
Open Access 

Journal of Energy and Power Technology 

 

 

 

©  2024 by the author. This is an open access article distributed under the 
conditions of the Creative Commons by Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium or format, 
provided the original work is correctly cited. 

 

Research Article 

Monitoring Energy-Loss-Driven-Cost by Using Earned Value Simulation in 
Complex Systems  

Ashraf Zaghwan 1, 2, *, Yousef Amer 3, Mahmoud Efatmaneshnik 3, Nagi Abdussamie 4 

1. School of Electrical and Mechanical Engineering, The University of Adelaide, Adelaide, Australia; 

E-Mails: ashraf.zaghwan@adelaide.edu.au; ashraf.zaghwan@gmail.com 

2. Entrepreneurship, Commercialisation & Innovation Centre, The University of Adelaide, Australia 

3. Faculty of Science, Technology, Engineering and Maths, University of South Australia, Adelaide, 

Australia; E-Mails: yousef.amer@unisa.edu.au; efatmam@unisa.edu.au 

4. Marine Engineering Department, University of Doha for Science & Technology (UDST), Doha, 

Qatar; E-Mail: nagi.abdussamie@utas.edu.au 

* Correspondence: Ashraf Zaghwan; E-Mails: ashraf.zaghwan@adelaide.edu.au;  

ashraf.zaghwan@gmail.com 

Academic Editor: Erdem Cuce 

Collection: Optimal Energy Management and Control of Renewable Energy Systems 

Journal of Energy and Power Technology  

2024, volume 6, issue 1  

doi:10.21926/jept.2401004 

Received: July 24, 2023 

Accepted: February 01, 2024 

Published: February 06, 2024 

Abstract 

The economic impact of energy loss stemming from end-user electricity consumption is a 

significant concern, with historical trends revealing escalating costs. Effectively managing 

both peak and off-peak demands remains a formidable challenge due to the unpredictable 

nature of consumer behaviors, leading to energy wastage. This study delves into the nexus of 

demand uncertainty, financial repercussions, and potential strategies to mitigate energy 

losses in the evolving landscape of electricity consumption.that causes financial loss. This 

simulation measure of time series data serves the purpose of determining what possibly 

contributes to policy and regulatory reforms and its notion as an economic growth pathway 

in Australia. The objective of this study is to build a relationship between social factors and 

financial aspects and discuss the issue of energy loss that emerges from the lack of leverage 
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between end-users, providers and suppliers of electricity. Recognising the financial burdens 

associated with energy loss as electricity demand continues to rise, the investigation aims to 

elucidate the complexities underlying the difficulties in controlling these losses. The 

distinctiveness of the electricity industry, characterised by its prototypical nature, introduces 

dynamics that contribute to energy losses, thereby impacting electricity prices. Employing 

quantitative analysis, this research employs the Earned Value Method (EVM) tool to scrutinise 

the influential role of consumer behavior in precipitating financial losses. The study provides 

a comprehensive examination of the interplay between electricity demand and the adverse 

effects of energy loss during peak and off-peak consumption periods. Utilising time series data 

through simulation measures, the research identifies key metrics influencing the formation of 

electricity costs and prices. The findings not only contribute to a deeper understanding of the 

energy loss parameter but also offer insights into potential policy and regulatory reforms. 

With a focus on Australia, the research aims to establish a relationship between social factors 

and financial considerations, emphasising the issue of energy loss arising from the lack of 

alignment between end-users, providers, and suppliers of electricity. The study concludes by 

proposing pathways for economic growth through strategic interventions and collaborative 

efforts within the electricity ecosystem. 
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1. Paper Organisation 

This study systematically organises the literature to construct a comprehensive theoretical 

framework, leveraging one coherent body of review. The primary objective is to establish a 

theoretical foundation for employing the Earned Value Method (EVM) simulation in addressing the 

intricate issue of energy loss within the context of electricity-driven costs. The literature review 

encapsulates an in-depth exploration of the electricity market and associated systems, with a 

specific focus on understanding the energy loss dynamics attributed to consumers. Within this 

framework, the research considers the intricate phenomena of electricity bidding and wholesale 

transactions, acknowledging their inherent uncertainty. A crucial aspect is the interconnection 

between these phenomena and the nature of demand, particularly the behavior and preferences of 

end-users. By delving into these intricacies, the literature review is strategically designed to uncover 

insights and bridge gaps in understanding the complex norms surrounding energy loss. 

