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Abstract:  

The brain is an integrated network of multiple variables that when compromised create a 

diseased state. The neuropathology of temporal lobe epilepsy (TLE), stroke, and traumatic 

brain injury (TBI) demonstrate both similarity and complexity that reflects this integrated 

variability; TLE with its live human tissue resection provides opportunity for translational 

science to demonstrate scale equivalent experimentation between the macroscopic world of 

clinical disease and the microscopic world of basic science. The extended value of this 

research is that the neuroinflammatory abnormalities that occur throughout astrocytes with 
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hippocampal sclerosis and damaged or even reversed signaling pathways (inhibition to 

excitation such as with gaba-aminobutyric acid) are similar to those seen in post-stroke and 

TBI models. In evaluation of the epilepsy population this interconnectedness of pathology 

warrants further evaluation with collaborative efforts. This review summarizes patterns that 

could shift experimentation closer to the macro level of humanity, but still represent the 

micro world of genetics, epigenetics, and neuro-injury across etiologies of physiologic 

dysfunction such as TLE, stroke, and TBI with evaluation of cell function using 

electrophysiology. In conclusion we demonstrate the plausibility of electrophysiologic 

voltage and current measurement of brain tissue by patch clamp analysis to specify actual 

electrophysiologic function for comparison to electroencephalography in order to aid 

neurologic evaluation. Finally, we discuss the opportunity with multiscale modeling to 

display integration of the hyperpolarization cyclic-nucleotide gated channel, the depolarized 

calcium channels, and sodium-potassium-chloride-one/potassium-chloride-two co-

transporter channels as potential mechanisms utilized as tri-coordinate biomarkers with 

these three forms of neurologic disease at a molecular scale of electrophysiologic pathology. 
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1. Introduction 

Recent statistics indicate 50 million people suffer with epilepsy [1]. In adults with focal epilepsy, 

about 50% of them have had a previous brain injury [2]. Approximately 2.3% to 14% of stroke 

patients will develop seizures [3] and temporal lobe epilepsy (TLE) develops at rates inconsistent 

with heritability alone lending credence to underlying brain damage or otherwise dysfunction as a 

contributing feature [4]. A common feature in TLE, stroke, and traumatic brain injury (TBI) is the 

electrophysiologic dysfunction. This review will utilize the common thread of electrical biophysics 

to identify existing knowledge, expose the gaps, and project a plan for future research. 

Although the pathophysiology of epilepsy often begins with the discussion of genetic mutations, 

such as the SCN1A gene mutation with over 350 identified mutations [5], those mutations are not 

consistent across all epilepsy. For example, a specific mutation in the SCN1A gene, which affects 

an alpha1 subunit in the voltage-gated sodium channel, is not compromised in all epilepsies and 

not researched at all in diseases like stroke or TBI. Yet, SCN1A has demonstrated a phenotype 

associated with hemiplegic migraine [6], which is often a symptom in TBI. Newer research, at 

smaller scales, reveals mutations of a variety of genes that encode for signal transduction, synaptic 

transmission, neuronal metabolism and excitability, as well as brain development that play a role 

in disease pathology. In addition, variability in epigenetics distributes change that do not alter the 

original DNA, but create a disease state by alterations like methylation, and histone modification 

that can silence or overexpress proteins. Genes can be evaluated with specificity of their protein 

expression at the tissue injury region. These epigenetic contributors are demonstrated across a 

wide range of epilepsies and show correlation with encephalopathy seen across the 

neurophysiological and biophysical mechanisms of blood brain barrier compromise in stroke, ion 
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channelopathy of TLE, and white matter apoptosis and necrosis of TBI. This review builds a plan to 

pull up from the microscopic and pull down from the macroscopic to define a place in the middle 

using a scale of disease evaluation that can be communicated between the discovery of basic 

science and the application of clinical medicine. 

Despite this wealth of knowledge, greater than 30% of epilepsy patients continue to battle with 

a drug resistant seizure disorder while stroke and TBI patients bear the persistent symptoms 

related to the electrophysiologic dysfunction that ultimately reflects neurodegenerative change of 

varying degrees. Neuropathology of electrophysiologic dysfunction is complex and encompasses 

neuro-injury, epigenetics, and genetics. This complexity requires organization of scale to evaluate 

the interdependence and integration of these components. The excitability and inhibition balance 

required for homeostasis can be compromised by signaling cascades, genetics, or system failure 

across multiple neuronal circuits [7]. Therefore, selecting three diverse forms of electrophysiologic 

dysfunction: stroke, traumatic brain injury, and temporal lobe epilepsy - this review will discuss 

their commonality of electrophysiologic dysfunction, the limitations of the tools for evaluating 

electrophysiologic dysfunction, and the benefit of focused analysis with a hyperpolarized (HCN) 

channel, a depolarized calcium (CaV) channel and the sodium-potassium-chloride-one/potassium-

chloride-two (NKCC1/KCC2) co-transporters. They can be correlated with the epigenetic 

expression, RNA and protein analysis to determine biomarkers for improved evaluation and 

targeted drug treatment of these diseases. 

2. Translational Research 

A challenge in translational research is application of precise, controlled basic science research 

to the multi-variable clinical reality. Therefore, evaluation across the three diseases of stroke, TLE, 

and TBI demonstrates how electrophysiology offers a broad level translational step between the 

complexity of the disease (clinical) and the specificity of individual dysfunctional components 

(basic science). This review utilizes location, morphology, and neuropathology to create a context 

for the discussion. 

