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Abstract  

Marks of brain disorders may be visible through abnormal networks characterized by states with 

distinct signatures or connectivity patterns. Apart from neurodegenerations, drug abuse or 

eventually addiction may exert complex perturbative effects over human health, including 

damage to various organs and especially brain inflammation, volume shrinkage and functional 

deficits. These can also be regarded as signs of accelerated ageing, which involve multiple 

comorbidities associated with long-lasting cognitive impairments. The present study investigates 

drug effects at brain level through transcriptional changes potentially reflecting specific 

molecular and cellular dysregulation marks. As signatures arising in various brain regions may 

change, the data here analyzed refer to cross-referenced transcriptome profiles that were in part 

experimentally measured and in part computed. A methodological aim refers to network 

inference centered on a few well-characterized entangled states whose connectivity patterns 

identify clusters and motifs. At the biological annotation level an interesting role is played by the 
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Vascular Endothelial Growth Factor A (VEGFA), a central connector of kinases involved in 

cytoskeleton rearrangement, synaptogenesis and synaptic functions, neurogenesis, cell growth, 

cell adhesion, neurohormone signaling apoptosis. VEGFA associations in both co-expression and 

protein-protein interaction networks reveal patterns linked to MCL1, a BCL2 family Apoptosis 

regulator.  
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1. Background  

Mainly due to induced toxicity, drug abuse can accelerate brain ageing but also trigger early onset 

of disorders that in turn are typical of age [1, 2]. To explain the complex dynamics underlying drug 

abuse and addiction, various studies have been proposed covering brain regions like Nucleus 

Accumbens (NAc), Amygdala, Dorsal Striatum, Hippocampus and Prefrontal Cortex. Each of such 

regions being relevant, NAc’s role is for instance critical for mediating reward-motivated behavior and 

is an important component of a major dopaminergic pathway, namely the mesolimbic. An important 

player to explain pathological conditions is dopamine [3-5]. Elevated dopamine levels are observed in 

drug users and genomic signatures associated with addiction have been already linked to pathological 

conditions due to the role played by dopamine [6-8]. In NAc, increased feelings of reward may be 

induced, together with a reduced dopamine function. 

NAc has been implicated in neurological and psychiatric disorders beyond drug abuse and addiction, 

say depression, obsessive-compulsive, bipolar, anxiety disorders, Parkinson's disease, Alzheimer's 

disease, Huntington's disease, obesity [9]. Several studies indicate that reward mechanisms explain the 

abnormal plasticity associated with drug abuse [6]. Drugs affect the reward brain regions, and in turn 

trigger neuroplasticity, i.e. the synaptic signaling among neurons crucial to learning and memory. 

Therefore, an important objective is to characterize molecular features underlying addicted cellular 

networks and their regulation mechanisms. Due to the complexity of such associations, and the 

consolidated practice of using networks to decipher complex systems, our hypothesis is that network 

inference can explain gene sets association starting, ideally, from an estimated differential expression 

gene (DEG) profile and then identifying from it clusters and motifs representing the patterns of 

dysregulation in brain activity determined by drug abuse. As a second aspect, finding tightly correlated 

nodes that taken together summarize significant information about the states of a perturbed system 

may characterize entangled states with embedded signatures that refer to the cause of the 

perturbation itself. 

Considering that gene expression profiling has allowed to assess possible differential patterns 

between cocaine abusers and well-matched control subjects [7, 8], the fact that the interrogation of 

thousands of gene transcripts has revealed only 1% as significant indicates the presence of possible 

limitations in these types of approaches (see also [10], and references therein). In general, high-
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throughput-derived transcriptome profiles can be quite large as syntheses of all RNA transcripts but 

represent static snapshots, i.e., measures with a specific temporal dimension attached, and the same 

holds for the spatial relationships embedded in a profile that is then mapped onto the network. 

The role of network structures reflecting system’s states is valuable because adds one further 

component, connectivity, which may better elucidate perturbation effects.  

