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Abstract 

The present interdisciplinary study discusses the physical foundations of the neurobiological 

processes occurring during social interaction. The review of the literature establishes the 

difference between Intentionality and Intention, thereby proposing the theoretical basis of 

Shared Intentionality in humans. According to the present study, Shared Intentionality in 

humans (Goal-directed coherence of biological systems), which is the ability among social 

organisms to instantly select just one stimulus for the entire group, is the outcome of 

evolutionary development. Therefore, this interaction modality should be the preferred, 

archetypal, and most propagated modality in organisms, attributed to the Model of 

Hierarchical Complexity Stage 3. This characteristic of biological systems facilitates the 

training of the new members of the group and also ensures efficient cooperation among the 

members of the group without requiring communication. In humans, Shared Intentionality 

contributes to the learning of newborns. The neurons of a mature organism may teach the 

neonate neurons regarding the fitting reactions to the excitatory inputs of the specific 

structural organization. This enables the neonate neurons to develop a Long-Term 

Potentiation that links particular stimuli with specific embodied sensorimotor neural 

networks. The present report discusses three possible neuronal coherence agents that could 

involve quantum mechanisms in cells, thereby enabling the distribution of the quality of goal-

directed coherence in biological systems (Shared Intentionality in humans). Recently reported 
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case studies conducted online with the task of conveying the meaning of numerosity to the 

children of age 18–33 months revealed the occurrence of Shared Intentionality in mother-

child dyads in the absence of sensory cues between the two, which promoted cognitive 

development in the children. The findings of these case studies support the concept of 

physical foundations and the hypothesis of the neurophysiological process of social 

interaction proposed in the present study. 

Keywords  

Embodied cognition; goal-directed coherence; primary data entry; quantum brain; shared 

intentionality; social cognition; social interaction 

 

1. Introduction 

Piaget categorized the sensorimotor behavior development stage into four substages, each 

characterized by the development of new skills. According to Piaget, during the first substage 

named ‘reflexes’, an infant is just capable of manifesting pure reflexes [1]. In this stage, the goal-

directed behavior is pure reflexes [2]. Many parents would confirm these considerations based on 

their experience with their children – intentional actions do not manifest in infants prior to the age 

of 2 months. However, this postulate of Piaget has been challenged by the social achievements of 

newborns under experimental conditions, where young infants have demonstrated varying social 

behavior, including imitation, facial recognition, recognizing the crying of other babies, etc. One 

could wonder how the neonates categorize a monolithic and uncategorized infinity to recognize a 

goal. For instance, in the case of imitation, how do neonates become sufficiently aware of their self- 

movements, and how then, do they map these onto the movements of others [3, 4]. According to 

Piaget, it is only in Stage III of secondary circular reactions that the cause and effect refer to the 

infant's self-action and its consequences, i.e., intentions.  

These arguments appear to create a dichotomy. It could be that neonates utilize intentionality 

for the cognition of reality. However, intention is a conscious decision and is, therefore, not possible 

at the neonatal stage; i.e., the internal objectives of the infants could only be activated by the 

immediate environmental stimuli. In contrast, environmental stimuli, excluding those that 

correspond to primitive reflexes, are unintelligible and, therefore, unacceptable to infants. This 

dichotomy reflects the Primary Data Entry (PDE) problem. “Everything is known in comparison”, as 

argued by René Descartes. Wittgenstein also claimed that the occurrence of communication 

requires a shared understanding of the meaning of the conveyed signal within a particular context 

among the community of users. That is to say, organisms require communication to begin 

communication. 

1.1 Primary Data Entry Problem 

According to Danilov and Mihailova [5], the existing understanding of cognition has established 

three main concepts or approaches within cognitive science – cognitivism, connectionism, and 

embodied dynamicism. Several theories within this framework study the onset of cognition. The 

interesting ones among these theories include the cohort of Embodied dynamic system theories [6], 
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the theory of innate intersubjectivity and innate foundations of neonatal imitation (the theory of 

the development of human communication) [7], the theory of natural pedagogy [8], and the theory 

of sensitivities and expectations [9]. However, despite these various theories, there remains a gap 

in the knowledge regarding cognition, in the form of the Primary Data Entry (PDE) problem. 

According to the embodied dynamic system approach (which is relatively closer to solving the 

problem), intelligence emerges when an organism interacts with an environment due to sensory–

motor activity. This approach tends to solve the above-stated gap by introducing the concept of 

dynamically embodied information [6]. The descriptions of embodied cognition might be organized 

around a larger number of narrower themes [10], while the effort to broaden the themes could 

reduce their number, risk of generalizing the description of embodied cognition to the extent that 

its purported novelty is jeopardized [10]. Context dependency is one of the principles of this 

approach – the embodied dynamic system theories follow Vygotsky's concepts of arising cognition 

through social contexts [11]. Therefore, prior to introducing the embodied dynamic system concept, 

it is necessary to explain the categorization of reality through intentionality. According to the 

embodied cognition approach, symbols encode the local topological properties of neuronal maps 

[6], which reflect a dynamic action pattern. The sensorimotor motor network enables the pairing of 

the binary cue stimulus with a particular symbol saved in the structures and processes that embody 

meanings. 'Representational “vehicles” are temporally extended patterns of activity that may 

crisscross the brain–body–world boundaries, and the meanings or contents these vehicles embody 

are brought forth or enacted in the context of the system’s structural coupling with its environment 

[6] (p. 36)’. Therefore, the embodied cognition approach requires introducing the mechanism of 

intentionality prior to cognition. In a multi-stimuli environment, the stimulus–consequence pair is 

unpredictable due to the several irrelevant stimuli that claim to be associated with the embodied 

dynamic information randomly. The bond of the stimulus–consequence pair related to a social 

phenomenon in the sensorimotor network requires the categorization of the reality by the nervous 

system prior to applying the innate reflex regarding this social phenomenon to a specific case. 

Therefore, dynamically embodied information is applicable only if intentionality is already in place. 

This would imply that cognition requires intention, which is absent at the beginning of cognition. 

Therefore, a vicious circle is created – the pure mind already requires meanings to acquire the first 

meaning. However, at this stage of development, organisms are unable to exhibit cooperative 

actions with their co-mates through sensory cues as these cues are unintelligible.  

Interestingly, recent hyper-scanning research has revealed coordinated neuronal activities in 

individuals during cooperative actions in the absence of communication via sensory cues [12] and a 

greater interpersonal neuronal coordination in subjects involved in solving a problem together 

compared to the individuals working separately on identical tasks [13]. Another recent study 

conducted with adults demonstrated that coordinated actions between unprimed individuals and 

primed confederates could facilitate resolving unintelligible problems without requiring 

communication on the basis of sensory cues provided by those confederates who knew the correct 

answer [14-16]. Case studies that involved assigning educational tasks to children aged between 12 

months and 33 months revealed the occurrence of Shared Intentionality in the absence of 

communication via sensory cues in mother-child dyads, which then promoted numerosity in the 

infants and toddlers within a short duration and at an age younger than others (earlier compared 

to the peers) [17, 18]. 
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The present report discusses the physical foundations of the neurobiological process occurring 

during Shared Intentionality in humans (goal-directed coherence of biological systems), which 

includes what agent (element or compound) inside the cells is involved in the cooperation and the 

underlying mechanism. In addition, the role of social interaction without sensory cues in resolving 

unintelligible problems is analyzed by integrating the findings of neuroscience and physics. The 

remaining portion of the present report is organized as follows. Section 3 provides a review of the 

coherence in different biological systems. Section 4 discusses the property of Shared Intentionality 

by opposing intentionality and intention from both theoretical and empirical perspectives. The 

question of how the brain learns is based on understanding the physical laws that the brain obeys. 