Location: Circulation to the brain arises from both the internal carotid arteries anteriorly and 

posteriorly through the vertebrobasilar artery system [8] . The hippocampus, the focal region of 

TLE, is fed through the posterior system with anterior contribution from the anterior choroidal 

artery. Although, not the only contributor to translational research shortcomings from mouse to 

clinic the vascular diversity requires consideration. The mouse does not evidence the anterior 

choroidal artery seen in humans, but with a smaller surface area reflects a more collateral system 

compared to the more end arterial system of humans. In Figure 1 you see the comparison of the 

mouse and human vascular system. The mouse brain (1A) is created by a novel perfusion 

technique that allows resin casting of the mouse vasculature that maintains exact measurements 

of vascular diameter and length while eroding all other brain tissue to leave only a model of the 

vascular system, no brain tissue. In addition, the casting system maintains the network 

connections to demonstrate the collateral system of vasculature in the mouse brain. Everything in 

the picuture is vasculature. Compare that to the perfusion of the human brain (1B) in CT scan 

analysis. The end arterial system is a striking contrast to the more collateral system seen in the 

mouse vasculature. In (1C) the anterior choroidal artery is marked, as it is the only artery reaching 

to the hippocampus from the arterial system in humans, apart from the recurrent artery of 
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heubner. Again, this is contrasted to the more collateral mouse vasculature to the hippocampus, 

which may afford it some neuroprotection during injury. It is important to continue animal model 

research. However, it is paramount that research of human tissue at this scale be developed to 

offset the limitations of animal models and build on their successes.  

Major injury in stroke most frequently occurs from the anterior system, while TBI injury more 

frequently involves the posterior system through vertebrobasilar dissection. Therefore, TLE offers 

the opportunity of a control disease by virtue of consistent hippocampal location injury for 

evaluation with the variant anterior-posterior hippocampal injury from stroke and TBI. The 

anterior choroidal artery, a branch off the internal carotid, just distal to the posterior 

communicating artery is part of the anterior circulation, which runs deep to the hippocampal 

region. In addition, the recurrent artery of heubner originates from the anterior system. The 

variation between these two structures is consistent in that when one is dominate the other 

balances to a smaller development. The anterior choroidal represents part of the residual 

circulation from our evolutionary past before the posterior circulation developed with our higher 

cortical brain and therefore along with the heubner artery offers an opportunity to compare and 

contrast data with a mouse model in the evaluation of stroke, TBI, and TLE. Though absence of the 

anterior choroidal and heubner artery in mice is not the singular cause for the translational 

difficulty, research can demonstrate key functional variances between a collateral system (mouse) 

and an end artery system (human) in the circulation within a unique vascular region of brain.  

 

Figure 1 The casting of the entire vascular network 1A in a 24-month old male wild 

type mouse. The cast created with polyurethane resin and image acquired with micro 

CT system for visualization of collateral vasculature structure (Picture courtesy of 

Dominic Quintana, Neuroscience Department, West Virginia University). In 1B 

Computed Tomography Angiography of the normal single side internal carotid end 

artery system in human. The internal carotid artery supplies the anterior circulation to 

the brain and includes the middle cerebral artery (MCA) commonly associated with 

stroke and the anterior choroidal artery, which is a feeding vessel, from the anterior 

system, the hippocampal region associated with the sclerosis of temporal lobe epilepsy. 

In 1C the anterior choroidal artery in humans is the only artery branch feeding the 

hippocampus from the anterior system, apart from the recurrent artery of heubner. 
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The mouse has a more collateral reach to the hippocampus possibly contributing some 

neuroprotection during injury. 

Approximately two-thirds of ischemic stroke arises in the anterior circulation with 90% of those 

involving infarct of the MCA [9]. However, despite multiple animal models of MCA injury, we have 

failed to discover new drug therapy or targets that translate to successful clinical application. The 

anterior choroidal artery, which lies proximal to the MCA and the end artery structure of humans 

contrasted to the more collateral structure of mice may offer clues as science develops improved 

biotechnology to traverse these diverse pathways. In TBI, the most common vascular injury is 

subarachnoid haemorrhage [10] with secondary vascular issues from vasospasm or lumen 

narrowing of arteries from edema or increased intracranial pressure that further reduce brain 

perfusion [11]. Vertebrobasilar dissection is more common than anterior dissection in traumatic 

brain injury. The posterior vasculature diameter is narrow and causes difficulty, even under more 

stable situations such as bypass grafts where new techniques have been developed to overcome 

the disadvantage of these high-flow grafts due to the mismatch in vessel diameter between donor 

and recipient vessels in the posterior circulation [12]. With the hippocampal sensitivity to ischemia 

dissection in the posterior system leads to decreased perfusion by both blood loss and arterial 

narrowing due to acute spasm. The hippocampus is sensitive to ischemia and periods of excessive 

intracranial pressure and blood loss could demonstrate more significant injury in an end arterial 

human system compared to a more collateral system. Finally, TLE, which is noted for its 

hippocampal sclerosis, remains devoid of significant vascular evaluation despite our knowledge of 

glial cell function in maintenance of the blood brain barrier and its dysfunction in developing 

sclerosis. The brain vasculature represents the pathway in and out of the neurologic circuitry and 

is too broad to cover the entire network for all three diseases. Therefore, location will be 

restricted to the vascular distribution of the hippocampus which reaches deep into our 

evolutionary past, yet still offers parameters with defined limits for the discussion of stroke, TBI, 

and TLE within a framework that makes them consistent with one another by virtue of location. In 

addition, it addresses specific gaps in our knowledge of glial involved vascular injury in TLE, 

hippocampal role in cognitive and memory decline in TBI, and isolates a specific region for analysis 

of core versus penumbra injury in stroke. “The penumbra is characterized by the loss of action 

potential firing but maintenance of proper resting membrane potential” [13]. Resting membrane 

potential and action potential firing are key electrophysiologic targets translational research can 

utilize. 

