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Abstract 

Microvascular endothelial dysfunction precedes, often by decades, the cognitive decline 

associated with Alzheimer's disease. Hence, preservation of a healthy cerebrovascular 

endothelium can be an important therapeutic target. By incorporating appropriate drug(s) 

into biomimetic (lipid cubic phase) nanocarriers, one obtains a multitasking combination 

therapeutic which targets certain cell-surface scavenger receptors, mainly class B type I (i.e., 

SR-BI), and crosses the blood-brain barrier. Documented similarities in lipid composition – 

among high-density lipoproteins (HDL) and the biomimetic (nanoemulsion) nanocarrier 

particles – can partially simulate or mimic the known heterogeneity (i.e., subpopulations or 

subspecies) of HDL particles. Such colloidal-nanocarrier targeting allows for various 

Alzheimer's-related cell types to be simultaneously searched in a holistic integrative 

approach, in vivo, for localized drug treatment. Using various biobased lipids and their 

mixtures to form self-assembled non-lamellar nanostructures, it has continually been 

reported possible to successfully obtain stable colloidal dispersions of (liquid-crystalline) 

lipid cubic phases with well-defined particle size and morphology. In particular, 

monoglyceride-based lyotropic liquid-crystalline phases are relatively unique owing to their 

rich polymorphism in water and potential application as drug nanocarriers. This (colloidal -
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nanocarrier) in vivo targeting advantage may be particularly important when delivering 

pleiotropic natural substances (e.g., an isoflavone) or for repurposing an FDA-approved drug.  

Keywords  

Alzheimer's disease; blood-brain barrier; cognitive decline; dementia; drug targeting; lipid 

cubic phases; nanoemulsion; scavenger receptors; SR-BI 

 

1. Background 

Vascular brain lesions are very common in people over 70 years old, and recent reviews [1, 2] 

provide much evidence that a large proportion of dementia cases may be attributable to 

cerebrovascular disease [3, 4]. Accordingly, vascular cognitive impairment and dementia (VCID) is 

the second leading cause of dementia behind Alzheimer's disease, and is a frequent co-morbidity 

in the Alzheimer's patient [5, 6]. Furthermore, growing data from brain imaging studies and 

various animal models suggest that cerebrovascular dysfunction may well preceed cognitive 

impairment and the onset of neurodegenerative changes in Alzheimer's disease [2, 4]. 

2. Endothelial Dysfunction, and Targeted Nanotherapy for Early Dementia 

Small-vessel disease is commonly found in patients with neurodegenerative disease, such as 

Alzheimer's patients. The vascular changes associated with small-vessel disease include a blood-

brain barrier (BBB) breakdown with leakage of blood-borne molecules [4]. It is no surprise, 

therefore, that multiple epidemiological studies have shown a marked overlap among risk factors 

for small-vessel cerebrovascular disease and late-onset Alzheimer's disease. 

It has been reported repeatedly that endothelial modulation and repair is feasible by 

pharmacological targeting [1, 2, 7-13] via SR-BI receptors [13]. As the detailed review by 

Mahringer et al. [14] points out, the BBB is equipped with several endocytic receptors at the 

luminal surface (i.e., the capillary endothelial membrane), including SR-BI. Recently, Fung et al. [15] 

specifically found that SR-BI mediates the uptake and transcytosis of HDL across brain 

microvascular endothelial cells (i.e., across the BBB). Since SR-BI has already been identified as a 

major receptor for HDL (with their major apolipoprotein (apo)A-I) as well as for the recently 

reviewed *1,2+ “lipid-coated microbubble/nanoparticle-derived” (LCM/ND) nanoemulsion (see 

below), this multitasking lipid nanoemulsion can arguably serve as a targeted, apoA-I-based, (SR-BI 

mediated) therapeutic agent for common (late-onset) dementias [16-18]. 