In this context, Section 5 discusses the physical foundations of Goal-directed coherence in biological 

systems, comparing three potential candidates for the agent of quantum mechanisms occurring 

within the cells. In Section 6, the hypothesis of neurophysiological and physical foundations of 

Shared Intentionality is detailed. In the last section, a summary of the complete report is provided. 

2. Methods 

Understanding the above-stated problem requires analyzing social interaction in different 

species. In particular, the knowledge of how simple organisms interact is required for understanding 

the possible social interactions among humans. In this context, the present study analyzed the 

interactions in different biological systems at the developmental stages corresponding to those of 

human fetuses and infants. The Model of Hierarchical Complexity (MHC) [19] effectively compares 

the various biological systems [that appeared at different time points in evolutionary history] in 

terms of their information processing capabilities. In the MHC, the order of hierarchical complexity 

of a task is quantified based on how the information is organized in organisms [19]. In this manner, 

this mathematical model allows comparing the cognitive development of different species that are 

at different stages of their development. The determination of the relationship between 

development and evolution and the comparison of interactions among different species based on 

the MHC is facilitated by three arguments. The first argument is based on the fact widely accepted 

across various theoretical approaches that there are common mechanisms of molecular genetics 

underlying the development and evolution of all morphological forms in multicellular organisms. 

The second argument is that a genetic comparison between species has become possible recently, 

which has demonstrated their relationship. The third argument is that such a comparison is possible 

as information processing could be an indicator of cognitive development, and the MHC is based on 

principles of information processing that rely only on the modalities of interactions and not on the 

biological characteristics of the subjects. For instance, from this perspective, information processing 

in insects is associated with Stage 3 of the MHC, which is comparable to the fetuses at the 

sensorimotor stage of development described by Piaget. According to Danilov and Mihailova [20], 

the comparative analysis of social interaction in newborns of different species, whose behavioral 

development corresponds to the circular sensorimotor Stage 3 of behavior development, 

demonstrates that organisms are capable of distinguishing identical stimuli through their 

significance without requiring perceptual driver stimuli. 

The development of advanced digital modes of learning requires an understanding of the brain 

function at the cellular level during social interaction. The present study, therefore, attempted to 

address this concern by investigating a two-fold objective: (1) Understanding the physical 
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foundations of interaction within groups, comparing different species that are at the same stage of 

development (at the MHC Stage 3 in animals and humans, which corresponds to the development 

of the organisms up to and including Piaget's sensorimotor stage fetuses and infants), and solving 

the PDE problem in the absence of sensory cues. (2) Describing the ability of an organism in a group 

to act intentionally without Intention–Shared intentionality; i.e., to define the agent and the 

neurophysiological process that could enable such interaction in the absence of sensory cues. 

This approach might be able to define the modality of interaction in biological systems in the 

absence of communication via sensory cues capable of facilitating communication and knowledge 

acquisition and providing a human–computer interface design for advanced Artificial Intelligence 

Systems. 

3. Coordinated Activity in Different Biological Systems 

Bacteria are known to exhibit a unique characteristic of coordinated motility in colonies. These 

smallest and the most ancient relatives of humans exhibit goal-directed coherence within a 

particular electromagnetic field, which is the ability of social organisms to select just one stimulus 

for the entire group instantly. Under specific conditions, different biological systems manifest goal-

directed coherence (in the absence of sensory cues) in one form or another. The present review 

briefly highlights the common characteristics of this quality in different species. 

3.1 Bacteria  

These small free-living (self-replicating) organisms were among the first life forms to appear on 

Earth. Under the influence of an electromagnetic field, free-swimming bacteria change direction 

and move together in a favorable direction. The phototaxis mechanism in bacterial populations 

challenges the existing knowledge regarding the interactions demonstrated within a bacterial 

colony as no evidence supports that individual bacterial cells are capable of solving this problem 

using only receptors [21]. The mechanism underlying the directional light perception in bacteria 

remains to be deciphered so far [21]. It is hypothesized that certain bacteria might rely on detecting 

temporal changes in the light environment [21]. However, this hypothesis does not appear to be 

universal as different bacteria recognize different electromagnetic field gradients differently by 

measuring the intensity and the spectral quality of the light sources [21]. Another hypothesis is that 

individual bacterium acts as a highly efficient lens that focuses light at the edge of the cell away 

from the light source [21]. However, these explanations of the demonstrated community phototaxis 

in bacteria are debated in the biology and physics literature [21]. Moreover, the ability of individual 

organisms to independently determine the direction of movement also contradicts the simplicity of 

their internal structural organization [21]. 

3.2 Earthworms  

According to Zirbes et al. [22], earthworms demonstrate the cooperative ability to select the 

same direction of movement as their conspecifics. Experiments in a binary choice test revealed that 

contacts between individuals are responsible for the demonstrated collective movement [22]. The 

ability of individual organisms to move in the same direction demonstrates the incongruence of the 

complexity-requiring communication and a set of sensory receptors (or sensory modalities) as the 



OBM Neurobiology 2021; 5(4), doi:10.21926/obm.neurobiol.2104113 

 

Page 6/26 

simple nervous system and reduced sensory modalities in earthworms render any communication 

impossible [21]. So far, no hypothesis has been proposed for how these organisms solve the 

problem using just receptors. 

3.3 Ants  

Darwin noted a navigation system in animals – the Path Integration (PI). Individual ants perform 

large distance foraging excursions of up to 1200 m, and while returning, the ants select a direct 

shorter path back to their nests and are capable of inferring this ground distance when walking over 

hills [23]. These organisms determine the actual navigation strategy from complemented and 

contrasted navigation mechanisms with different weights that are based on their reliability. The 

ants appear to select these mechanisms through interaction with their nest-mates on a case-by-

case basis [21]. However, their perceptual capacity and other characteristics required for successful 

interaction-reasonable distance and appropriate environmental conditions should not allow the 

ants to complete this operation [21]. These organisms solve the problem in cooperation with their 

co-mates regardless of the capabilities of their receptors and the distance from them. 

3.4 Bees  

Bees are capable of transmitting route information to multiple destinations. Buatois and 

Lihoreau [24] worked with arrays of feeders and demonstrated that honeybees could learn complex 

foraging circuits integrating a minimum of five different locations. Quorum decision-making is 

another characteristic of bees, which is beyond their interaction ability. Bees are not able to 

communicate via symbols at their development Stage 3 of MHC [21]. The only possibility for the 

bees is the interaction through binary cues. The main disadvantage of such interaction is the large 

number of binary signals required for encoding information and the complexity involved with the 

decoding of these binary signals [21]. Therefore, this encryption system requires a huge memory 

capacity. Even spatial parameters contain several binary signals and, therefore, information 

regarding site significance also requires higher memory [21]. Therefore, interaction among bees 

requires a highly-developed processing mechanism with a large memory [21]. This circumstance 

does not correspond to the existing knowledge regarding the behavioral development in insects, 

which corresponds to Stage 3 of the MHC. This ability of organisms to undertake a decision in a 

quorum and their cooperation in complex foraging circuits proceed independently from their 

receptor ability and the distance from their co-mates [21]. 