Electrophysiology: Neuroimaging is the gold standard evaluation in stroke and TBI and offers 

benefit in surgical planning with TLE. However, despite the benefits of these tools, they fail to 

establish data that connects structural abnormality and electrophysiologic dysfunction in the brain 

that translates to improved clinical outcomes [14]. EEG provides cortical activity markers in real-

time [15] which augment the time lag in neuroimaging. However, few facilities have compatible 

tools to perform these tests synchronisly and have led to decreased use of electrophysiologic tools 

in preference to BOLD MRI, perfusion CT, and specialized manipulations of scans as accessories to 

primary MRI and CT for many neurologic diseases. Therefore, assessment of neuronal oscillations 

with electroencephalography and ion channel function is a novel way to assess the balance 

between excitatory and inhibitory cortical processes and provide biomarkers for future evaluation 

and treatment. 
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The HCN1 channel, the CaV channel, and the NKCC1/KCC2 cotransporter channels are 

representatives of hyperpolarization, depolarization, and flow through that can create a three-

prong coordinate evaluation of current that can be used as a biomarker to aid evaluation and 

treatment being done with neuroimaging and electrophysiology tools such as EEG. In addition, it 

reflects the opportunity for bioengineering to develop alongside new electrophysiologic 

technologies such as microelectrode arrays, which improve spatial resolution over EEG. These data 

can be correlated with data from electrophysiology (See Figure 2). The glass pipette patching an 

astrocyte (2C) indicates the opportunity electrophysiology offers to bring the macroscopic world 

(2A) the glass pipette electrode and (2B) the microscopic world of an astrocyte together and 

produce (2D) research data in real time electric current evidence of cell function that 

communicates with a language that is the same in the macroscopic and microscopic world. Thus, 

creating the possibility to translate information between scales of the very small and precise (basic 

science discovery) and scales of the very large and complex (clinical application). 

 

Figure 2 The glass pipette as electrode 2A in the recording bath where the astrocyte 2B 

is adhered to the coverslip. 2C demonstrates the patch between the electrode and the 

astrocyte under the microscope. Finally, 2D is an example of real time electrical 

current received from a cell. 

Morphology: Morphology evaluation is based on literature, which demonstrated large-scale 

involvement of astrocytes and pyramidal neurons in all three diseases. Astrocytes are an active 

and reactive component of the brain that influences gene expression, extracellular matrix 

components, and metabolism. When injured they display distinct features compared to healthy 

astroglia in their morphology, expansion, and signaling in ischemia [16] as well as TBI [17], and 

sclerosis in TLE [18]. Pyramidal neurons are the most common recipient within the environment of 
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change commanded by astrocytes. Specific cell types vary by location which ultimately effects 

their function within those regions and the hippocampus remains a controversial region [19]. In 

addition, ion channel distribution on any given cell differs and contributes variation to the cell 

function. The pyramidal neurons of the CA1 region of the hippocampus are extremely sensitive to 

ischemia and ion channel research continues to evaluate this for mechanism though it is not yet 

well defined [20]. Unlike the L5 pyramidal neurons, which stretch through all five levels of the 

cortex, the CA1 pyramidal neuron structures remain confined to the CA1 hippocampal region and 

offer a specific region for discussion and experiment to isolate changes affected by stroke, TBI, and 

TLE. The diversity of cell structure contributes to the variety of function each cell offers to the 

brain (See Figure 3). It demonstrates the variance of a pyramidal neuron (3A); notice the CA1 and 

CA3 pyramidal neurons, of specific interest within the hippocampus, compared to the Layer V(LV) 

pyramidal neuron. In (3B) the LV pyramidal neuron with its streamline look reaches through all six 

layers of the neocortex, with little to no branching, while the more compact CA1 and CA3 of the 

hippocampus with their apical branching are designed for their local purpose. Research indicates a 

large percentage of HCN channels are expressed in the apical region of pyramidal neurons. The 

benefit of whole cell patch is it reads the resting membrane potential of the entire cell at the soma 

(3C). The alternate protocols available in whole cell patch, such as Ramp protocol (3D) and Pulse 

protocol (3E) allow evaluation of specific electrical changes in the entire cell. Therefore, the 

hippocampus, with the apical girth of CA1 and CA3 offers opportunity for significant evaluation 

with electrophysiology of these hyperpolarized channels in epilepsy and other neurologic disease. 

 

 

Figure 3 In 3A the variability of the pyramidal cells is shown by the CA1 and CA3 

pyramidal neurons compared to the Layer V (LV) pyramidal neuron when you look at 

where and how the branching occurs. The LV pyramidal neuron has a streamline look 

and reaches through all six layers of the neocortex 3B while the more compact CA1 

and CA3 of the hippocampus with their apical branching are designed for their local 



OBM Neurobiology 2018; 2(2), doi:10.21926/obm.neurobiology.1802009 

 

Page 8/22 

purpose. In 3C the arrows indicate the location of the soma where patch clamp 

recording gives the reading of the resting membrane potential of the entire cell. 

Picture reprinted by permission from Macmillan Publishers Ltd: [Nature Reviews 

Neuroscience] [21], copyright (2008). Finally, in 3D, the ramp protocol, and 3E, the 

pulse protocol, you see examples of recordings received from a cell with two different 

protocols in the whole cell patch technique. Protocol examples are from our research 

lab at West Virginia University. 