This targeted-delivery-approach, using the proposed LCM/ND lipid nanoemulsion for treating 

the more common (late-onset) dementias, receives added impetus from continual findings of 

cerebrovascular pathology [1, 19-29] and an apparent endothelium dysfunction [2, 17, 18, 25, 30-

36] in both Alzheimer's disease and its major risk factors [1, 2, 29-41]. By incorporating drug 

molecules into the LCM/ND lipid nanoemulsion type (yielding particle sizes mostly < 0.1 μm in 

diameter – see Figure 1), known to be a successful drug carrier [42, 43], one is likely to obtain a 

multitasking combination therapeutic capable of targeting cell-surface SR-BI. This (intravenous) 

combination therapeutic would make it possible for various cell types, al l potentially implicated in 



OBM Neurobiology 2019; 3(3), doi:10.21926/obm.neurobiol .1903040 

 

Page 3/13 

Alzheimer's disease [1, 2], to be simultaneously sought out and better reached for localized drug 

treatment of brain tissue in vivo [42, 43]. 

 

Figure 1 LCM/ND nanoemulsion stability over time. (Adapted from [2]) 

3. LCM/ND Nanoemulsion Type, and Targeting via Lipid Cubic Phases 

Importantly, monoglyceride is the largest single-lipid fraction (by wt. %) of the powdered solid 

lipid surfactants used to produce the (Filmix®) LCM/ND nanoemulsions [42]. As a group, 

monoglycerides exhibit different phase behaviors when they are exposed to water [44, 45]. In 

particular, the self-assembly of varied and useful dispersed cubic phases (among other liquid-

crystalline phases) depends heavily on the acyl chain length of the glycerides (primarily 

monoglycerides) placed in contact with water [42]. The (lyotropic or solvent-induced) cubic liquid-

crystalline phases may be classified into two distinct classes: bicontinuous cubic phases and 

micellar or discontinuous (e.g., type Fd3m) cubic phases [46-50]. 

The dispersed Fd3m cubic phase can represent a lipid/water system which is particularly 

relevant to the earlier-described (Filmix®) LCM/ND lipid nanoemulsion formulation(s) on account 

of the fact that the patent claims describing the precise lipid composition of such nanoemulsion 

formulations (see especially Claim #1 in [51, 52]) specifically include cholesterol and three 

categories of (saturated) glycerides, that is, tri-, di-, and monoglycerides [51, 52]. In view of the 

advantageous attributes of monoglycerides (recounted above), and since (saturated) 

monoglyceride represents the largest single-lipid fraction of the LCM/ND lipid nanoemulsion type, 

the monoglyceride content probably plays a dominant role in supporting the evident long -term 

stability of the liquid-crystalline lipid nanoparticles in such nanoemulsions [42]. 

In this particular targeted-delivery approach, the self-assembled “lipid particle” structure itself 

(upon intravenous injection of the LCM/ND nanoemulsion) is apparently successfully utilized as 
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the “active” targeting ligand – which is directed via (adsorption of) plasma lipoproteins (including 

notably apoA-I) toward the appropriate receptors on the target-cell surface [42]. 

4. Amyloid-β Ion Channel Hypothesis of Alzheimer's Disease 

As explained in many reviews [53, 54] by different investigators, it has been recognized for over 

two decades that disturbance of the intracellular calcium homeostasis is central to the 

pathophysiology of several neurodegenerative disorders. As concerns Alzheimer's disease, it is 

believed by many researchers that enhanced calcium load may be brought about by extracellular 

accumulation of amyloid-β (Aβ) in the brain. Such studies have laid the foundation for the popular 

idea that amyloid-β peptides (39-42 amino acid molecules) are, in part, toxic to brain tissue 

because they form aberrant ion channels in cellular membranes and thereby disrupt Ca2+ 

homeostasis in brain tissue and increase intracellular Ca2+ [53, 54]. 

Historical support for the above amyloid-β ion channel hypothesis, or so-called “calcium 

hypothesis”, has also been observed at the clinical level *55+. Namely, there is little correlation 

between the amounts of fibrillar (insoluble) deposit at autopsy and the clinical severity of 

Alzheimer's disease. In contrast, a good correlation exists between early cognitive impairment and 

levels of soluble forms of Aβ in the brain *56+. (Aggregation of Aβ proceeds from formation of 

soluble (low molecular weight) spherical oligomers toward eventually assuming a final and stable 

conformation as insoluble fibrils from which amyloid-β plaques are constituted.) Hence, 

neurotoxicity is associated with soluble aggregates (i.e., oligomers) of Aβ rather than with the 

plaques themselves [56]. 