2. Materials and Methods  

The unitary components of the transcriptome, namely gene readouts or transcripts, can be 

considered integrable into a collection of all the gene readouts present in a cell. Networks represent 

only statically correlative or causative associations between genes depending on the underlying metric 

and on the measurements mapped at node level. The metric determines what links populate the 

network, while the transcriptomic expression values are usually the measurements reported at the 

nodes. Our study refers to a few datasets described below.  

2.1 Dataset-1  

Experimental high-throughput work (RNA-Seq) was recently conducted at our and associated 

laboratories for measuring cocaine use effects (unpublished results). NAc tissue samples were used to 

deliver a profile with 167 significantly identified genes from 178 detected transcripts. The co-expression 

and interaction networks dynamics are computed here via STRING.db (V. 10.5) [11] to explore 

functional characteristics and assess the informativeness of network connectivity associated to the 

transcriptome.  

2.2 Dataset-2  

Brain disorders often involve multiple genes and complex interactions between them whose 

identification is particularly challenging and requires ad hoc prioritization tools. The tool brain-coX 

(https://shiny.wehi.edu.au/freytag.s/brain-coX/) [12] was used for cross-referencing the results and 

perform in silico gene prioritization based on multiple gene expression datasets in the post-mortem 

human brain.  

2.3 Tools and Repositories  

Regulatory networks were formed with TFs retrieved from JASPAR (http://jaspar.genereg.net/), and 

other regulatory networks were computed with reference to miRNAs and the associated targets by 

using the TarBase db (http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index) 

[13], which provides a comprehensive assessment of features of experimentally supported miRNA 

targets, and miRTarBase. (http://mirtarbase.mbc.nctu.edu.tw/) [14], which provides miRNA-target 

interactions collected by both manual literature curation and experimental validations.  

Protein-chemical interactions were obtained from the Comparative Toxicogenomics Database 

(http://ctdbase.org/) [15], providing manually curated information from the literature in support to 

hypotheses on etiology and exposome-driven disease mechanisms. Finally, drug-target interactions 

https://shiny.wehi.edu.au/freytag.s/brain-coX/
http://jaspar.genereg.net/
http://diana.imis.athena-innovation.gr/DianaTools/index.php?r=tarbase/index
http://mirtarbase.mbc.nctu.edu.tw/
http://ctdbase.org/
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were obtained by the DrugBank database (V5.0) (https://www.drugbank.ca/) [16], accounting for 

about 1000 drug entries (including one fifth FDA-approved small molecule drugs, 241 FDA-approved 

biotech protein/peptide drugs) and over 6000 experimental drugs, and with 4661 drug 

target/enzyme/transporter/carrier sequences linked to them. A network platform for integrative 

mapping applications was used with blend of solutions (available from [17, 18]).  

2.4 Clustering Methods  

The Markov Cluster Algorithm (MCL) is a fast scalable unsupervised clustering applied to networks 

and based on stochastic flow simulation [19]. Each cluster has at least one distinct element compared 

to the other clusters and these together form a set of strongly connected components with an 

associated graph. The MCL process initiates with an input matrix and a graph with one strongly 

connected component that then grows in number yielding a clustering distribution related to the 

density of the input matrix. The clustering itself is stable under perturbations. The k-Means clustering 

is a distance-based algorithm that partitions the data into a pre-specified number of clusters. The 

distance function measures the similarity between cases assigned to the nearest cluster. This 

unsupervised learning iteratively groups the data into k predefined non-overlapping clusters 

maximizing the intra-cluster points similarity.  

2.5 Entangled Network States 

Networks allow inference to be conducted from one or multiple datasets represented by simple 

structures such as nodes and links. Network interactomes may display configurations of perturbed 

interactions, i.e. those changing in response to a certain stimulus. Such conditional networks are 

typically heterogenous, i.e., they show the rewiring effects induced by external factors or time-course 

events. Modularity, which is a characteristic of biological networks, adapts to perturbed conditions 

when forming hierarchies of functional relationships. These tell us what levels of functional stability 

and/or plasticity the system presents in response to activation/inhibition dynamics induced by non-

baseline conditions. 