Genetic and epigenetic modifications play a role in the channel construction, and expression of 

the channels discussed in this review. Within the spectrum of each disease the full context of 

those modifications is not yet understood. This review’s purpose is to demonstrate the pathology 

based on the role of the channels within the cell for depolarization, hyperpolarization, and flow 

through or electroneutral current to open further discussion of experiment direction for disease 

specific research evaluating these channels as coupling or co-contributing channels in multiple 

disease pathology. HCN as a hyperpolarizing channel leads to hyperexcitability when it is mutated 

from its normal function, Ca leads to multiple variations of depolarization and intracellular activity 

when it mutates from its normal function, and the electroneutral cotransport channels already 

demonstrated as coupling with sodium and potassium alter their flow-through neutral status 

when they mutate from normal function. Approaching this from a predominantly 

electrophysiologic perspective puts focus on the function of the channels when they are mutated 

or have variant expression more than on the depth of discussion of each mutant variation. A 

mutation either causes the channel to work more effectively, less effectively, or not at all. 

Overexpression or underexpression similarly may impact function, but may also not affect cell 

function at all. This review aims to discuss the role of these channels in the broader terms of cell 

function in the context of disease rather than specific mutations for any gene family. 

Figure 3D Demonstrates a Ramp protocol, which is the simplest screening tool to evaluate 

channels that open with depolarization. We have used this protocol in research to demonstrate 

how overexpression does not always tell you what the function will be in the cell. If there is 

overexpression of a specific channel on a scale of 1000 to 1, yet only 5% of channels are open at 

the physiologic state then having overexpression of essentially 1000 doors does not matter. The 

function in the cell does not change if they are not open. Therefore, electrophysiology can give us 

functional data about what is going on in the cell without being distracted by genetic mutations 

that may pose no effect to the function or dysfunction of the cell in the disease. Yet equally, when 

there is abnormal function in the cell researchers can track that dysfunction back to its specific 

components of mutation and expression. 

Neuroinflammation: The signaling pathways for neuroinflammatory response have been 

exposed as a contributor to pathology in neuro trauma, whether the acute injury of stroke, TBI, or 

the chronic sclerosis of TLE. Research linked NKCC1 signal increase to increased ischemic risk [22]. 

Inflammation of astrocytes, seen in temporal lobe epilepsy, occurs due to excess glutamate 

through the glutamine/glutamate/cycle (GGC) [18]. There is significant change demonstrated in 

the pathway from epileptogenesis through sclerosis in a hippocampal astrocyte cell. Comparable 

astrocyte damage occurs in post-stroke by compromise of the arteries where astrocytes assist in 

maintaining the blood-brain barrier and in TBI with similar compromise of the blood-brain barrier 
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where in mouse models it is associated with memory changes [23]. There is glutamate uptake at 

the astrocyte where it is converted by glutamine synthetase to glutamine and released to the 

extracellular space. The neuron then uptakes the glutamine where it is degraded to glutamate by 

phosphate activated glutaminase (PAG) and released back to the extracellular space as glutamate 

to continue the cycle. There are multiple opportunities for the system to fail in this cycle from 

glutamine synthetase deficiency or glial glutamate (GLT-1) transporter dysfunction in the astrocyte 

to neuron dysfunction by excessive release due to (PAG) and the excitatory amino acid carrier 

(EAAC1); all of which contribute to extracellular/intracellular ion gradient shifts that disrupt 

homeostasis. 

Neurodegeneration: Neurodegeneration is a natural path from the epigenetic contributions of 

neuroinflammation. The degeneration of neural tissue in neurologic disease is not singular in its 

origin and due to mixed contributions of neuroinflammation, gene expression, and ion 

dysregulation it is difficult to determine the cause and direction of pathology [24]. The epigenetic 

impact of the inflammatory process can create signal error or excess that leads to sclerosis and/or 

blood brain barrier breach [25]; just to name a few. New research indicates mitochondrial 

mechanism with miR-34 mediated regulation of the blood brain barrier and analysis with 

bioinformatics indicates several gene targets [26]. Research correlating upregulation and down 

regulation of co-transporter channels such as NKCC1 and KCC2 respectively following injury [27] 

support research of these channels in the pathology of stroke, TLE, and TBI where neuro 

inflammatory processes led to neurodegeneration. In addition, inflammation can produce 

neurodegeneration by abnormal gene expression, trigger regulating error, and channel surface 

expression variation with post-translational modification. For example, the HCN1 channel has an 

exposed extracellular post-translational modification where circulating inflammatory signals may 

contribute to dysfunction. Further review of a susceptible post-translational modification site 

exposed on the HCN1 channel can be found in Lee et al., 2017 [28]. These epigenetic influences of 

neuroinflammation can diverge from neurodegeneration and impact neurogenesis as well. 

Neurogenesis: Increased ion channel density demonstrated significantly depolarized astrocyte 

cells in hippocampal foci damaged regions (~55 mV) compared with astrocytes in hippocampal 

neurotypical regions (~75 mV) since early channel research [29]. This channel density 

neurogenesis continues in recent research, most notably in new research regarding NKCC1 and 

KCC2 co-transporters where ratio shifts to embryologic conditions indicate again the role of 

channel density in the probability for dysfunction [30]. In addition, the electrophysiologic effect of 

channel density on surface expression, post-translational modification, and signaling demonstrate 

the interconnectedness and circular difficulty of the pathology. The anticipated voltages can be 

calculated by Nernst equation demonstrating the polarity shift that the ratio inversion of NKCC1 to 

KCC2 could create in the membrane potential (see Figure 4). The Nernst equation in figure four 

demonstrates the role that concentration of a single ion can play in altering the membrane 

potential of a cell. With so many basic science variables from gene expression to 

neuroinflammation, neurodegeneration, and neurogenesis it is necessary to find a system that 

reflects the function of them all. Electrophysiology can extract the functional data that in turn can 

be correlated with microscopic science and macroscopic disease. 