The overarching goal of the literature review is to provide nuanced answers to the multifaceted 

questions posed by the formulated problem of loss-driven costs. This entails a meticulous 

examination of the interplay between prediction phenomena, market structures, and consumer 

behavior, ultimately contributing to a more robust theoretical foundation for the subsequent 

application of the EVM simulation in addressing the research problem at hand. 
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2. Overview 

The foundation of the electricity system rests on the acknowledgment of its inherently complex 

and dynamic nature, characterised by a challenging flow dynamic that resists precise control to 

specific supply points. The flow of electricity adheres to the path of least resistance, resulting in a 

reciprocal relationship where the operation of diverse electricity systems both influences and is 

influenced by various sources and regions. In Australia, territories are seamlessly interconnected 

through regional networks, fostering the economic sharing of generation. The functional boundaries 

of transmission and distribution networks are delineated within and outside National Electricity 

Market (NEM) jurisdictions [1]. Subsequently, the production and demand of electricity are 

intricately synchronised to instant changes, maintaining real-time system balance. Electricity 

transmission networks play a pivotal role in transporting bulk-generated energy from large 

generators over extensive distances to major load centers, operating at very high voltages ranging 

from 122 to 500 kV. 

Figure 1 depicts the expected removal of generation capacity from the market, offering insights 

into the evolving landscape of electricity generation [2]. Distinct from many other industries, the 

supply chain of electricity from power supply to end-users is unaffected by inventories, and the 

commodity is primarily generated for immediate consumption with minimal storage considerations. 

Consequently, the volatility of electricity transaction costs is closely tied to changes in electricity 

costs based on end-users' consumption patterns. Most end-users settle electricity bills reflecting 

average costs over dispatch periods, often spanning a quarter or a year, creating a conflict with 

short-term demand management options concerning cost-reflective prices [3]. 

 

Figure 1 Generation capacity expected to remove from the market [2]. 

Electricity rates exhibit variations across states and within the same state, primarily driven by 

generation charges that can constitute a significant proportion of overall electricity costs, resulting 

in variable usage charges. Figure 2 underscores the dominance of coal-fired power plants as a key 

player in electricity production in Australia, despite a temporary decline in 2014/15 [3]. The 

decrease in generation capacity, compared to the beginning of the century when coal's share 

exceeded 80%, highlights the enduring reliance on coal, still accounting for 63% of the total fuel 

used to generate electricity. 
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Figure 2 Electricity generation: Fuel-mix. 

Figure 3 delves into the renewable energy landscape, emphasising hydropower as a crucial 

source significantly affected by water shortages [4]. Despite being the highest renewable energy 

source, hydropower faced depletion due to droughts in 2000 and 2014-2015, reducing its 

contribution to 27%. The National Electricity Market (NEM) reflects a potential increase in electricity 

demand from both fossil fuel and renewable sources, supporting the growth of off-grid power. 

However, government priorities, especially in Large-scale Solar Generation (LSCG) projects at macro 

levels, have faced challenges due to the comparative cost of power generated from other sources. 

 

Figure 3 Electricity generation: Renewable. 

The electricity industry's vitality is intricately tied to diverse residential consumers and their 

integration into the market. A robust national energy policy adopting a portfolio approach, 

influenced by end-users' behavior, emerges as a key driver in the contemporary electricity industry. 