As summarized by Di Scala et al. [55], the structure of amyloid pores has been extensively 

studied by ultrastructural methods. In particular, one group of investigators recently applied 

strategies (widely used to examine the structure of membrane proteins) to study the two major 

Aβ variants, namely, Aβ (1-40) and Aβ (1-42). Under the optimized detergent micelle conditions: 1) 

Aβ (1-40) aggregated into amyloid fibrils; 2) contrariwise, Aβ (1-42) assembled into oligomers that 

inserted into lipid bilayers as well-defined pores [57]. (These amyloid pores adopted 

characteristics of a β-barrel arrangement.) Because Aβ (1-42), relative to Aβ (1-40), has a more 

prominent role in Alzheimer's disease, the higher propensity of Aβ (1-42) to form β-barrel pore-

forming oligomers is an indication of their importance in Alzheimer's disease [57]. Very recently, a 

different research group reported very similar findings [58]. As background for their study, these 

latter authors point out that: – elevated Aβ (1-42) plasma levels have been correlated with the 

progression of late-onset forms of Alzheimer's disease; Aβ (1-42) is significantly more neurotoxic 

than Aβ (1-40) both in vivo and in neuronal cell culture; and memory impairment is believed to be 

driven by Aβ (1-42) disruption of long-term (hippocampal) potentiation. In accordance with these 

considerations, the authors' own detailed experimental data *58+ indicated that Aβ  (1-42) 

assemblies in oligomeric preparations form ion channels (in membranes excised from cells of 

neuronal origin). In contrast, Aβ (1-40) oligomers, fibrils, and monomers did not form channels. 

Moreover, ion channel conductance results suggested that Aβ (1-42) oligomers, but not 

monomers and fibrils, formed pore structures. The authors concluded that their findings 

demonstrate that only Aβ (1-42) contains unique structural features that facilitate membrane 

insertion and channel formation, now aligning ion channel formation with the neurotoxic effect of 

Aβ (1-42) compared to Aβ (1-40) in Alzheimer's disease [58]. 
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5. Promise of Bexarotene (or Analogs) to Inhibit Cognitive Decline in Humans 

The preceding discussion of amyloid pore formation, in the cellular membranes of brain tissue, 

leads to another important consideration – the role of cholesterol. Namely, cholesterol is required 

for the assembly of amyloid pores formed by Aβ (1-42) [55]. Therefore, an amphipathic drug (such 

as bexarotene) which competes with cholesterol for binding to Aβ (1-42) would be capable of 

preventing oligomeric channel formation (at least in vitro). Such a strategy has already been 

contemplated earlier for the treatment of Alzheimer's and other neurodegenerative diseases that 

involve cholesterol-dependent toxic oligomers [59]. 

At least two recently published reports (both in 2017) on bexarotene indicate a continuing 

interest in the ability of this FDA-approved (anticancer) drug to: 1) bind free Aβ peptide, as well as 

2) bexarotene's previously reported positive effects in Alzheimer's-disease mouse models [60, 61]. 

Because it is the first drug that can both inhibit the binding of cholesterol to Aβ  (1-42) and prevent 

calcium-permeable amyloid pore formation in the plasma membrane of brain cells, bexarotene 

might be considered as the prototype of a new class of anti-Alzheimer compounds [62]. (Note that 

because bexarotene shares structural analogy with cholesterol, and the above-described LCM/ND 

nanoemulsion contains substantial concentrations of cholesterol esters and cholesterol (see 

above), incorporation of the bexarotene molecule into the LCM/ND nanocarrier is expected to 

represent an uncomplicated, straightforward formulation procedure commercially.) Moreover, 

Casali et al. [63] have very recently reported that treatment of an Alzheimer's -disease mouse 

model with (this FDA-approved anticancer drug) bexarotene resulted in enhanced cogniton in the 

APP/PS1 mice which resembled earlier findings. Strikingly, the authors observed sustained 

cognitive improvements in the mice even when bexarotene treatment was discontinued for 2 

weeks. Also, they observed a sustained reduction in microgliosis and plaque burden, following 

drug withdrawal, exclusively in the hippocampus. Casali et al. concluded that bexarotene 

selectively modifies aspects of neuroinflammation in a region-specific manner to reverse cognitive 

deficits in Alzheimer's-disease (APP/PS1) mice [63]. 