3. Ion Channel Milieu 
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Regulation of ion homeostasis is critical to the function of cells. Ion transporters establish that 

by cell volume, voltage influence of membrane potential, and signal transduction [31]. Shifts in 

cellular volume and gradient pressures trigger homeostatic responses coordinated by ion channels 

to mediate and avoid excessive cellular edema or dehydration with regulatory volume 

adjustments [32]. Membrane potential is primary in the discussion of cell survival and function. 

Therefore, membrane potential is the necessary starting point. The HCN1 channel with its Ih funny 

current displays a reversed polarity in its biophysical nature with a reversal potential ~ -20 mV 

carrying a cation current of both Na+ and K+ that is inward moving at rest [33]. This combination 

along with additional features to be discussed creates an intersection of opportunity for 

interaction with sodium-potassium-chloride co-transporters NKCC1/KCC2. Signal transduction 

pathology disrupts cell homeostasis. It is here where ion channels can create significant influence. 

GABA is one of the most researched contributors to signaling pathways and demonstrates the 

importance of ion channel interaction in the discussion of negatively charged ion concentrations, 

such as Cl- within the cell membrane [34]. 

 

Figure 4 Nernst equation calculation for Chloride demonstrates the electrophysiologic 

alteration of membrane potential possible with fluctuations of Cl- in conditions such as 

ratio shift of NKCC1 to KCC2. Their correct ratio is necessary for neutrality of charge. 

Repeat the calculation on your own by changing the outside and inside molarity to 

demonstrate what can happen if the ratios of expression for these channels are not 

appropriate. 

4. Hyperpolarized Cyclic-Nucleotide Ion Channels 

4.1 Sequencing, Construction, and Function 
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HCN role in epilepsy is a function of its isoform’s homomeric or heteromeric channel 

construction, expression, and interaction. There are four HCN isoforms: HCN1, HCN2, HCN3, HCN4. 

The expression of HCN1 is more prevalent in the hippocampus and cortex compared with the 

HCN2, and HCN4 isoforms, which are more prominent in the thalamus and sinoatrial node [35]. In 

discussing the role of HCN channels in epilepsy it is not a singular mutation of the channel but 

rather a combination of channel construction variance as well as altered expression which 

demonstrated epileptic disease in mouse models [35]. In addition, deletion of HCN1 and HCN2 in 

knock-out mice created seizure prone mice [36].  

However, the structure of the HCN1 channel is showing significant promise for integrated roles 

with its reversed polarity [37]. The hyperpolarization as opposed to depolarization gating make 

the HCN1 channel an excellent candidate for integrated research with NKCC1 and KCC2 co-

transporter channels along with the depolarization gating of the high voltage-gated CaV channels. 

The construction of the HCN1 channel pore has great conservation with that of the K+ channels; 

both contain the glycine-tyrosine-glycine (GYG) as a selectivity filter [38]. The function of the HCN1 

channel is to operate with reverse polarity and it does this by structural design that allows for 

conformational changes of the pore based on the trigger mechanism. Using cryo-electron 

microscopy (Cryo-EM), researchers demonstrated the alternated gating between 

hyperpolarization and cAMP modulation [37]. We hypothesize that hyperpolarization channels like 

HCN1 in conjunction with inappropriate NKCC1/KCC2 co-transport channel ratios allows function 

gain or inhibition at a more negative membrane potential leading to hyperexcitation, 

epileptogenesis, neuroinflammation and therefore has a high potential link to hippocampal 

astrocytic and pyramidal neuron injury with evidence of electrophysiologic dysfunction either as 

neurodegeneration, hyperexcitation or both in stroke, TBI, and TLE. HCN produces a current called 

funny current, If, in the heart and is considered the pacemaker current. It is often written as Ih 

when discussing its current in the brain. The Ih current is an inward current [39]. Its complexity of 

construction from homomeric to heteromeric, as well as expression of the channel, impacts how 

closely to resting cell membrane potential the channel can be triggered. Additionally, reduction in 

expression as well as complete deletion such as is done in knockout mice consistently indicates 

increased seizure risks and activity in other neurologic disease such as stroke and TBI. 

Channel electrophysiology connects with epilepsy, stroke, and traumatic brain injury by offering 

a context of functional evaluation to these diseases. Each disease has pathology rooted in failing 

cellular processes of which ion channels are a key component. When using an evaluation of scale 

as macroscopic as a complete human disease it is difficult to correlate it with equal scale at the 

basic science level (i.e. discuss the function of a cell, as a whole, rather than a single variable of 

change such as a histone modification that changes the expression of a gene). Each of these 

individual discoveries is important. However, electrophysiology of cell function creates a closer 

equality of scale for translational science because the microscopic data is measured, discussed, 

and analyzed with the same tools as the macroscopic data. Resting membrane potential, 

depolarization, and hyperpolarization states are mandatory tools for a cell’s homeostatic balance. 