Of interest here is an understanding of networks whose complex architectures of interconnected 

nodes reflect a sort of entanglement (E) effect. This can be considered a quantum measure of 

correlation that reveals how the information is encoded among all the network interacting nodes (with 

single or multiple features combined into tensors etc.). There is a growing attention to this topic with 

the goal of putting into relationships E with network topological properties and more in general 

associating graphs to quantum states. In principle, quantum entanglement (QE) occurs between 

multiple interacting entities when their quantum state cannot be described independently but only as 

a system. For instance, QE may describe a state that two particles share because superposed or non-

separable, making impossible to describe them individually. Equivalently, entangled states indicate that 

if one entity is measured, specified or resolved in its characteristics, then the effects extend to its 

counterparts. At that point any interaction that occurs has system’s relevance, i.e., it reflects the 

influence of an overall entangled state, eventually causing the initial superposition to collapse in view of 

particular perturbations.  

https://www.drugbank.ca/
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Translated into the language of networks, stable states are usually considered attractors and other 

states can be identified as possibly perturbed ones. In parallel with entangled states, also modules are 

highly intercorrelated entities able to measure the effects of perturbations and define the system’s 

response to external events through state transitions. Such transitions have not just localized influence 

but can trigger changes at global network scale. Even if biological network configurations are inherently 

sparse it is generally observed that their remodulation is systemic and covers variable resolutions (from 

local to global). Perturbations associated to drug-induced changes are expected to induce synergistic 

interconnections between transcriptome-driven bioentities (genes, proteins) and mimic entangled 

states in their transition dynamics. Once again, the state of a network is determined by the state of its 

component modules and thus changes in the global state depend on changes of state occurring at 

component level and then transmitted or propagated via the underlying interdependence structure.  

3. Results  

3.1 Identified Network Motifs 

Networks of interactions between proteins (PPIN) are used to display associations and discover 

emergent properties or unexpected events that the complex network self-organization laws tend to 

generate. Measures of global topology or locality (structures that repeat or not) may both enable 

network inference. Figure 1 shows a co-expressions network computed from a subset of the NAc 

profile. Clusters were computed by applying k-means and MCL. Use of tandem clustering serves the 

scope of proving consistency of findings by reducing method-induced bias. This is summarized by three 

identified (significant) down-regulated motifs: (a) FYN-SH3KBP1-PTPRE (b) VEGFA-FGFR1-FGF22-SOS2; 

(c) DLG1-DUT-GUK1.  

 

Figure 1 NAc co-expression network with clusters. Source is STRING db (evidence mode: 

experiments, database and co-expression interaction sources). Red, yellow and blue arrows 

converge to correspondingly identified motifs.  
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More specifically, Motif a includes: FYN (log2(FC)=-0.47), encoding a membrane-associated tyrosine 

kinase implicated in the control of cell growth; SH3KBP1 (log2(FC)=-1.24), SH3 Domain Containing 

Kinase Binding Protein 1, implicated in apoptosis, cytoskeletal rearrangement, cell adhesion and in 

regulating clathrin-dependent endocytosis; PTPRE (log2(FC)=-1.06), a member of the protein tyrosine 

phosphatase (PTP) family, i.e. signaling molecules regulating cell growth, differentiation, mitotic cycle, 

and oncogenic transformation. Overall, this down-regulated motif affects cell growth with inhibitory 

influence.  

The second, Motif b, includes: DLG1 (log2(FC)=-0.82), involved in septate junction formation, signal 

transduction, cell proliferation, synaptogenesis and lymphocyte activation; DUT (log2(FC)=–0.66), a 

gene encoding an enzyme essential for nucleotide metabolism, and whose expression regulated by the 

tumor suppressor p53 promotes apoptosis of tumor cells; GUK1 (log2(FC)=2.48), a guanylate kinase 

(GK) whose mutations in the signaling cascade lead to retinal degeneration in humans [20]. Overall, this 

second motif tends to be anti-proliferative and synaptogenic while limiting pro-apoptotic activity.  

The third, Motif c, includes: VEGFA (log2(FC)=-1.25), or Vascular Endothelial Growth Factor A, a 

member of the PDGF/VEGF growth factor family inducing proliferation and migration of vascular 

endothelial cells and essential for physiological/pathological angiogenesis. VEGFA plays also a role in 

white matter maintenance and homeostasis, as it can induce oligodendrocyte precursor cells (OPC) 

migration via a ROS and FAK-dependent mechanism [21].  

