information is modified by switching the routing of information pulses between the positions of the 

lines of the logic matrix. The transformation formula in the model was set by programmable 

connections of the routing matrix. Within the routing matrix, there must be N·K possible 

connections between N input and K output lines, which is required to program K routing links. For a 

one-to-one transformation, the condition N = K must be satisfied for a bijection mapping of the 

input set of values to the output one, and it can also be N > K in the case of an incomplete 

transformation. 

The commutation matrix of the output device has non-zero elements: 

𝑚𝑖𝑗 =  1, 𝑖 ∙ 𝑛 ≤ 𝑗 < (𝑖 + 1) ∙ 𝑛, (8) 

where 𝑛 is the bit depth of the binary number generator, 𝑖 is the pulse input index, and 𝑗 is the 

output bits index. 

For states of the output inverters of the logical matrix 𝑦𝑗, the following relation is valid: 
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𝑦𝑗 = (⋀ 𝑚𝑖𝑗𝑥𝑖

𝑙

𝑖= 0

) ∧ 𝑔𝑗 , (9) 

where 𝑥𝑖 is the state of i-th input of logic matrix, 𝑙 is the full number of inputs, and 𝑔𝑗 is the voltage 

state of the pull-up resistor as determined by the binary number generator. 

5.2 Simulation of Operation of the Output Device of the Neuroprocessor 

The mathematical model for the electrical circuit is shown on the left, and the results of its 

numerical simulation are shown on the right in Figure 6.  

 

Figure 6 Electric circuit and simulation results of decoding a two-bit pulse signal into a 

two-bit number using a generator of binary numbers. 

Numerical simulation is based on Formulae (5), (8), and (9) in the specialized MDC-SPICE program 

for the output device operation that decodes a two-bit pulse signal from a population of neurons 

into a two-digit number using a binary number generator. The high resistance state of memristors 

was 100 kΩ, and the low resistance state was 1 kΩ. Pulses formed by the generator were of 1.5 V 

magnitude, and the width was 1 ms. The inverter power supply was 1.5 V. The hexadecimal two-

digit number format in the range from 0 × 00 to 0xFF was selected as an example of decoding. 

The diagram shown in Figure 6 on the right shows that according to the SPICE simulation and 

Formula (9), the decoded value corresponds to the given example. The values of the converted 

number at the input are shown on the diagrams by the signals input_0 and input_1 in the form of 

delayed red pulses. The delay value of these pulses is determined by the position of the red pulses 

in relation to the blue clock signal. Plots of blue color are obtained by combining the pulses of the 

binary number generator. There are 15 pieces in one frame for the hexadecimal format of the 

information signal. 
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Pulses are counted from the end of the frame. In the first frame, the position of the input pulse 

on the input_0 line corresponds to the delay value 14, whereas the position of the input pulse on 

the input_1 line is 12, implying that in the first frame, the hexadecimal number 0xCE is encoded as 

delays. In the second frame, the number 0xAA is encoded. The result is output in a parallel binary 

code using eight output lines. In the first frame, as shown in the SPICE simulation diagram (Figure 3 

on the left), on the lr and lh lines, the binary value is b’11001110’, corresponding to the hexadecimal 

number 0xCE. In the second frame, the lines lr and lh show the binary value b’10101010’, 

corresponding to the hexadecimal number 0xAA. 

6. Summary 

The physico-mathematical model of the cell operation was created based on simplified electrical 

models of the memristor and Zener diode for numerical simulation of an extra-large logic matrix 

with a composite memristor-diode crossbar. 

The physico-mathematical model of processing signals in an extra-large logic matrix of a 

biomorphic neuroprocessor during routing the output signals of a neural block was developed. The 

results of numerical simulation, conducted on the basis of the developed models, of the routing 

process of output pulses of neurons to the synapses of other neurons in the logic matrix are 

presented. 

The physico-mathematical model of information processing in the encoding device of a 

biomorphic neuroprocessor based on a logic matrix with a composite memristor–diode crossbar 

was developed. The input encoder in the mode of encoding a binary number simultaneously into 

frequency and delay of pulses by a population of three neurons is numerically simulated in the 

specialized program MDC-SPICE. The last type of information encoding is observed in biological 

neural networks [3]; however, it is not considered a time derivative. 

A physico-mathematical model of the information processing in the logic matrix as a decoding 

device of a biomorphic neuroprocessor was developed. The results of numerical simulation for 

decoding pulse-type information signals into a binary data format were obtained. A compact 

implementation of a neuroprocessor signal decoding circuit is shown, which can be implemented in 

one layer of a memristor–diode logic matrix. The result of the circuit solution was achieved using 

logical transformations performed inside the memristor–diode crossbar and a binary number 

generator installed on the periphery of the memristor logic matrix. 

Physico-mathematical models of associative self-learning of a memory matrix were developed, 

providing a specific implementation of the LTP and STDP self-learning rules associated with the 

originality of the memristor–diode cell. Using numerical simulation, the ability of a memory matrix 

with a number of cells 4 × 2 to associative self-learning as a component of hardware spiking neural 

network was demonstrated. The results of numerical simulation are in good agreement with the 

experimental data, confirming the correctness of the developed physico-mathematical learning 

model according to the STDP rule. 

The numerical simulation of hardware spiking neural network based on a memristor–diode 

crossbar demonstrates the generation of a new association. 

Thus, the operability of individual neuroprocessor nodes was demonstrated using numerical 

simulation based on the developed models. The next step will be simulation and benchmarking of 
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the complete circuit of the neuroprocessor, including input and output devices, a router, and a 

hardware neural network. 
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