Additional molecular aspects, concerning the membrane-related mechanisms for the known 

neuroprotective effect, of bexarotene action on brain tissue continue to be suggested and/or 

described in the recent literature [64-66]. In the most recently published study, Kamp et al. [66] 

show by NMR and CD spectroscopy that bexarotene directly interacts with the transmembrane 

domain of amyloid precursor protein (APP) – as similarly suspected for Aβ peptides (see below). 

The longer, neurotoxic, Aβ (1-42) peptide is highly aggregation prone and represents the major Aβ 

species deposited in the brain [66-69+. Cholesterol promotes Aβ (1-42) aggregation by enhancing 

its primary nucleation rate by up to 20-fold [69]. Earlier work by Di Scala et al. [59] provided 

evidence that it is possible to prevent the generation of neurotoxic oligomers by targeting the 

cholesterol-binding domain of Aβ peptides *59+. Therefore, blocking of the initial (soluble-)Aβ 

triggering event, by employing a drug such as bexarotene (or an analog), can be seen as a crucial 

goal in treating dementia early. Note that such blocking of amyloid-β-induced neurotoxic pore 

formation can be expected to avoid exacerbation of blood-brain barrier breakdown, already 

occurring at lower levels in aged humans with cognitive decline [70], and thereby prevent reaching 

higher levels of BBB breakdown associated with cognitive impairment (and/or eventually 

dementia) in late-onset Alzheimer's disease [70-72]. The known neuroprotective effect of 

beraxotene action on brain tissue has also recently stimulated expanded research into the use of 
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bexarotene derivatives (i.e., analogs) [73-75], which demonstrated the successful attenuation of 

Alzheimer's-related pathologies and cognitive impairments in an Alzheimer's -disease mouse 

model [75].  

6. Targeted Delivery of Genistein to Delay Dementia 

Genistein is pleiotropic molecule that engages several different mechanisms/pathways to 

enhance brain health – including reduction of oxidative stress, promotion of growth factor 

signaling, and immune suppression. These physiological actions occur in endothelial, glial, and 

neuronal cells to provide a coordinated beneficial action to ischemic/hypoxic challenge [76].  

Using a model of Alzheimer's disease in vitro (by exposing primary hippocampal neurons of 

newborn rats either to oxygen/glucose deprivation or to amyloid-β peptide), researchers *77-79] 

have recently observed the effects of genistein (a type of soybean isoflavone) on such exposed 

rodent cells – with regard to neuron viability and electrophysiological properties of voltage-gated 

sodium channels and potassium channels in these hippocampal neurons. These researchers 

determined that genistein partially reversed the decrease in hippocampal neuron viability, after 

the above exposure, as well as the induced alterations in voltage-activated sodium and potassium 

currents. These authors concluded that their studies suggest that genistein may exert some 

neuroprotective effects via modulation of electrophysiological properties of voltage-activated 

sodium channels and potassium channels [77-79]. 

Moreover, in separate experiments it has recently been reported by other investigators [80] 

that genistein shows strong ability to prevent the conformational transition of amyloid-β 

monomers to β-sheet structures. The resultant finding from these experiments – employing 

atomic force microscopy and circular dichroism – was that genistein reduced the final amyloid 

fibrillization (from amyloid-β monomer aggregation) by 40-63%. Furthermore, comparative 

molecular dynamics simulations revealed that genistein prefers to bind the β-sheet groove of 

amyloid-β oligomers, which then interfers with their self-aggregation [80]. 

Lastly, in earlier work [81] (using a cell-based screening model for CLA-1 [the human ortholog of 

SR-BI] up-regulators), Yang et al. have shown genistein able to up-regulate CLA-1 transcriptional 

activity in the cell-based reporter assay [81]. Accordingly, in view of the above-described central 

role of the CLA-1/(SR-BI) receptor in targeted-delivery behavior of the LCM/ND nanocarrier (see 

2nd section), any such up-regulation of this receptor could be of considerable interest/importance 

when contemplating the possible success of a (human) clinical trial evaluating the effect of 

targeted-delivery of genistein, on early dementia, using the proposed LCM/ND nanoemulsion 

delivery vehicle. 