3.5 Human Fetuses  

Fetuses are capable of demonstrating social behavior without any sensory link with social reality. 

Fetuses do not exhibit social behavior independently due to a lack of understanding of the social 

reality [25]. The link between a particular social situation and the corresponding social expression, 

therefore, is a problem for human fetuses. The connection between the fetal nervous system and 

the social reality, which allows the embodied sensorimotor networks to be activated, is 

undeveloped. Moreover, the disadvantage of their physiological development during pregnancy 

also hinders their ability to behave socially. If fetuses could behave socially, their social skills would 

not appear from self-learning, because if they could exhibit a range of behaviors, the innate 
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endowment would have to be more complex than a couple of reflexes [25]. Finally, according to 

Danilov [25], the social behavior of fetuses emerges from and is guided by mental collaboration with 

the mother. In the mother–fetus dyad, this cooperative performance of organisms succeeds in the 

absence of communication through sensory cues; it must succeed as no advantage of stimuli 

association is possible without a preference of inputs in a noise environment [25]. 

3.6 Human Infants  

The growing evidence in favor of facial recognition, other-race effect, and imitation in newborns, 

and that for word categorization in infants, confirms their social behavior [20, 26]. Infants, and even 

newborns, successfully classify social phenomena that are abstract or absent from their reality [26]. 

Their ability could emerge only from the mother–child connection, which succeeds in the absence 

of communication based on sensory cues. Recent experiments have demonstrated that the 

emotional contagion which assists the infants in acquiring their initial social phenomena could 

appear through body language cues that are not perceived consciously by the subjects [20]. 

3.7 Discussion  

The analysis of social interaction in various species revealed the common characteristic of goal-

directed coherence, which is the ability of the organisms within a group to be able to distinguish 

identical stimuli according to their significance, enabling them to select just one stimulus for the 

entire group. Accordingly, the main characteristics of goal-directed coherence could be as follows: 

bypassing sensing (insensitivity to sensory perception), independence from a distance, and 

instantaneousness in time [20]. These features of goal-directed coherence are consistent with only 

the quantum mechanical approach. Common sense indicates that the organisms in developmental 

stages prior to Stage 3 of the MHC would prefer interaction without sensory cues, suggesting this 

kind of interaction to be the oldest and the most propagated one. This quality of biological systems 

ensures the training of the new members within the group and also higher cooperation efficiency 

in colonies without requiring communication. The bonds within a colony offer the advantage of 

sustainable development of the organisms in contrast to the survival of single individuals. The 

former contributes to preserving and propagating the corresponding phenotypic qualities in 

organisms. In higher complex organisms, goal-directed coherence should manifest itself in one form 

or another as it has been preserved in simple organisms. Therefore, it could be assumed that the 

behavior of neurons in a mature organism governs (or trains) the neurons of a newborn through a 

certain mechanism. According to the above arguments regarding the relationship between 

development and evolution when comparing the interactions in different species (refer to the 

Introduction section for details), since biological systems tend to exhibit target-directed coherence, 

the same quality could appear in humans as well. 

4. Intention vs. Intentionality 

In humans, learning in newborns (in the absence of communication that is based on sensory 

cues) begins with Shared Intentionality [27]. The present study investigated Shared Intentionality by 

opposing intentionality and intention from both theoretical and empirical perspectives. 

Intentionality and intention, the two agitators of learning, emerge sequentially, i.e., learning 
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emerges in humans from the unaware cognition in Shared Intentionality, and later, learning 

becomes conscious (at least in part), following (and due to) the gradual increase in awareness. This 

implies that at the onset of cognition, organisms learn due to Shared Intentionality, and then, at a 

further advanced stage of increasing awareness, learning is based on both intention and 

intentionality; i.e., in mature organisms, intention and intentionality go together. 

4.1 Theoretical Approach to Intentionality and Intention  

Since language continues to evolve, its plasticity and adaptability to increasing knowledge 

require the semantic competence of researchers to employ a word's meaning corresponding to its 

actual usage. The latter also implies an analysis of the corresponding empirical data in the literature 

to the modality of this phenomenon. Intentionality and intention are separate concepts as these 

bear different semantics and reflex different appearances. The fact that these two terms have the 

same etymological root is coincidental; Searle [28] (p. 3) referred to this as a "pun" [2]. The present 

study, therefore, investigated Shared Intentionality by studying and opposing intentionality and 

intention from both theoretical and empirical perspectives. 

According to Searle [28], intentionality is the directed property of certain mental states, while 

intentions are the causal antecedents of action. According to the accepted view, the intention is a 

conscious manifestation, i.e., 'a prior conscious decision to conduct a behavior’ [29]. Lewis [30] 

raised a question regarding intention development, asking how to go from the absence of the 

mental state, from intention to its presence; i.e., 'where does intention arise from?’ [30] (p. 233).' 

However, this question was not accurately developed either in the work of this author or in the 

subsequent related studies conducted by other researchers. For instance, Lewis did not consider 

the difference in the meanings of these two terms (intentionality and intention) [2]. The subsequent 

arguments in the present study would be focused on discussing why this probably happened. Lewis 

[30] attempted to solve the problem of the appearance of intentional actions by proposing that all 

goal -directed systems are intentional from the beginning. Bargh [31] deduced the equation of 

dependency between intention and the desire for the target (what corresponds to the modern 

understanding of the term) by analyzing Lewis' thought; the equation is provided below:  

Intention = Goal -directed behavior + Desire for the goal (I = G + D) 

This explanation is correct for the organisms at the developmental stage where children are 

already able to create targets and plans in the absence of external events directly relevant to these 

targets and plans. However, according to the literature and common sense, organisms in the reflex 

stage do not manifest conscious decisions. The desire for a goal warrants self-awareness as a 

minimum requirement and also the understanding of social reality. Fodor [28] highlighted the same 

issue by asking how could children learn a new concept unless they already had the ability to 

hypothesize the concept. According to Lewis [30], in the reflex period of the sensorimotor stage, 

'the action, although intentional, is both predicated and prescribed by survival’ (p. 241); here, the 

definition of intentional action within the sense of intentionality has been employed. The reflex 

actions of newborns do not reflect the desire for a target as they do not contain and bear the causal 

prerequisites for actions. Therefore, these actions cannot be attributed to intention, although these 

are intentional in the sense of intentionality. These actions must be intentional because of the 

evident success in the continuous development of goal -directed biological systems. 
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Nowadays, intentionality is generally defined as a characteristic of an individual's acts that 

requires the individual (a) to have goals, desires, and standards, (b) to select behaviors that are in 

the service of attaining the goal (e.g., means to an end), and (c) to call into conscious awareness a 

desired future state [29]. Common sense dictates that, unlike intention, intentionality may manifest 

without the desire and awareness of the individual or unconsciously as well. For instance, people 

could be unable to stop thinking regarding a traumatic life event and would think obsessively 

regarding the event to the point of distraction and an inability to function in their daily life [31]. This 

implies that, while intentionality manifests consciously, a part of this process is not occurring 

consciously. 