In this review we press for the whole homeostatic electrical balance system of the cell to be used 

for representation of the larger scale human disease. It is not equivalent, but it is a starting point 

to begin the translational discourse between clinical and basic science. Ion channels play a role in 

the diverse signaling throughout stroke injury at glial cells, neurons, and the blood brain barrier 

[40]. Traumatic brain injury leads to variant excitotoxicity, which could be evaluated, with 
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electrophysiology to better understand the functional changes at the cellular level [41]. 

Epilepsy results in hyperexcitability recorded by electroencephalography and confirmed in 

electrophysiology recording baths at the cellular level by evaluation of ion channel function [42]. 

Experimentation to evaluate these diseases for similarities with channels specific for these 

electrical potentials can establish a baseline for deeper discovery of the disease process. 

Electrophysiology is the translational lane of research that is yet to be completely developed and 

explored; a lane that runs like a blood brain barrier between the worlds of clinical research and 

basic science (See Table 1). This electrophysiologic diversity can be evaluated further with future 

research since evidence for all four HCN isoforms in the brain have been described [43]. 

Table 1 The voltage measurements from Della Santina [44] in their work with HCN1 

channels in the retina converted to a table to demonstrate the value of monitoring Ih 

current of the HCN1 channel. The results indicate the channel in response to 

hyperpolarization and depolarization and indicate the potential for biomarker 

mechanism in the electrophysiologic function of neurologic disease. 

Channel Response to 

hyperpolarizing voltage 

clamp steps at holding 

potentials: 

-53 mV 

 

-60 

 

-67 

 

-74 

 

-81 

 

-88 

 

-95 

 

-

102 

 

-109 

Depolarization 

To -65 mV 

HCN1-/- Ih Current Present 

no 

Ih 

no 

Ih  

no 

Ih 

no 

Ih  

no 

Ih 

no 

Ih 

no 

Ih 

no 

Ih 

no 

Ih   

no 

HCN1+/+ Ih 

 yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

Yes 

Ih 

Yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih  

yes 

HCN2-/- Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih  

yes 

Channel Response to depolarizing 

voltage clamp steps at 

holding potentials: 

-64 mV 

 

-57 

 

-50 

 

-43 

 

-36 

 

-29 

 

-22 

 

-15 

 

___ 

Repolarization 

To -60 mV 

HCN1-/- Ih Current Present 

yes 

Ih 

yes 

Ih 

yes 

Ih 

Yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

Ih 

yes 

___ Ih  

yes 

HCN1+/+ Ih  Ih Ih  Ih  Ih  Ih  Ih  Ih ___ Ih 
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 yes  yes yes yes yes yes yes yes yes 

HCN2-/- Ih  

yes 

Ih  

yes 

Ih  

yes 

Ih  

yes 

Ih  

yes 

Ih  

yes 

Ih  

yes 

Ih  

yes 

___ Ih 

yes 

5. NKCC1 and KCC2 Co-Transporter Ion Channels 

5.1 Sequence, Construction, and Function 

Research on variants have associated R952H and R1049C of the KCC2 co-transporter channel 

with idiopathic generalized epilepsy (IGE) [45] a more generalized epilepsy. KCC2 plays a dominant 

role in normal development, influencing factors such as the excitatory-inhibitory signal read of 

GABA [46]. When KCC2 is deficient, especially in relevance to NKCC1, brain development is 

compromised. Intracellular chloride currents show biophysical accumulation when the ratio 

construction of NKCC1 expression is higher compared to KCC2 expression [47]. This leads to severe 

neurologic dysfunction and delay noted due to decreased function of the NKCC1/KCC2 co-

transporter’s ability to maintain low intracellular Cl- because of mutations at SLC12A5 [48]. The 

fundamental role of Na-K-Cl cotransporter 1 (NKCC1) and K-Cl cotransporter 2 (KCC2) is lost when 

the expression of each is not regulated properly. In addition, the integrated signaling system as it 

relates to GABA is disrupted [49]. The NKCC1 and KCC2 provide the Cl- homeostasis voltage within 

the cell [50], which is why they are pertinent to evaluation of hyperpolarization-gated channels 

like HCN1. 

The deregulation of NKCC1 in epilepsy is demonstrated by the increased association with 

epileptogenesis due to its role in managing the concentration of intracellular chloride [51]. The 

slc12 gene family encodes both NKCC1 and KCC2 and mutations in this gene have been associated 

with epilepsy. Many of these electroneutral chloride cotransporters functionally couple movement 

of chloride with Sodium and potassium and have demonstrated pathological hyperexcitability in 

mice with genetic modifications of this gene [52].  

In models of evaluation these chloride channels demonstrate the detrimental effect of 

neuroinjury on their ratios to one another. Multiple research platforms including ischemic stroke, 

TLE, and subarachnoid hemorrhage (the most common brain injury in TBI) reveal the correlated 

role between disease and damage in these channels. Western blot analysis by Yong Tien, et al 

(2015) revealed multiple neuroinflammatory components following subarachnoid hemorrhage. 

The NKCC1 and KCC2 ratio shifts were significant, demonstrating changes of their protein 

expression [53]. Western blot analysis characterized a decline in KCC2 expression and increase 

expression in NKCC1 following induced subarachnoid hemorrhage in their rat model. Topiramate, 

a frequently used anticonvulsant, effectively reversed those KCC2/NKCC1 expressions in a dose-

dependent fashion. This response is a positive indicator of pharmacologic opportunity as we learn 

more about the integration of these channel functions. 

6. High Voltage-Gated Calcium Ion Channels 
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High voltage-gated calcium ion channels are discussed briefly below due to their connections to 

epilepsy and the role they could play in the development of an integrated computational model of 

ion function for future research. 