Recognising the imperative of avoiding energy misuse or losses, particularly among residential 

consumers, is fundamental for controlling energy market analysis costs. Continuous evaluations of 

electricity demands become crucial, alongside the need for reforming current policies, raising 

awareness of electricity demand, and identifying end-users' influence. Evaluating consumer 

demands for both renewable and traditional energy sources becomes essential for effective cost-

benefit analysis, directing policy reforms to areas that promise optimal returns [5, 6]. 

1995-96       2000-01       2005-06       2010-11       2015-16       2020-21          2021

100

90

80

70

60

50

40

30

20

10

0

%

Other

Renewables

Natural Gas

Brown Coal

Black Coal

GWh

Hydro     Wind     Bio energy    So lar

1990          1995           2000          2005           2010          2015

40.0
35.0
30.0
25.0
20.0
15.0
10.0
5.00
0.00



JEPT 2024; 6(1), doi:10.21926/jept.2401004 
 

Page 5/29 

This study provides a consolidated background to the Australian electricity market, aiming to 

understand the macro-micro relation and the challenges within the electricity supply chain. Before 

delving into conceptual models, the subsequent sections scrutinise the relationships between 

residential electrical consumers and other stakeholders, emphasising perceptions of the electricity 

grid system and energy loss. 

3. Investment in Electricity 

The intrinsic value within a grid system, marked by multi-generators and multi-users, is 

inherently distinctive and evolving towards sustainability. Recent strides in electric grid systems 

have propelled advancements, influenced by a myriad of factors both internal and external to the 

industry. Factors such as the operating environment, production economies, government 

intervention regulations, economic taxes, environmental effects, and energy loss play pivotal roles 

[7]. Energy loss, particularly associated with the distribution and generation of electricity, emerges 

as a significant factor influencing price disparities. This study delves into societal, economic, 

technical, and environmental aspects, with societal and ecological factors dominating the landscape. 

The research aims to explore societal factors contributing to losses in the electricity industry, 

emphasising the critical issue of energy loss. Independent systems analysis is provided to inform 

decision-making, shape system architecture, and navigate electricity trade-offs. The literature 

review establishes a comprehensive view, discussing factors influencing the formation of costs and 

prices. The study highlights the influential nature of consumer behavior, presents energy loss-driven 

solutions, and underscores the importance of policy and regulatory reforms within electric grid 

systems. Despite ongoing efforts to manage factors affecting operating costs and capital in 

electricity utilities, achieving complete control over the phenomenon of energy loss remains elusive 

[7]. 

Peak demand, representing the maximum electricity volume required at any point, establishes a 

rational connection between peak/off-peak demands and the reliability standards of network prices. 

Aging assets struggle to cover higher input and meet elevated reliability standards, contributing to 

rising network charges driven by electricity prices [8]. End-users, with a primary focus on residential 

houses, are expected to contribute to the smooth functioning of the net national product, control 

resource depreciation, and reduce environmental damage. However, assigning monetary values to 

external impacts on biodiversity and consumption qualities proves to be a complex and subjective 

exercise. Consumer demand behaviors, beyond the grid's control, constitute a controversial 

research topic, introducing uncertainties in valuing externalities related to human lifestyle, health, 

and climate change for various electricity generation technologies [6]. Recent Australian 

government projects target peak time control, aiming to reduce customers' payable electricity bills 

and extend benefits to the broader community, recognising the dynamic nature of residential 

consumers' habits [8]. An electricity grid system, functioning as a complex adaptive system (CAS), 

encompasses end-users, economic markets, physical networks, and diverse integrated agents [9]. 

Understanding the dynamics of consumers becomes pivotal for comprehending broader socio-

technical transitions. Monitoring social practices is vital for shaping end-users' demands into more 

efficient forms. The transformation towards a smarter grid necessitates knowledge development 

and behavior change among networks and end-user groups. 
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This study focuses on the challenges confronting energy systems, emphasising the crucial role of 

the end-users' community in addressing societal causes of energy loss. This becomes particularly 

pertinent as the electricity industry increasingly transitions towards more renewable energy sources 

[4]. End-users purchase electricity based on negotiated-commercial-in-confidence rates, and 

contract estimates derive from commercially available information as depected in Figure 4 [4]. The 

use of 'spot market prices' is justified for future revenue certainty, considering the premiums paid 

based on hedging contracts to enter into long-term agreements [4]. This clarifies why the 

characteristics of end-users' demand in Australia are defined by multiple consumption bundles, 

denoted in cents per kilowatt-hour. Eligible consumers choose from various price or tariff structures 

for specific bundles, leading to the design of typical contract prices aimed at costing these bundles. 