These perspectives indicate that there is no contradiction as to whether or not the actions of 

neonates are intentional. Although the young infants employ intentionality for the cognition of 

reality (and they must do this for continuous development) from the beginning of life, they cannot 

independently desire a goal by performing an intentional behavior on their own, i.e., newborns do 

not demonstrate intention. Therefore, it could be assumed that the ability of intentionality is 

possible because neonates, being with their caregivers, may also manifest intentionality 

unconsciously, without their desire and awareness.  

This reflection highlights the unconscious part of intentionality, which is the basis of it being 

distinguishable from intention. Searle [32] described a unique part of intentionality, referred to as 

Shared Intentionality, which is a social bond appearing during social encounters. Later, Tomasello 

[27, 33] applied the concept of Shared Intentionality in solving the problem of the beginning of 

cognition based on the embodied dynamic model. Tomasello [33] argued that the gradually 

increasing social bond development in children referred to time slices: (1) sharing of emotions since 

birth, (2) joint intentionality from the nine-month revolution, (3) collective intentionality at 

approximately three years of age, and finally, (4) reason and responsibility. According to Tomasello 

[33], the beginning of cognition appears through the newborns' basic motive force of Shared 

Intentionality. Notably, this protoconversation based on reading (interpreting) the emotional 

expressions of others is impossible for infants if it is only in terms of sensory interaction. According 

to Danilov and Mihailova [15], the mechanism underlying such coordination of emotions remains 

unclear as it is based on the sharing of emotional expressions. So far, there is no evidence of a 

genetic mechanism linking the meaning in the mind with a certain social reality to apply an 

appropriate emotional neural pattern to a specific situation [24]. That is, innate neural patterns of 

primitive emotions cannot be associated with explicit bodily expressions that bear a 

correspondence between a specific psychophysiological state of the individual and particular social 

reality. The central point here is the link between the specific psychophysiological state of the 

individual and a particular social reality that is inaccessible to the newborns. Neonates are unable 

to understand the meanings of the emotional expressions of others. Therefore, the 

protoconversation cannot proceed through the interpretation of emotional expressions. Therefore, 

this interaction is neither conscious nor perceptual. The deductive reasoning concludes with the 

postulate of the foundations of intentionality – the non-perceptual interaction. The authors 

attribute this ability to the property of shared intentionality. 

In consideration of the above reflection on shared intentionality, it is possible to suppose that 

the unconscious part of intentionality participates in the formation of intentionality: 

Intentionality = Goal-directed behavior + Desire for the goal + Shared-Intentionality (I = G + D + Si).  
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The desire for a goal is commonly referred to as motivation. Therefore, this dependence could 

imply that in newborns, Shared Intentionality could result in motivation. 

Danilov [34] argued that Shared Intentionality is the essential quality of organisms contributing 

to the survival advantages of humans. The paradigm that humans only have a sensory perception 

of the intentionality of others is challenged by increasing evidence from research. According to 

Danilov [34], the analysis of biological systems highlights the qualities of goal-directed coherence, 

which should be the same for Shared Intentionality in humans –immediacy in time, independence 

from a distance, and insensitivity to sensory perception.  

According to the literature, which grants a theoretical perspective, the difference between 

intentionality and intention manifests as Shared Intentionality. The following sections of the report 

discuss the investigation on Shared Intentionality from these perspectives by exploring the research 

works concerning brain-to-brain neuronal synchronization based on intentionality, intention, and 

motivation as the research queries. The model of Shared Intentionality is also observed in the 

section – the neurobiological foundation of Shared Intentionality. 

4.2 Empirical Approach to Shared Intentionality 

According to Schirmer et al. [35], an increasing number of studies are being conducted on 

psychophysiological and brain activity coordination to measure interactional synchrony. These 

hyper-scanning research paradigms differ in whether they elicit intentional or unintentional 

synchronization. A few examples of the former are music composing or tapping, while passively 

observing others or engaging in conversation are examples of the latter [35]. These two paradigms 

demonstrate the integrated outcome of social interaction, including a spectrum of stimuli ranging 

from symbolic to physical interactions. Even the awareness of the presence of others could alter 

the mental state of the subjects, affecting their neural activity. This implies that hyper-scanning 

could enable observing Shared Intentionality (the difference between intentionality and intention) 

if other interactions could be reduced during experiments. Therefore, the present study reviewed 

hyper-scanning studies conducted on cooperative mental activity without sensory cues-based 

communication between the subjects.  

Two meta-analyses of hyper-scanning studies, the review on 24 studies involving EEG-and fNIRS 

hyper-scanning methodologies [36] and the neuroimaging meta-analysis of 50 monetary incentive 

delay task based fMRI studies [37], included reports on coordinated neuronal activity during 

cooperative mental actions. According to Danilov and Mihailova [5], only 4 studies among all 

investigated excluded sensory interaction between subjects. These studies demonstrated that 

phase synchronization appears in a similar manner across different brains during meaningful social 

interaction. According to Valencia and Froese [36], evidence of inter-brain synchronization in the 

fastest frequency bands overcomes the most convincing skeptical position to date. 

However, even though these 4 studies involved the subjects performing identical tasks without 

communication, their outcome could not be considered pure Shared Intentionality as the subjects 

had knowledge of social encounters during the experiments. Therefore, rather than mental 

collaboration, their results could simply reflect increased brain activity due to similar emotional 

arousal in the participants stimulated by the social encounter. The review of the literature in the 

present study revealed several recent works that were not included in the above-noted reviews. 

One among these was a fascinating study on interaction in dyads conducted with 12-month-old 
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infants. According to Wass et al. [38], while engaged in free-flowing naturalistic parent–child play, 

parents exhibited an oscillatory activity recorded over the frontal areas that varied with their 

respective infants’ attention patterns, independent of the former’s attention patterns. In addition, 

weaker evidence for the opposite relationship, i.e., the infants’ brain activity being in sync with the 

adults’ attention patterns, was observed [38].  

Another recent study used electroencephalography (EEG) to record the human ability to 

coordinate actions in the absence of sensory cues [12]. The experiment demonstrated the inter-

brain synchronization among different individuals, which probably implied their engagement in 

Shared Intentionality. While this outcome supports the hypothesis of insensitivity of sensory 

perception to Shared Intentionality, additional experiments on hyper-scanning are nonetheless 

warranted, for example, with various mental tasks [14-17]. As noted above, the notion that humans 

are only capable of sensory perception of the intentionality of others is challenged by increasing 

evidence from the research conducted in disciplines other than neuroscience. Therefore, it would 

not be strange to evaluate this concept in a hyper-scanning study. 

The design of the future hyper-scanning research should eliminate other interactions from the 

experiments conducted on Shared Intentionality. The authors propose two conditions for such a 

research design: intentional synchronization and unintentional synchronization, without 

communication between the subjects in both cases. It appears that the new paradigm could enrich 

the experimental data on interpersonal synchrony and thereby answer several questions 

investigating the beginning of cognition. In summary, further hyper-scanning research on inter-

brain synchronization is warranted to explore intentions in subjects under the above-noted 

integrated paradigm, without any social interaction between the participants. 