7. Other Drug Candidates for Targeted Brain Delivery in order to Delay Dementia 

Three other low-molecular-weight, and sufficiently lipophilic, candidates for incorporation into 

the LCM/ND lipid nanoemulsion are docosahexaenoic acid (DHA), astaxanthin, and poly-

hydroxybutyric acid (PHB). 

DHA is the subject of several, very recent reports on this molecule's protective effects against 

Alzheimer's disease [82-85]. Specifically, when different fish polyunsaturated fatty acids (PUFAs) 

were administered to a senescence-accelerated mouse model of (sporadic) Alzheimer's disease, 

only DHA was found able to reverse the cognitive deficits (i.e., memory deficits) in these mice [83]. 
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In the most recent report on the mechanistic effects of DHA against Alzheimer's pathophysiology, 

Eto et al. argue that DHA may affect the fibrillization of Aβ peptides [82, 84, 85]. (Note that 

formation of amyloid fibrils consists of two stages, i.e., the initial nucleation phase and the 

following elongation phase.) More specifically, these authors found that DHA accelerated the 

formation of Aβ fibrils with a unique short and curved morphology in its nucleation phase. These 

short and curved Aβ fibrils formed in the presence of DHA did not facilitate the elongation phase 

of Aβ fibril formation, indicating a possible mechanism of how DHA acts protectively against the 

pathophysiology of Alzheimer's disease [82]. 

As concerns the second drug candidate mentioned at this section's start, astaxanthin has very 

recently been reported to exert protective effects similar to bexarotene in animal models of 

Alzheimer's disease [86]. (Note that astaxanthin, a carotenoid, is a lipid-soluble plant pigment. It is 

an FDA-approved food coloring, and is generally recognized as safe (GRAS) by the FDA.) Using 

porcine brain capillary endothelial cells (pBCEC), Fanaee-Danesh et al. found that astaxanthin (as 

did bexarotene) enhanced Aβ clearance to the apical/plasma compartment of this in vitro BBB 

model *86+. In parallel, astaxanthin reduced levels of Aβ oligomers in murine BCEC, and Aβ species 

in brain soluble and insoluble fractions, from an Alzheimer's -disease mouse model. From their 

various findings, these authors conclude that astaxanthin (as well as bexarotene) exerts beneficial 

effects at the BBB by balancing cholesterol homeostasis and enhancing clearance of Aβ from 

blood-brain barrier endothelial cells [86]. 

The third drug candidate is β-hydroxybutyric acid (or 3-hydroxybutyric acid), which can be 

readily utilized to form hydrophobic poly-hydroxybutyric acid (PHB) polymers for use in 

nanoparticle drug-delivery systems (e.g., [87]). In particular, targeted brain delivery by 

incorporation of hydrophobic PHB polymers into the LCM/ND lipid nanoemulsion makes delaying 

dementia plausible. Past reviews by other investigators (e.g., [88]) make clear that Alzheimer's 

pathology involves all of the major elements of the neurovascular unit of the mature Alzheimer 

brain – the neurons, glia, and blood vessels. Clinically, reduced glucose utilization, decades before 

cognitive deterioration, reveals ongoing energy insufficiency. β-hydroxybutyrate can provide 

energy to the brain when glucose utilization is blocked. Early work in mouse models of Alzheimer's 

disease demonstrated the ability of β-hydroxybutyrate to reverse the pathological changes in the 

Alzheimer brain, and initial clinical trials reveal its ability to improve cognition and everyday 

function [88].  

8. Conclusion 

The above-described multitasking (drug-delivery) therapeutic could represent a promising way 

to treat, delay, or even prevent Alzheimer's disease in the future [1, 2, 89]. Specifically, by 

incorporating the appropriate drug(s) into biomimetic (lipid cubic phase) nanocarriers, one obtains 

a multitasking combination therapeutic which targets certain cell -surface scavenger receptors, 

mainly class B type I (SR-BI), and crosses the BBB. Such biomimetic-nanoemulsion targeting allows 

for various Alzheimer's-related cell types to be simultaneously searched out, in vivo, for localized 

drug treatment. This (colloidal-nanocarrier) in vivo targeting advantage may be particularly 

important when delivering pleiotropic natural substances (e.g., an isoflavone) or for repurposing 

FDA-approved food additive(s) and/or drug(s). 
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