 

Figure 4 National electricity market – settlement of electricity prices [7]. 

Figure 5 simplifies the flow of electricity and finances between generators, retailers, and end-

users. Generators produce electricity, purchased by retailers from the National Electricity Market 

(NEM). Retailers, in turn, buy electricity from transmission network selling points and sell it to end-

users via distribution points. End-users have the flexibility to choose electricity providers via a 

regulated standard contract price [10]. Contracts cover network costs, buying electricity from the 

wholesale market, and retail costs, with the weight of retailer prices varying within an average reach 

of up to 10%. The bulk of costs, up to 90%, includes network and wholesale costs, mainly driven by 

the network costs of generators, transmitters, and distributors connected to the NEM [11]. 

Electricity providers measure success based on cost recovery and profit generation. In this highly 

competitive market, with limited options available, companies face risks as expectations of turnover 

rise between none to small margin profit, leading to complex dynamics in sharing through different 

market terms like like "pass-on," "pool/spot price," "agreed price," or "strike price." 
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Figure 5 Electricity financial cycle between generators and end-users. 

4. Learning Curves of Costs Vs. Prices 

The influence of electricity costs reverberates both directly and indirectly throughout market 

competition, impacting not only retailer businesses but also the industrial, commercial, and 

residential communities they serve. Framed as a qualified good with reservations for major barriers, 

electricity supply significantly contributes to economic activities. Examining electricity consumption 

as an intermediate input for production reveals its substantial role, accounting for 19.3% of total 

production, with unavoidable inputs such as coal, gas, and oil comprising 32.6% [12-15]. However, 

the challenge lies in managing energy loss and consumer behaviors to reduce costs in power 

generation plants, transmission lines, and distribution areas, ultimately fostering environmental 

sustainability and efficient home solar panel use. 

Key aspects of energy loss, occurring when consumers and providers purchase additional 

electricity from the NEM, contribute to 'lost' electricity during transmission and distribution, 

intensifying losses at peak times. Approximately 12 billion kilowatt hours (TWh) are lost in the 

energy consumption sector and an additional 12 billion TWh in transmission lines. Historical data 

reveals a significant increase in electricity prices in Australia from 2008 to 2014, exceeding inflation 

by over 80%, as depicted in Figure 6. The primary driver for these increases is attributed to the costs 

associated with upgrading and maintaining the electricity network to meet end-users' demand, as 

shown in Figure 7 [8]. The cost breakdown in Australia and New South Wales (NSW) encompasses 

various factors impacting both generators and consumers, such as Base load coal technologies, Base 

load gas technologies, Lowest capital cost solar, and Lowest capital cost wind [16]. 
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Figure 6 Electricity prices & consumers' price index [9-12]. 

 

Figure 7 Retail electricity prices [16]. 

Considering technological impacts, the conversion of learning curves to price rates is not 

consistently diminishing steadily with an increase in the number of units produced. Recent research 

efforts employ learning curve approaches to understanding electricity price mechanisms, 

emphasising the influence on the actual slope of the price through diverse factors. Corporate 

changes influence technology structures, reshaping market forces, emphasising the importance of 

price data over cost data, and reconstructing learning curves. This has implications for the usage of 

renewable energy at residential levels, drawing attention to the benefits and potential success of 

both fossil fuel and renewable energy approaches and their impact on reducing losses [17-19]. The 

rise in energy loss issues calls for a move beyond the demonstration phase supported by policy, 

pushing new solutions down into a learning curve. 