4.3 Discussion  

The observation of intentionality and intention reveals the basis of intentionality, i.e., the non-

perceptual interaction, the Shared Intentionality. One could then ponder whether Shared 

Intentionality bears unconscious and even a non-perceptual impact. In recent research, progressive 

neuronal recruitment prior to the demonstration of intentional action by subjects [39, 40]. The 

mechanism underlying intentionality probably involves deep (and even unconscious) levels of 

thought processing. Then, one might question whether this process could bypass the receptors and 

sensorimotor networks via connecting the different nervous systems directly? The authors of the 

present study believe that the property of Shared Intentionality is the evolutionary outcome of the 

quality of goal-directed coherence demonstrated by simple organisms, which promotes the survival 

advantages of biological systems, and, of course, social interaction is subordinate to physics laws. 

5. Physical Foundations of the Goal-Directed Coherence 

The understanding of the physical foundations of Shared Intentionality (goal-directed coherence 

in other simpler biological systems) raises a question regarding which of the physics laws promote 

the direct connections between the neuronal circuits of different organisms. An essential argument 

of the present is a consensus on the terms and definitions used in neuroscience and physics. The 

literature includes several studies from the field of neuroscience which use the terms of resonance 

and coherence for the recorded activation of neurons in experiments conducted using different 

techniques, such as Nuclear Magnetic Resonance Imaging (NMRI), Functional magnetic resonance 
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imaging (fMRI), Electroencephalography (EEG), Functional Near-Infrared Spectroscopy (fNIRS), and 

Magnetoencephalography (MEG). While all of these techniques are efficient in observing the 

activity of neurons, the detection in these techniques is just indirect evidence of resonance and 

coherence of neurons, which implies that these techniques assume neuronal stimulation that 

cannot prove the resonance and coherence of the neurons. For instance, in the MRI technique, a 

radio frequency signal of the resultant evolving spin polarization is detected by certain atomic nuclei 

that are capable of absorbing the radio frequency energy when placed in an external magnetic field. 

Hydrogen atoms are used the most frequently for generating a macroscopic polarization and, 

therefore, most MRI scans essentially map the location of water and fat in the body. Another 

technique is the fMRI, which measures brain activity by detecting changes associated with the blood 

flow. Cerebral blood flow is associated with neuronal activation. When a region in the brain is 

activated, the blood flow to that region increases. EEG is a method of electrophysiological 

monitoring to record the electrical activity occurring on the scalp, with the aim of detecting the 

macroscopic activity of the surface layer of the brain underneath. The fNIRS technique detects brain 

activity using the near-infrared light for assessing the cortical hemodynamic activity, which occurs 

in response to neural activity. The MEG technique records the magnetic fields produced by the 

electrical currents generated naturally in the brain.  

While our knowledge regarding consciousness is improving with the study of interactions among 

the neurons, modern tools are unable to directly measure the dynamics of the electromagnetic 

activity of single neurons within the subjects involved in cooperative efforts with other individuals. 

Therefore, currently, the reasoning regarding neuronal resonance and coherence remains 

speculative when using the neuron activity data from the MRI, fMRI, EEG, fNIRS, and MEG 

techniques. It is difficult to estimate the resonance and coherence of neurons using the data from 

the above-stated techniques. However, due to the lack of other resources, these techniques appear 

to be the best ones for current use, while continuing the research for developing better techniques. 

The text in this paragraph is focused on the terms assigned to the phenomena. Since neuroscience 

applies physical tools to measure psychophysiological phenomena, the present report uses physical 

terms that describe the processes in the detection techniques applied in neuroscience. This is 

particularly because neuroscience studies neurons as physical objects even if the dimensions of 

these neurons are similar to the objects studied at the quantum mechanics scale [5]. In physics, the 

term resonance describes the increase in the system's amplitude when both frequency and phase 

of the applied oscillator are equal to the natural frequency and phase, respectively, of the system 

on which the former system acts. Coherence in physics implies an identical waveform. 

In classical physics, all matter with a temperature greater than absolute zero emits thermal 

radiation which comprises electromagnetic fields propagating through space. Since coherence 

reflects a fixed relationship between the phase of the waves in a beam of radiation of a single 

frequency, two neurons are coherent in the case when their characteristics correspond to their 

thermal radiations. According to quantum mechanics, all particles have wave-like properties. The 

quantum mechanics theory argues that particles are conceived as having the property of waves 

when isolated from their environment, while their wave function is described as collapsing into a 

particle when brought into contact with the environment through a process of decoherence. 

Quantum coherence appears even upon the interference of two quantum waves of the same 

particle. Quantum coherence is a condition necessary for both entanglement and other types of 

quantum correlations. Therefore, the argument in the present study is a consensus regarding the 
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terms and definitions in neuroscience and physics. At both macro and micro scales, neurons are a 

source of electromagnetic waves and a subject of the coherence of these waves. The present report, 

therefore, uses the term coherence only in the case of identical waveforms (wave function) of two 

or more neurons, while the synchrony of the registered activity of neurons is referred to as 

coordinated neuronal activity. Moreover, the term entanglement (or quantum entanglement) is 

applied only in terms of physics and is not used for referring to the simple synchrony of the 

registered activity of objects. The term quantum entanglement implies that the objects interact 

such that the quantum state of each cannot be described independently of the state of the others, 

including the case when a significant distance separates the particles. The present report adheres 

to such requirements even if the source of information states otherwise. The consensus on these 

terms is an essential part of the current analysis. 

5.1 Coherence Agent  

An increasing number of studies on quantum consciousness have presented numerous theories 

that deal with the question of quantum effects in the brain and the underlying mechanisms 

involved. Recent discussions and findings in the field of quantum mechanics have demonstrated 

that the quantum approach should be considered in understanding the functions of the brain. 'In 

sum, it is now well-established, despite the commonly held view, that quantum effects cannot be 

present only in mammalian brains and that quantum phenomena are indeed quite common in the 

biological systems [41]'. It is clear that the concept of physical foundations and the hypothesis of 

the neurophysiological process of social interaction, both require an agent with the size range of 

the quantum scale, which introduces quantum mechanics in the cells and propagates the quality of 

goal-directed coherence in different species. Without such an agent, further research on quantum 

consciousness and the physical foundations of social interaction remains limited. Therefore, the 

section ahead discusses three possible coherence agents that could involve quantum mechanisms 

in the cells, thereby propagating the quality of goal-directed coherence in biological systems and 

promoting Shared Intentionality in humans. These agents are as follows: the atom of hydrogen, the 

Posner molecule, and protein. 

5.2 Protein  

Proteins become biologically active only when these occur in a three-dimensional structure 

formed of amino acids folded into particular highly complex configurations [42]. Proteins fold into 

their functional configurations at a rapid rate, with a relatively small protein of only 100 amino acids 

completing this process within nanoseconds [43]. Only quantum mechanical mechanisms are 

capable of achieving such a high rate of selection from a huge number of options (10 to the power 

of 100 different possible amino acids configurations!) [43]. The high rate of the shaping of the 

protein molecules and the symmetric configuration of the protein structures support the hypothesis 

of amino acid relationships in quantum mechanisms [43-47]. The protein molecules are born, and 

their amino acids are connected within and between molecules under the laws of quantum 

mechanics. Evidently, quantum mechanisms are not limited to the structure of a single protein 

molecule. The protein molecules play essential roles in photoreceptors, which regulate motility in 

bacteria, thereby contributing to the community phototaxis in bacteria [48]. The review on plant-

associated bacteria reported the observation of protein–protein interactions between the 
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photoreceptors in bacteria during signal transduction which was identified as a common trait for all 

[49]. Photoreceptors interact with each other and mutually modulate their individual effects [49]. 