Then, FGFR1 (log2(FC)=-0.79), a member of the fibroblast growth factor receptor (FGFR) family 

influencing mitogenesis and differentiation; FGF22 (log2(FC)=-0.71), a member of FGF, with mitogenic 

and cell survival activities and involved in embryonic development, cell growth, morphogenesis, tissue 

repair, tumor growth and invasion; SOS2 (log2(FC)=-1.05), or SOS Ras/Rho Guanine Nucleotide 

Exchange Factor 2, with pathway activity related to VEGF. Overall, this third motif reveals the inhibition 

of multiple growth factors.  

3.2 Bio-annotations 

Connectivity measured at PPIN scale (Figure 2) offers the possibility to infer associations from NAc 

patterns. Specifically, the main motif refers to VEGFA, known to induce proliferative processes essential 

for both physiological and pathological angiogenesis. Also, very recent study showed that the 

expression levels of this growth factor are significantly affected by chronic cocaine use in both region-

dependent and cocaine treatment-time dependent ways [22].  
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Figure 2 Protein-Protein Interaction network for NAc. Source: STRING db, confidence level 

0.4.  

Here, VEGFA down-regulation indicates a general inhibition of angiogenesis, suggesting the non-

prevalence of neuroplasticity induced by either chronic or acute effects of cocaine use. VEGFA appears 

connected with MCL1, which encodes an anti-apoptotic protein, and is member of the Bcl-2 family (not 

directly involved in proliferation). MCL1 is up-regulated and its pattern associated with the inhibited 

VEGFA was observed in other studies, for instance in multiple myeloma cell proliferation with inhibition 

of VEGF-induced MCL1 up-regulation [23], or in leukemia [24]. In our context, further insights came 

from other down-regulated (circled in Figure 2) proteins. MCL1 is connected directly with SIRPA 

(inhibited signal transduction activity possibly related with synaptogenesis and synaptic function), 

while the inhibited SH3KBP1 is indirectly connected with VEGFA being implicated in multiple processes 

(apoptosis, cytoskeletal rearrangement, cell adhesion, etc.). MUC1 is also inhibited and connected with 

VEGFA, being involved in cellular growth and survival. Canonical pathways for the genes listed in the 

three motifs are in Table 1.  

Table 1 Pathway terms computed from the GeNets web platform results [25]. 

Enriched Pathways (MsigDB Canonical pathways) 

Rank Name Pathway Size 
Bonferroni 
p-value 

1 PID GLYPICAN I PATHWAY 27 1.3e-8 
2 REACTOME FGFR I LIGAND BINDING AND ACTIVATION 22 0.0000035 
3 KEGG T CELL RECEPTOR SIGNALING PATHWAY 14 8.2e-7 
4 REACTOME FGFR LIGAND BINDING AND ACTIVATION 108 0.0000039 
5 REACTOME SHC MEDIATED CASCADE 28 0.0000073 
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6 REACTOME ANTIGE ACTIVATES B CELL RECEPTOR 29 0.0000082 
  LEADING TO GENERATION OF 2nd MESSENGERS 
7 REACTOME FRS2 MEDIATED CASCADE 36 0.000016 
8 REACTOME NEGATIVE REGULATION OF FGFR SIGNALING 37 0.000017 
9 REACTOME SIGNALING BY FGFR MUTATION 44 0.000030 
10 REACTOME PHOSPHOLIPASE C MEDIATED CASCADE 54 0.000055 
11 REACTOME PI3K CASCADE 56 0.000062 
12 REACTOME NCAM SIGNALING FOR NEURITE OUT GROWTH  64 0.000093 
13 PID VEGFR I 2 PATHWAY 69 0.00012 
14 KEGG RENAL CELL CARCINOMA 70 0.00012 
15 KEGG MELANOMA 71 0.00013 
16 REACTOME METABOLISM OF NUCLEOTIDES 72 0.00013 
17 KEGG ADHERENS JUNCTION 75 0.00015 
18 KEGG FC EPSILON RI SIGNALING PATHWAY 79 0.00017 
19 ST INTEGRIN SIGNALING PATHWAY 82 0.00020 
20 REACTOME LICAM INTERACTIONS 86 0.00023 
21 REACTOME INSULIN RECEPTOR SIGNALLING CASCADE 87 0.00023 
22 KEGG PROSTATE CANCER 89 0.00025 
23 REACTOME DOWNSTREAM SIGNALING OF ACTIVATED FGFR 100 0.00036 
24 REACTOME SIGNALING BY INSULIN RECEPTOR 108 0.00045 
25 REACTOME SIGNALING BY FGFR 112 0.00050 
26 REACTOME SIGNALING BY THE B CELL RECEPTOR BCR 126 0.00071 
27 REACTOME SIGNALING BY FGFR IN DISEASE 127 0.00073 
28 KEGG NATURAL KILLER CELL MEDIATED CYTOTOXICITY 137 0.00091 