HVA calcium channels have five known types, all derived with an original subunit: CaV1 the L-

type, CaV2 including the P/Q-type [CaV2.1] the R-type [CaV2.2] and N-type [CaV2.3], and the CaV3 

the T-type. These types have been studied with regards to genome structure, mutation, pathology, 

and pharmacology. The results thus far are promising. The P/Q type is the CaV2.1 type of the five 

types and has the most connection with epilepsy along with the CaV3.2 T-type. They both are 

linked to IGE. The HVA channel requires higher depolarization, compared to LVA channels. Yet, 

both are linked to IGE, both are pharmacologically responsive, and have improved epilepsy 

outcomes with inhibition in patients [54]. Low Voltage Gated Channels like the T-type channels 

offer the first glimpse of opportunity for hyperpolarized channels and negative charge 

transporters to be linked to IGE. The structural changes and pathology of these channels is tied to 

congenital mutations associated with IGE which raises the question for susceptibility to more 

epigenetic, neuroinflammatory changes linked with more focal epilepsy like TLE, post-stroke 

epilepsy (PSE), and post-traumatic epilepsy (PTE). The voltage-gated channels have many 

polymorphisms that contribute to the mutations leading to structural and functional change [55], 

but alone they do not answer all the questions regarding electrophysiologic dysfunction. 

The CaV families, which are the L-type channels [CaV1], P/Q-type [CaV2.1] (R-type and N-type 

of CaV2 family not reviewed here), and T-type [CaV3] channels, have defined structure. The CaV1 

and CaV2 types have an alpha subunit that forms the pore of the channel and a gamma, beta, and 

alpha2delta unit forming the tertiary structure. These channels are closely related to the CaV3 

channel, which also has an alpha unit pore [56]. Splicing variants of each subunit contribute to 

altered phenotypes associated with epilepsy [57]. These splice variants determine biophysical 

properties and tissue location of channels [58].  

Current data from both animal models and clinical trials point to CaV2 the P/Q type HVA 

channel, and the CaV3 T-type LVA channel as important, but not alone in their epileptogenesis role. 

These channels are well studied and presented briefly here due to their strong link to IGE that 

could shed light on the genetic contributions to the electropyysiologic dysfunction of TLE, stroke, 

and TBI. In addition, the role of calcium in contributing to glutamate excitotoxicity is relevant [38]. 

Whether from ischemia, TBI, or epilepsy the rich research database on HVA calcium channels can 

help form a background for baseline computational modeling regarding ion gradients. 

7. Clinical Relevance and Conclusion 

The animal models for stroke, TBI, and TLE are beneficial to science and humanity in our growth 

of knowledge, yet they often fail to translate to improved outcomes in human clinical applications. 

Animal models have demonstrated multiple failures in producing drugs with safety and efficacy in 

humans despite success in preclinical experiments [59]. What are the limitations that contribute to 

this discrepancy in translation from bench science to clinic?  

7.1 Limitations of Electrophysiologic Tools 

Unlike Electrocardiograms (ECG/EKG), which are standard of care in heart attack evaluations; 

stroke, with its similarities of ischemia, rarely receives evaluation by an electroencephalogram 
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(EEG) until the following day, if at all. EEG gives an electrical reflection of the brain’s activity. In 

focal epilepsy, such as TLE, that can be focal waves or spikes [60]. In addition, electrical 

abnormalities consistent with encephalopathy are often seen in stroke patients when EEG is 

performed. Yet, many rural hospitals do not utilize EEG to monitor patients with these neurologic 

conditions because of limitations in skilled personnel and of the equipment itself. Whether 

evaluation is in a mouse model or a hospital, the spatial discernment sacrificed by 

electroencephalography due to the bony scalp and other confounding obstacles between the 

electrodes and the signal cannot always be overcome by the timing integrity of the machine. Event 

related potentials, frequency spectrum analysis, and other mechanisms of analysis assist in 

overcoming these limitiations [15]. However, training and validation of the researcher’s technique 

can consume large amounts of research time.  

7.2 Overcoming EEG limitations 

Microelectrode arrays and local field potentials show promise in the prediction and localization 

of pre-ictal activity prior to seizures in TLE [61]. As these tools develop new limitations emerge. For 

example, a micogrid covers a large surface area in a mouse, but in a human in is a very small area 

for analysis. This is where the growth of molecular biology and electropyhsiology targets the 

analysis of these small areas with the precision of basic science. With these developing 

technologies, the opportunity for molecular biology to create biomarkers of electrophysiologic 

dysfunction in diseases such as TLE, stroke, and TBI is present and could prove to be the 

translation required to bring bench science more effectively to the clinic. 

7.3 Pharmaceutical Limitations  

Anticonvulsant pharmaceutical products create the first line of defense for clinicians treating 

patients with epilepsy. However, many of the medications are non-linear in their kinetics which 

means their half-life and clearance are dependent upon plasma concentrations which can 

fluctuate, reducing the ability to maintain steady state of the drug. In addition, anticonvulsants 

such as Valproic acid, and Clonazepam are greater than 88% protein bound so they do not cross 

the blood brain barrier well and therefore provide little if any medication to the targeted areas. In 

addition, Valproic acid and similar drugs demonstrate serum protein saturable binding which can 

impact other medications when given simultaneously [62]. Newer anticonvulsants such as 

ethosuximide and topirimate are more promising, yet the disease is far from controlled. Stroke 

pharmaceutical options are more limited in that after decades of research we have essentially one 

medication; tissue plasminogen activator (tPA) that can be used in stroke and that is limited to 

specific time frames, and patient types. Finally, in TBI there are multiple complicating factors with 

medication management due to the complexity of symptoms from post-traumatic stress disorder 

to epilepsy. 