Moreover, the photoreceptors of plant-associated bacteria maintain their cooperation with their 

plant hosts under control, i.e., these light-sensitive proteins appear to control infectivity and 

virulence to the extent that does not generate much harm to their host plants [49]. This could lead 

to a speculative conclusion regarding the non-local relationships between amino acids of the 

bacterial proteins and those from the host plants, which could only be relevant in regard to quantum 

mechanisms.  

Therefore, it appears that quantum mechanisms regulate the protein–protein interactions within 

a bacterial colony and those between bacteria and plants. In humans, the protein Reelin is essential 

for hippocampal integrity and synaptic plasticity. According to Faini et al. [50], this molecule 

contributes to the neural circuit assembly, refinement, and function. In addition, accumulating 

evidence indicates a significant role of Reelin in axonal guidance, synaptogenesis, and dendritic 

spine formation [50]. The entanglement between the protein molecules of neurons in different 

organisms could be the connection mechanism that leads neurons of an immature organism to 

respond appropriately to stimulations, similar to those demonstrated by the teacher receiving the 

same stimulations. 

5.3 Posner Molecules  

Fisher [51] introduced an elegant hypothesis regarding a molecular process that could promote 

quantum entanglement between neurons. Phosphorus is present in several biological substances. 

According to Fisher [51], quantum entangled Posner molecules appear due to the enzymatic 

hydrolysis of extracellular pyrophosphate, a process in which phosphorus atoms might be in a 

quantum entangled singlet state. The presence of entangled Posner’s molecules in the cytoplasm 

of multiple presynaptic neurons could lead to post-synaptic firing that is quantum correlated across 

these neurons. When Posner molecules in different neurons are entangled, these incur binding 

reactions and hydrolysis, which may lead to the release of calcium-mediated glutamate from 

presynaptic neurons and subsequently non-local quantum correlations in post-synaptic firing [51]. 

5.4 Hydrogen  

Hydrogen bonds are weak, generally intermolecular bonds, which hold most of the soft matter 

together and also the condensed phases of water and network liquids [52]. The small mass of 

hydrogen implies that hydrogen atoms are inherently quantum mechanical in nature [52]. 

According to the quantum electrodynamics field theory, water is quantum coherent under ordinary 

conditions [53, 54]. According to Dirk K. F. Meijer et al. [55], water functions as the primary antenna 

(mirror) for external electromagnetic field influences and is able to transmit these vibrations to 

other dissolved substances in a manner that, in unison, coherent vibration domains of cell 

compartments are formed. Since water is present everywhere, this concept proposes that thoughts 

and consciousness emerge from quantum superfluids, from where all information is poured in [56]. 
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5.5 A Few Considerations regarding the Agent  

A few comments would contribute to establishing a basic framework for conducting further 

research on understanding what shapes consciousness and fosters goal-directed coherence. The 

first comment is regarding the protein agent hypothesis, which appears to be a more plausible 

concept based on the above discussion. Protein molecules could serve as candidates for the role of 

an agent that engages neurons of different organisms in cooperative reactions to similar stimuli. 

Further investigation is, however, required to determine whether these protein molecules are 

involved in the mechanisms of coordinated action in all biological systems or only for certain 

species, specifically just as the cases discussed above. 

The second comment regarding the elegant hypothesis of the Posner molecule, which provides 

a plausible explanation of the quantum entanglement mechanism of neurons. This concept is 

challenging to apply to goal-directed coherence in biological systems, for example, in bacteria. Let 

us assume that the organisms with a nervous system and those without one have different 

mechanisms contributing to goal-directed coherence. However, according to empirical data, the 

application of the Posner molecule properties to quantum mechanisms in organisms with a nervous 

system appears questionable. Recently conducted extensive analysis of the dynamical and 

structural properties of Posner molecule using over thousands of sampled configurations suggests 

that this molecule exists predominantly in low-symmetry molecular structures, such as Cs, Ci, and 

C1, at room temperature [57]. However, highly-symmetric Posner clusters are reported to be 

essential for supporting the quantum biological hypotheses [57]. 

The third comment is from the perspective of propagation in nature, according to which the 

hydrogen concept postulated by Dirk K. F. Meijer et al. [55] appears to become further intriguing 

relative to the other ones discussed in the present report. While this concept overcomes the 

traditional approach of complementing additional properties to a classical neural network property 

to proclaim quantum characteristics in the brain [56], it is too metaphysic to agree with the laws of 

physics. Investigation revealed that it is complicated to reduce the influence of other factors on the 

object to detect pure "quantum superfluids" (in the case these exist) in the object's environment, 

which entails gravity, electromagnetism, strong nuclear force, and weak nuclear force. 

Furthermore, even if the pure "quantum superfluids" exist, why has their presence not been 

perceived so far. 

5.6 Electromagnetic Field may Induce Quantum Entanglement in Different Atomic Systems  

At the cellular level, the brain function obeys physics laws. The brain function should also obey 

the laws of quantum mechanics as the dimensions of the essential components of neurons are 

similar to the objects studied at the quantum mechanics scale [5]. In physics, it is generally accepted 

that coherence could be transformed into entanglement; conversely, each entanglement measure 

corresponds to a coherence measure. Accordingly, any non-zero amount of coherence in a system 

could be converted into an equal amount of entanglement between that system and another 

initially-incoherent system [58]. Coherence appears even at the atomic level and occurs widely 

along with the electromagnetic field. Atomic coherence is the induced coherence between the 

different levels of a multi-level atomic system, which is, at certain times, observed when it interacts 

with a coherent electromagnetic field. This implies that a coherent electromagnetic field induces 

entanglement at the atomic level. Moreover, the generation of entanglement between two spatially 
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separated clouds of particles is also possible [59]. Recent studies have demonstrated the occurrence 

of entanglement in particles at incredibly long distances from each other [60]. Moreover, 

entanglement may last for hours. It is reported that the nuclear spins of noble-gas atoms are 

exceptionally isolated from the environment and capable of maintaining their quantum properties 

for hours at room temperature [61]. 

5.7 Entanglement of Neuron-like Objects in Different Systems  

Marletto et al. [62] attempted to discover empirical evidence of entanglement between 

Chlorobium tepidum bacteria (modeled as dipoles) and light (modeled as a single quantum harmonic 

oscillator). Recent studies demonstrated that the behavior of objects 15 micrometers in size was 

consistent with the laws of the quantum world, such as the phenomenon of quantum entanglement 

[63]. Moreover, an entangled state was reportedly generated between a millimeter-sized dielectric 

membrane and an ensemble of 109 atoms [64]. In comparison, a neuron's nucleus has a diameter 

of 3–18 micrometers, and a neuron is 4–100 micrometers in size. 

5.8 Discussion  

The above-stated findings support the view that quantum mechanical mechanisms could 

contribute to goal-directed coherence in biological systems. This section discusses three possible 

agents that could involve quantum mechanisms within cells, thereby distributing the quality of goal-

directed coherence in biological systems. Further research on quantum consciousness and the 

physical foundations of social interaction is limited unless such agents are explored. The concept of 

a protein as a candidate agent appears more plausible compared to the other two concepts 

presented above –the atom of hydrogen and the Posner molecule. 