3.3 In Silico Prioritization Tool 

Aimed at the identification of high-confidence candidate genes possibly causative of disease 

phenotypes, a key factor is the prioritization of such candidates to limit unnecessary experimental 

validations. In general, a few candidate genes with specific relevance are produced in genomic studies, 

while automatically generated candidate lists result incompatible with experimental validations. 

Therefore, in silico gene prioritization ranks the candidate genes by integrating profiles from various 

datasets (see large-scale benchmarking of methods in [26]). Due to the complexity of biological 

processes in the brain, gene expression tends to differentiate from other tissues [27]. In addition, 

variation in gene expression is observed over individuals’ development, suggesting larger effects 

exerted temporally rather than spatially [28].  

For the purpose of gene prioritization, the web-tool brain-coX was explored in its brain 

transcriptome expression data gathered from multiple studies involving developing and ageing human 

brains. The majority of the collected samples come from normal (neurologically non-diseased) 

individuals useful for benchmarking “known disease genes” and prioritizing candidate gene lists (also 

referred to BrainGEP [29]). Figure 3 illustrates gene relationships established between our candidate 

genes and reference genes retrieved from brain-coX. Notably, the candidate gene list was cleaned 

(conventional way mode) and thresholded (20% the option of choice) while the selected age range was 
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kept quite large (from adolescence to late adulthood, which is compatible with drug 

consumption/abuse habits). The gene prioritization (Table 2) indicates 14 candidate genes prioritized 

against the selected datasets and reported in COEX and PPI network configurations.  

 

Figure 3 Sub-networks derived from in silico prioritization (brain-coX). Context includes 

candidate genes and selections from two reference datasets: (a) 134 individuals; age range: 

16 years - 102 years; 1222 samples from entire brain [28]; (b) 101 individuals; age range: 22 

years - 106 years; 302 samples from cerebellum, visual and prefrontal cortex [29]. 

Table 2 Gene Prioritization based on two reference datasets: Trabzuni et al [30]: using 1222 

samples; Zhang et al [31]: using 302 samples. 

Symbol Name 
Trabzuni | Zhang  

N. of 
Times  

N. of 
Times  

datasets Prioritized Seen 

HAPLN2 
Hyaluronan And Proteoglycan Link Protein 
2 

1.00 | 1.00 2 2 

BOK Bcl-2 related ovarian killer protein  1.00 | 1.00 2 2 

DLG1 Discs Large MAGUK Scaffold Protein 1 1.00 | 1.00 2 2 

PRR18 Proline Rich Region 18 1.00 | 1.00 2 2 

GSN Gelsolin  1.00 | 1.00 2 2 

NACC2 NACC Family Member 2 1.00 | 1.00 2 2 

APBB1IP 
Amyloid Beta Precursor Protein Binding 
Family B Member 1 Interacting Protein 

1.00 | 1.00 2 2 

HTATIP2 HIV-1 Tat Interactive Protein 2 1.00 | 1.00 2 2 

ST3GAL4 
ST3 Beta-Galactoside Alpha-2,3-
Sialyltransferase 

1.00 | 1.00 2 2 
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SOS2 
SOS Ras/Rho Guanine Nucleotide Exchange 
Factor 2 