Therefore, improved target evaluation and treatment based on a demonstrated abnormality of 

electrophysiologic dysfunction offers a significant opportunity to identify biomarkers for 

bioengineering and innovative technologies for multiple neurologic diseases. 

7.4 Ion Channel Options 
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Ion channel targeting offers unchartered opportunity for further evaluation and treatment for 

TLE, stroke and TBI. Research demonstrates the adaptation of neurons across cellular types[63]. 

The integration of channel structure and function with cellular stability is described and accepted 

across research fields, though all the intricacies of how that works are not yet understood. 

Continuing the process of collaborative research evaluating the interactions and correlations of 

multiple variables from genetics to inflammatory response by precise research of atomic 

chemistry at the ion channel level can expose those unknowns at the molecular level. In addition, 

the collaboration of scientists and technology can compile research data that can be integrated at 

unprecedented speeds and with increased safety. The Department of Defense, National Institutes 

of Health (NIH), and other large organizations recognize the increasing need for better outcomes 

for patients suffering with neurologic diseases like TBI, stroke, and TLE. NIH published a notice in 

the NIH guide in 2011 encouraging the scientific community to address the issues of predictive 

failure in preclinical research [64]. The focus to bring basic science to the bedside more efficiently, 

safely, and effectively creates an opportunity for research that can begin at this primary level and 

build forward. Evaluating the process of interaction between hyperpolarized HCN1 channels with 

its unique polarity, depolarized calcium channels, and NKCC1/ KCC2 ratio shifts in neuropathology 

creates a single variable of interaction that can be modeled in a multi-scale modeling system with 

a designed control of homeostasis juxtaposed to the actual cellular expression identified by 

genetic analysis of diseased human tissue. The single constant of a homeostatic model that is 

computerized and easily modified as new data arrives lends itself not only to comparison against 

disease tissue, but also better understanding of homeostasis as we start to define the variation 

within normal. It is against this contrast that we will bridge the gap from bench to bedside and 

create - in real time - questions that can be answered safely and with better precision before 

heading to animal and clinical labs for experimentation. This can reduce the time to successful 

treatment in clinical application and increase efficacy and safety as we identify potential 

mechanisms that lead to neurodegenerative changes. TLE hippocampal sclerosis, ischemia in 

stroke, and blood brain barrier compromise in TBI can establish a baseline evaluation of 

electrophysiologic dysfunction. Then interaction and interdependence of the HCN1 channel, CaV 

channel and the NKCC1/KCC2 co-transporter channel can correlate dysfunction with structure. 

8. Future Research Direction 

8.1 Building a Mouse Model  

Location/Vascular: A global stroke model in mice creates hippocampal ischemia by way of the 

posterior circulation consistent with cardiac arrest as well as stroke. Mice have more collateral 

vascular systems unlike the end artery system in humans and the divergence of humans from that 

evolutionary past may hold one of the keys to improved biomarker targeting for humans. 

Therefore, comparison of the mouse model hippocampal data to human supplemental data can 

expose mechanisms for translational failures of mouse stroke models to clinical application and 

open doors for other neurologic disease discussion such as epilepsy and TBI as discussed below. 

Morphology: Pyramidal neurons and astrocyte immunohistochemistry evaluation within the 

hippocampus can be used to demonstrate where - on the cellular structures - inclusion of HCN1 

channels in control, ischemic injury mice, and hemorrhagic injury mice occurs. Further 
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immunohistochemistry evaluation of mice from control, ischemia, and hemorrhagic stroke groups, 

triggered to seizure with kainic acid, can be analyzed for HCN1 channel expression prior to and 

after seizure. This further characterizes location and identifies spatial relationships for comparison 

to later human research. HCN1 channels with their extracellular exposed post-translational 

modification tail may demonstrate significant changes and prove a key biomarker to stabilize the 

first coordinate of a tricoordinate system. 

Structure: mRNA sequencing and Western blot for protein expression of HCN1 will reveal 

increased or decreased expression changes in hippocampal regions exposed to specific injury. 

Function: Acute fresh tissue for electrophysiologic evaluation with specific voltage data by 

patch clamp on dissected hippocampal tissue can then deliver functional data to correlate with 

specific structure, morphologic, and anatomical data. This precision analysis creates the 

foundation for a model of translational human tissue analysis. 

9. Supplemental Research 

9.1 Human Research 

Electrophysiology State of the Art Technique: IRB approved human research that can safely 

evaluate human tissue electrophysiologicaly from initial injury (EEG), through craniotomy and 

intraoperative electrophysiologic monitoring (intraoperative EEG) during tissue resection. 

Discarded tissue can then be evaluated for its voltage and current by patch clamp analysis to 

specify actual electrophysiologic function for comparison to macro tool evaluation. That 

electrophysiologic data can then be connected with the structural expression of biomarker 

channels demonstrated in spatial localization by immunohistochemistry and total expression of 

mRNA and protein by RT-PCR and western blot.  

9.2 Building the Future 

Multi-scale modeling: Data programmed from the evaluation of the HCN1 hyperpolarizing 

channel, and additional channels such as the depolarizing calcium channels, and the flow through 

NKCC1/KCC2 co-transporter channels to demonstrate what is seen experimentally. This 

programmable data can then be used in simulations of tri-coordinate biomarkers for targeted cell 

therapy as a translational tool for future experiments prior to clinical application trials.  
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