6. Neurophysiological Foundation of Shared Intentionality 

In order to further assess the neurophysiological foundations of Shared Intentionality, the 

ordinary conditions of its appearance have to be determined. The Model of Coherent Intelligence 

proposes factors of interpersonal dynamics to be promoting coordinated neuronal processes in 

humans (Figure 1). 

 

Figure 1 The sequence of appearances of Shared Intentionality during social dynamics. 
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According to Danilov and Mihailova [5], continuing interpersonal dynamics (cyclically enhanced 

coordination of movements under ever-increasing arousal) create a coordinated mental process 

within groups.  

A supranormal environment (for example, the first few hours of life) stimulates supranormal 

sensation in the mother–child dyads. It is possible that these continuing interpersonal dynamics 

push the inherited mechanism of social entrainment of the infants to the mother's rhythm (Figure 

1). Both supranormal sensation and social entrainment may stimulate common emotional arousal. 

The continuing supranormal sensation and the infant's rhythm of arbitrary movements increase the 

emotional arousal in the dyad. The continuing supranormal sensation and the ever-increasing 

arousal in the dyad, as well as the rhythm of the infant's unintentional movements, together 

stimulate early imitation and emotional contagion [5]. These specific conditions of social dynamics 

specifically define the occurrence of the phenomenon of Shared Intentionality. 

It appears that specific regions of the brain are engaged in shared sensory/cognitive processes 

irrespective of the ’valence of the feedback and the encoding of the subjective relevance of the 

feedback [37, 65]. A common neural network is engaged in communicative intention processing 

independent of the modality used [66]. Other than the regions commonly involved in this 

processing, additional regions of the brain are engaged specifically according to the particular 

communicative modality [66]. According to Tettamanti et al. [67], the Intention Processing Network 

(IPN) involves the medial prefrontal cortex, precuneus, bilateral posterior superior temporal sulcus, 

and temporoparietal junctions.  

According to the different social interaction modalities, the IPN is complemented by the 

activation of the additional regions of the brain, reflecting different Modality-Specific (M-S) input 

gateways to the IPN [67]. The M-S gateways mediate the structural and semantic decoding of the 

stimuli and provide the M-S information [67]. Sensory inputs of a specific modality are capable of 

activating the precise association of certain sensorimotor networks with specific emotion circuits in 

the brain [68].  

The authors of the present study believe that the emotion–motion dynamics could cause the 

coordinated cognitive process of a high order in a group. Suppose that initially, the supranormal 

stimuli encourage implicit social dynamics among intimately-related individuals involved in social 

entrainment. In such a case, these organisms would experience common emotional arousal and 

could simultaneously bypass the interactional synchrony with the explicit manifestation of their 

emotion–motion coherence. Emotional arousal could elicit the evolutionary old circuits in the brain, 

which would interact with high-order cognitive and linguistic processing [68]. In parallel, the 

interactional synchrony stimulates a sensorimotor network, engaging the neural networks 

responsible for communicative intention processing (including high-order cognitive and linguistic 

processing), which are the precuneus, the left, and the right posterior STS and TPJ, and the medial 

pFC [66]. These two different experiences merge at high-order cognitive processing. The neural 

emotional networks and the sensorimotor networks are connected to various M-S gateways. The 

continuing upliftment of the interpersonal emotion–motion dynamics stimulates the intersects of 

the emotion–motion neural patterns in certain M-S gateways of each organism depending on (i) the 

pattern of the neural circuit engaged via emotional excitation and (ii) the pattern of the 

sensorimotor network [66]. The activation of these networks separately might not be adequately 

efficient for a tetanic stimulation of the neurons of all the M-S gateways connected to different 

emotional networks and sensorimotor networks.  
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Therefore, the authors of the present study propose the hypothesis for describing how Long-

Term Potentiation (LTP) could be induced specifically in particular M-S gateways (leaving the other 

gateways unstimulated even when various sensory factors stimulate all M-S gateways) while 

retaining information regarding the particular stimulus received (Figure 2). Although the ensemble 

of the emotion–motion integrated networks weakly stimulate the intersected neurons at their 

junction with the M-S gateways, if all the M-S gateways simultaneously receive weak stimulation 

from the receptors (due to the chaos of stimuli received by the pure nervous system), these multi-

stimuli would contribute to the LTP in the particular M-S gateway that is at the junction of this 

emotion–motion ensemble due to the effect of synaptic cooperativity.  

 

Figure 2 The schematic for the activation of specific M-S gateways. 

Owing to the above-described continuing neurological coordinated activity, neurons from the M-

S gateways at the junctions of the emotion and sensorimotor networks receive cooperative 

stimulation. Recent research has demonstrated that LTP could be induced cooperatively via the 

weaker stimulation of several pathways to a synapse [69], even though the ensemble of the 

emotion–motion integrated networks weakly stimulate the intersected neurons at their junction 

with the M-S gateways. Suppose all M-S gateways simultaneously receive weak stimulation from 

the receptors as well (due to the chaos of stimuli received by the pure nervous system). In such a 

case, this multi-signal would contribute to the LTP in the neurons of a particular M-S gateway at the 

junction of this emotion-motion ensemble due to the effect of the synaptic cooperativity because 

of the following reasons. LTP may be induced either by strong tetanic stimulation of a single 

pathway to a synapse or cooperatively via the weaker stimulation of several pathways. The neurons 

from the gateways at the junctions of these networks would receive cooperative stimulation. The 

induction of cooperativity would ensure the LTP.  

According to Tazerart et al. [69], the synaptic cooperativity of only two neighboring synaptic 

inputs to the spines in the basal dendrites of L5 pyramidal neurons extends the pre–post duration 

that could otherwise trigger potentiation. The engaged M-S gateways retain a specific stimulus, 

while the remaining M-S gateways (which are of the same sensory modality) remain unstimulated 

without retaining the information of the other stimuli. Therefore, specific M-S gateways are 
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sensitive, and all of these organisms respond to specific sensory modalities. Figure 2 presents the 

schematic diagram of this process. 

The induced emotion and sensorimotor networks (depicted in red in the schematic) activate 

particular M-S gateways even with weak stimulation of the sensory input. The M-S gateways 

depicted in different colors refer to different sensory modalities. At this point, the analysis 

encounters the foundation of the PDE problem –how do the immature neurons learn the timing 

code to modulate a particular synaptic strength, which then triggers either LTP or LTD in 

correspondence to the engagement of a set of specific stimuli, particularly the emotional and 

sensorimotor networks, as the structural organization of the excitatory inputs supporting spike-

timing-dependent plasticity (STDP) remains unknown so far [69].  

According to the received view, strong tetanic stimulation of a single pathway to a synapse 

generates LTP. Different regions of the brain exhibit different forms of LTP, and the types depend 

on several factors, such as age and the anatomic location of the neuron. However, the common 

processes are identical for all – the simple nature of Hebbian learning, which is based only on the 

coincidence of pre-and post-synaptic activity. Accordingly, LTP is persistent and lasts from several 

minutes to several months. It is this persistence that separates LTP from the other forms of synaptic 

plasticity (Abraham, 2003). STDP, which involves the pairing of the presynaptic and post-synaptic 

action potentials (APs), causes a variation of LTP or Long-Term Depression (LTD) [69]. The duration 

between the presynaptic and post-synaptic APs modulates the synaptic strength, thereby triggering 

either LTP or LTD [69]. A tetanic stimulation comprises a high-frequency sequence of individual 

stimulations of a neuron. The sign and magnitude of the change in the synaptic strength depend on 

the relative duration between the spikes of two connected neurons (the presynaptic and post-

synaptic neurons) [69].  