1.00 | 1.00 2 2 

ITPK1 Inositol-Tetrakisphosphate 1-Kinase 1.00 | 1.00 2 2 

CDK16 Cyclin Dependent Kinase 16 1.00 | 1.00 2 2 

MTMR1 Myotubularin Related Protein 1 1.00 | 1.00 2 2 

PDZD4 PDZ Domain Containing 4  1.00 | 1.00 2 2 

TRMT11 TRNA Methyltransferase 11 Homolog  1.00 | 0.00 1 1 

GTF2IRD2B GTF2I Repeat Domain Containing 2B 1.00 | 0.00 1 1 

ARHGAP44 Rho GTPase Activating Protein 44) 1.00 | 0.00 1 1 

ATRAID 
All-Trans Retinoic Acid Induced 
Differentiation Factor  

0.00 | 1.00 1 1 

PLEKHG3 
Pleckstrin Homology And RhoGEF Domain 
Containing G3 

0.00 | 1.00 1 1 

SH3D19 SH3 Domain Containing 19 0.00 | 1.00 1 1 

Note: 14 candidate genes are prioritized in all selected datasets compared to an expected n. of 19 

(St Dev = 1.415). Sources: GeneCards, The Human Gene Database (http://www.genecards.org/).  

3.4 Prioritized Gene Lists 

The gene list that was found with the above described tool includes:  

a) HAPLN2, forming the hyaluronan-associated matrix in the central nervous system and facilitating 

neuronal conduction and general structural stabilization;  

b) BOK, a BCL2 Family Apoptosis Regulator, acting as pro-apoptotic;  

c) DLG1, playing a possible role in cell proliferation and synaptogenesis;  

d) APBB1IP, involved in the signal transduction from Ras activation to actin cytoskeletal remodeling, 

suppressing insulin-induced promoter activities through AP1 and SRE, and mediating Rap1-induced 

adhesion;  

e) HTATIP2, involved in apoptosis and autophagy and cytoskeletal signaling pathways;  

f) SOS2, involved in development VEGF and Gap Junctions signaling pathways;  

g) ITPK1, referred to inositol metabolism and playing a role in the development of the neural tube; 

h) CDK16, which belongs to the cdc2/cdkx subfamily of the ser/thr family of protein kinases (relevant 

for vesicle-mediated transport processes and exocytosis and regulates GH1 release by brain neurons, 

neuron differentiation and dendrite development);  

i) ARHGAP44, which acts as a GAP for CDC42 and RAC involved in synaptic plasticity;  

l) SH3D19, suppressor of Ras-induced cellular transformation and Ras-mediated activation of ELK1 

by EBP and regulator of ADAM proteins in the signaling of EGFR-ligand shedding and of cell morphology 

and cytoskeletal organization.  

Figure 3 is centered on NOTCH3, key regulator of nervous system development and promoter of 

neural stem cells renewal and proliferation [32]. Here, it includes the candidate MUC1 and its main 

http://www.genecards.org/
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connected path links to SH3KBP1, associated with NUMB (neurogenesis and repair) and DLL1 (brain 

development), and to SIRPA, associated with Notch signaling via DTX3 and RBPJ that recruit chromatin 

remodeling complexes and PSEN1 known to be involved with AD and dementia. 

3.5 Role of VEGFA 

It is of interest to check VEGFA then, previously identified as a determinant of a PPI network motif. 

Based on two normal brain datasets interrogated in brain.coX, VEGFA role appears marginally linked to 

the rest. When changing the reference dataset (normal and abnormal brain [33]), VEGFA returns to 

play a major role. In Figure 4, a VEGFA-centered network is displayed with the same known reference 

genes as in the previous context. More regulations need to be investigated and both TFs and miRNAs 

are then considered.  

Figure 4 VEGFA sub-networks. Context from the Brain-coX reference data set, in which 

individuals with abnormal brains are included among the 457 individuals of age ranging 

widely across 908 samples from cerebellum and frontal cortex.  