Next, one could ponder how are the neurons of an immature organism (even a newborn) able to 

learn the structural organization of the excitatory inputs that support STDP in relation to a complex 

comprising both sensory stimuli and the activation of certain sensorimotor and emotional networks 

of the nervous system.  

The authors of the present study believe that LTP may be stimulated simultaneously in the 

neurons of certain M-S gateways by their entanglement state. A single harmonic oscillator during 

the continuing social dynamics of intimately-related organisms might induce the entanglement 

state of the neurons of certain M-S gateways in different nervous systems, thereby stimulating LTP 

in all of them simultaneously. The engaged M-S gateways of different organisms render these 

particular gateways relatively more sensitive to a certain stimulus, while the other M-S gateways of 

the same sensory modality remain depressed. This classification of stimuli into a single sensory 

modality is possible due to the significant number of M-S gateways within the brain that responds 

to a specific modality. Further arguments would demonstrate why the authors believe that the 

entanglement state of neurons could contribute to simultaneous LTP in neurons. 

It appears uncontroversial to state that the pure nervous system in infants may experience 

emotions, although only primitive ones that are related to survival, such as hunger and pain. 

However, even though they possess inherited neuronal patterns of primitive emotional 

impressions, the newborns are unable to express themselves appropriately to a specific social case 

on their own. In addition, they cannot, alone and independently, understand the expression of other 

people's emotions [5, 26, 70]. The development of motor skills in them is also gradual. It is the daily 

routine that develops the neural patterns of primitive emotions and the sensorimotor neural 
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patterns in infants. The everyday coherence of infants with the social world forms various integrated 

neural patterns of different emotions from the existing ensemble of scripts of emotions in their 

community. The authors believe that caregivers of infants contribute to the formation of these 

emotion scripts and consequently shape specific neural patterns in infants. It is evident that adults 

have experienced intentionality prior to the beginning of their coherent mental process with the 

newborns. Life experience has taught the adults particular emotion scripts, which have defined their 

precise motion kinematics and led to the formation of further elaborated sensorimotor patterns. In 

routine cooperation with a newborn, a caregiver enters into a coherent emotion–motion social 

dynamics with the newborn, who is under the influence of supranormal stimuli and in social 

entrainment. Therefore, similar M-S gateways are stimulated in the dyad.  

While the immature nervous system of an infant meets with a chaos of stimuli, the adult's current 

intentionality has already stimulated particular networks that include the current emotion patterns 

and sensorimotor patterns. A part of them corresponds to a complex of primitive emotional and 

sensorimotor networks in the newborn with similar M-S gateways. These primitive networks in the 

newborn are less developed circuits, although these are similar to the part of the adult's well-

integrated complex network.  

The induction of the timing-dependent LTP (t-LTP) and that of the t-LTD in single spines follow 

the bidirectional Hebbian STDP learning rule [69]. The Hebbian theory claims that an increase in 

synaptic efficacy arises from the learning process. If a single harmonic oscillator, during the 

continuing social dynamics of intimately-related organisms, induces the entanglement state of 

neurons of the certain M-S gateways in different nervous systems, and simultaneously, the adult 

neurons at the junctions of different emotion patterns and sensorimotor patterns receive the LTP, 

which are induced cooperatively via several stimulations, then the neurons of the mature organism 

train the neurons of the newborns as the neurons of both the adult organism and the newborn act 

together as a single unit because of being entangled. In the entanglement state, actions of the 

neurons of the mature organism determine and train the neurons of the newborn. The 

entanglement state of neurons is a possible mechanism through which the neurons of infants learn 

STDP. The entanglement state of these neurons ensures their immediate response to a specific 

stimulus regardless of the spatial division of organisms. Therefore, specific M-S gateways of both 

organisms are sensitive and respond equally to specific sensory modalities. The PDE problem in the 

chaos of stimuli requires a teaching mechanism. The entanglement state of neurons is also a 

possible mechanism underlying the learning of spike-timing-dependent plasticity in the neurons of 

infants. In cooperation of the adult with a blank mind, the emotion–motion coherence (Figure 1) 

ensures the induction of the same M-S gateways in neonates that are already involved in their 

respective caregivers (Figure 2). This involvement of similar networks and the sensibility of certain 

M-S gateways because of their quantum entanglement last as long as necessary for teaching the 

immature nervous system. 

6.1 Discussion 

The present study proposed the neurophysiological and physical foundations of Shared 

Intentionality. The proposed hypothesis explains how Shared Intentionality in humans could 

emerge, bypassing perception. The core concept is that the neurons of a mature organism could 

teach the neonate neurons in the absence of communication between these organisms. According 
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to the hypothesis of Shared Intentionality, such an interaction occurs in organisms during 

psychophysiological coherence. The mature neurons train the neonate's neurons in spike-timing-

dependent plasticity, linking particular stimuli with specific embodied sensorimotor neural 

networks. In particular, if a single harmonic oscillator induces the neurons (or Coherence Agent from 

these neurons) of modality-specific gateways in the organisms dwelling in a psychophysiological 

coherence, these neurons act coherently according to the laws of quantum mechanics. Since these 

neurons react similarly, the neurons of the mature organisms demonstrate to the neonate's 

neurons the appropriate response to high-frequency stimulation. These concepts demonstrate that 

Shared Intentionality could contribute to advanced digital modes of learning and Artificial 

Intelligence (AI) systems. 

7. Conclusion 

The present report discussed the physical foundations of the neurobiological process occurring 

during goal-directed coherence, i.e., which agent (element or compound) present in the cells is 

involved in coherent cooperation and how. The present study proposed concepts of physical 

foundations and the hypothesis of the neurophysiological process of social interaction in the 

absence of sensory cues referred to as Shared Intentionality. The core concept was that the neurons 

of a mature organism train the neonate's neurons in spike-timing-dependent plasticity, linking 

particular stimuli with specific embodied sensorimotor neural networks. In particular, if a single 

harmonic oscillator induces the neurons (or Coherence Agent from these neurons) of modality-

specific gateways in different organisms, which are in a psychophysiological coherence, these 

neurons act coherently according to the laws of quantum mechanics. Since these neurons react 

similarly, the neurons of the mature organism train the neurons of the neonate to exhibit the 

appropriate response to high-frequency stimulation by linking particular stimuli with specific 

embodied sensorimotor neural networks.  

The present report discussed three possible agents that could involve quantum mechanisms 

within cells, thereby conferring the quality of goal-directed coherence to biological systems and 

promoting Shared Intentionality in humans. The concept of the protein agent appears to be more 

plausible compared to the other two – the atom of hydrogen and the Posner molecule. The report 

presented several comments to fabricate a framework for further research on the possible agents 

of quantum mechanics for goal-directed coherence and Shared Intentionality.  

The report also presented several ideas for developing advanced online learning methods for 

children with developmental disadvantages. These ideas have been successfully tested in recent 

case studies (conducted online) [17, 18] concerning the task of conveying the meaning of 

numerosity to children of age 18–33 months. The core advantage of the present study is the 

concepts it proposes for further research on the neurophysiological process for understanding brain 

function at the cellular level during social interactions. 
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