3.6 NAc Transcription Factor-Mediated Regulations 

In Figure 5 TFs are displayed with reference to their target genes in our candidate gene list. The 

network at the top panel includes the minimum connected network (214 nodes; 1249 edges). The 

network at the bottom panel is topologically constrained, showing high-degree nodes. Note that 

SH3KBP1 is included, and is under regulatory influences from various TFs, namely: a) GATA3, important 

regulator of T-cell development and related to Notch signaling; b) NFIC, involved in transcription and 

replication; c) HOXA5, part of homeobox genes whose expression and differentiation are regulated 

during embryonic development; d) SRF, involved in cell proliferation, differentiation, growth and 

apoptosis, and acting downstream of MAPK; e) STAT3 (part of the JAK-STAT signaling cascade, acting in 

response to cytokines and growth factors, and playing a key role in cell growth and apoptosis; f) PPARG, 

regulating the transcription of many genes; g) NFKB1, involved in many biological processes such as 
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inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis; h) YY1, repressing 

and activating many promoters; i) FOXC1 and FOXL1, involved in regulation of embryonic development, 

and of metabolism and cell proliferation, respectively; l) SREBF1, whose related pathways are apoptosis 

and the survival caspase cascade; m) CREB1, whose related pathways are Trk receptor signaling 

(mediated by MAPK), hypoxia, Dopamine D1-like receptor family signaling, Akt signaling, and involving 

different cellular processes including the synchronization of circadian rhythmicity. 

 

Figure 5 Transcription factor - target gene networks. Top panel: Whole TF-target network 

(240 nodes and 1295 edges). Bottom panel - selected sub-network with constraints fixed at 

degree ≥15 and betweenness ≥ 1. Note among the targets, SH3KBP1 is a highly connected 

node (indicated by yellow arrow).  

3.7 NAc miRNA-mediated Regulations  

Note that miRNAs may contribute to the long-lasting forms of synaptic plasticity through the 

modulation of regulatory pathways involving dendritic mRNA trafficking, synaptic mRNA translation, 

alteration of actin cytoskeleton, neurotransmitter metabolism, etc. [34]. With the scope of accounting 

for potential regulators of our targets, we examined the whole miRNA-target genes interactome (Figure 
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6) by looking at TarBase and miRTarBase. Expectedly, we could find a very rich network of interactions 

between miRNAs and targets. By constraining topologically this network to nodes of degree level > 5, 

and centrality > 1, both VEGFA and MCL1 appeared as main hubs.  

 

Figure 6 MiRNA-mediated gene networks. Top panel: minimum connected whole miRNA-

target gene network (340 nodes and 885 edges). Bottom panel: sub-network with 

topological constraints (degree ≥ 5, betweenness ≥ 1). Source: TarBase and miRTarBase. 

With MCL1 as a target, it appears that miR-615-3p is part of a small group known to target innate 

and inflammatory factors, while also miR-20a-5p belongs to a family affecting target genes implicated 

in axonal guidance. This miRNA, together with miR-17-5p, miR-106b, and miR-16 have also been shown 

to act in concert to regulate E2F activity [35], and to be involved in regulating APP expression [36]. 

Then, another brain-specific miRNA, miR-124, has been implicated in neuronal differentiation and it 

promotes nervous system development, identifying a set of target genes involved in stress response 

and neural plasticity. In particular, miR-124 was among those few identified as cocaine-regulated in 

rats; and by using lentiviral vectors to over-express or silence this miRNA in NAc played a role in rats’ 

ability to exhibit conditioned place preference for cocaine [37, 38]. Overall, miRNA regulation acts on 

the expression of drug-metabolizing enzymes and transporters. In our specific context, due to the 
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imposed network constraints, miRNA-mediated regulation appears to play a significant role in 

modulating the effects of cocaine on the nervous system [39, 40]. 

3.8 Drug Interactions 

The protein-drug interactions were also computed using the DrugBank db, and 13 significant sub-

networks were identified. While the primary and richest network is centered on ACHE, or 

Acetylcholinesterase found in neuronal synapses and with a role in neuronal apoptosis (in particular, it 

terminates the signal transduction at the neuromuscular junction), the second sub-network is centered 

on VEGFA, as shown in Figure 7 (top panel). When the protein-chemical interactions is retrieved from 

the Comparative Toxicogenomics Database (CTD), the network (Figure 7, bottom panel) reveals 3 main 

communities (computed by the label propagation algorithm [41]) with one centered on VEGFA and 

overlapping to some extent with MCL1, due to high degree and centrality scores. 

 

Figure 7 Drug and chemical interactions. Top panel: VEGFA drug network (source: 

DrugBank, V5.0). Bottom panel: main communities displayed in protein-chemical 

interaction network (1137 nodes, and 3375 edges, drawn from Comparative 

Toxicogenomics db).  
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4. Discussion and Conclusions 

Repeated exposure to drugs may lead to persistent changes in gene expression that are suspected 

to induce structural plasticity adaptation in multiple brain regions. Assuming that brain dynamics may 

show signatures of such adaptive process, transcriptome data were used to explore the significance of 

specific network patterns belonging to particularly entangled states, i.e., those tightly correlated 

because embedded in cluster motifs. Some of these emerged significantly from our analyses. In order 

to infer with confidence, we cross-referenced our detections with various methods and biological 

sources, including multiple studies on the brain effects from drug use. Through the employed co-

expression and PII networks multiple types of associations and interactions were investigated to 

capture differential transcriptome features possibly associated to perturbation effects exerted over the 

selected brain region. One in particular, NAc, allows to observe specific neuronal functionality related 

to the reward circuit.  

As a general consideration emerging from our findings, the identified brain transcriptome landscape 

reflects not surprisingly a diffuse inhibitory response. A mix of brain regulatory drivers was found to 

underlie the specific patterns identified through network motifs. As the milieu of neural types that can 

be addressed in each particular brain region is different, this variety can affect the neuronal 

connectivity patterns and the way in which responses to stimuli occur. A recent study emphasized the 

fact that the progression from recreational to recurrent drug use involves distinct brain areas at 

different stages of the drug addiction process [42]. Interestingly, the continuity of exposure to drugs 

justifies distinct impacts over the neuronal structural plasticity upstream NAc medium spiny neurons.  

The study has demonstrated that the identifications obtained from the transcriptome can reveal, 

when interconnected, functionally relevant patterns reflecting entangled states of the system under 

study. The predominant patterns emphasized in our study appear mostly down-regulated and centered 

on the association between VEGFA and MCL1. This is especially highlighted in the PPI network, although 

both recur significantly in other types of networks, such as miRNA-targets, drug interaction, and 

protein-chemical interaction ones. This convergence seems to indicate a clear effect on regulation 

visible across various network configurations of regulation dynamics. One aspects that these marks 

suggest is the non-prevalence of specific effects when considering either acute or chronic drug use 

based on the identifications related to the NAc response. However, whether these differential 

transcriptome patterns can offer sufficient evidence to support causative relations with either chronic 

or acute drug effects remains unclear. This conclusion may indeed hold also because of the possible 

presence of brain disorders of difficult diagnosis, bringing up the issue of regulatory roles that may be 

played by comorbidities. 

Overall, the inherent limitations of our analysis have nevertheless important implications for future 

studies. Inference on the effects of drug use may reasonably start with transcriptomic measurements 

as these determine influences on brain regulatory circuits observed at a genomic scale, therefore 

systemically. Following such step, multiple data sensitivities should be considered and investigated by 

integrative omics analyses, indeed a necessary direction for future studies [43]. A promising area is 

methylome-transcriptome integrated profiles to assess complex regulatory influences. In turn, the 

methodologies to conduct inference should adapt to the complexity of data integrations in order to 
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increase the confidence in the results and consolidate them through biological validations. Drug effects 

may likely determine complex stratifications that are hardly detectable by specific measurements or 

perhaps only approximated (given suitable controls, depending on confounders, etc.) at either 

transcriptome and/or methylome levels. At a structural level, it is important the role of novel transcript 

features, for instance gene fusion delivered by integrative omics studies [44]. At a functional level, it is 

important to build joint profiles and establish through them the influences that can be measured at 

systems level. Finally, at the computational level it is important to leverage differential networks and 

measure their sensitivity to different perturbation levels by mapping extensively the brain system.  
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