Price setting in electricity remains a complex issue, presenting difficulties in determining efficient 

and appropriately regulated prices due to information gaps between market participants and 

regulators, as depicted in Figure 8. Consumption bundles, representing different consumer 

categories, help analyse price variations based on demand characteristics and peak/off-peak 

consumption proportions. The challenge lies in addressing "non-cost reflective prices", which distort 

signals, hindering market entry and consumer demand management. Criticisms of the current price-

setting model emphasise a lack of clear objectives or conflicts within the existing objectives. 

Developing new operational strategies based on expected costs of renewable energy sources, such 

as storage batteries and solar panels, becomes critical for Australia's future energy mix [20]. 

Policymakers and energy generators face criticism for slow responses to the transition to a new 

energy mix and expanding away from fossil fuels. A carefully planned move is essential to avoid 
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skewing the actual cost of a long-term sustainable energy supply towards less efficient energy 

schemes [21]. 

 

Figure 8 Comparing electricity supply expenses with other industries [15]. 

5. Levelised Cost of Electricity 

The Levelised Cost of Electricity (LCOE) framework, administered by the Commonwealth Science 

and Industrial Research Organisation [17, 18], is a pivotal tool for evaluating electricity costs. The 

Australian Energy Technology Assessment (AETA), conducted under the Bureau of Resources and 

Energy Economics (BREE), utilised this approach to project electricity costs for the year 2030, 

accounting for scenarios "with and without carbon price" [17]. The assessment encompassed forty 

electricity generation technologies, incorporating operations and maintenance (O&M) costs for 

solar and wind, projecting costs and operations up to 2050. 

The LCOE formula is expressed as follows: 

𝐿𝐶𝑂𝐸 = 𝐾𝐶 + 𝑂&𝑀𝑓𝑖𝑥 + 𝑂&𝑀𝑣𝑎𝑟 + 𝐹𝐶 + 𝑆𝐶 + 𝑃𝐶 (1) 

Where:  
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𝐾𝐶 =  𝐾𝐶 ($/𝐾𝑊) ×
𝑟(1 + 𝑟)𝐿

(1 + 𝑟)𝐿−1
 ×

1000

𝑐𝑎𝑝 × 8760
+  𝐼𝐷𝐶 (2) 

𝑂&𝑀𝑓𝑖𝑥  =  𝑂&𝑀𝑓𝑖𝑥 ($/ 𝑀𝑊𝑦𝑟) ×
𝑟(1 + 𝑟)𝐿

(1 + 𝑟)𝐿−1
 ×

1

𝑐𝑎𝑝 × 8760
 (3) 

𝐹𝐶 =  𝐹𝐶 ($/𝐺𝐽)  ×  3.6 ÷  𝑒𝑓𝑓 (4) 

𝑃𝐶 =  𝑒𝑚𝑖𝑠𝑠 ÷  𝑒𝑓𝑓 ÷  1000 ×  3.6 ×  𝑐𝑎𝑟𝑏𝑝𝑟𝑖𝑐𝑒 (5) 

Figure 9 highlights significant findings for 2030, emphasising that wind technology emerges as 

the lowest-cost option. Carbon prices significantly impact black and brown coal costs. Carbon 

capture and storage technology (CCS) registers the highest LCOE, either with or without carbon 

pricing. Wind and solar are lower-cost technologies compared to fossil fuels, with solar costs 

decreasing by 15% $/MWh due to capital cost reductions. Network costs play a critical role in the 

overall structure of electricity bills across territories in Australia, emphasising the reliance on 

transmission and distribution systems [3].  

 

Figure 9 Levelised cost of electricity with & without carbon price to the year 2030 [18]. 

Figure 10 outlines the expected costs of electricity bills, highlighting the distribution of costs 

across categories like green costs, carbon costs, retail costs, energy costs, and network costs. 

Network costs, associated with delivering electricity from generation sources to end-users through 

transmission and distribution networks, hold substantial weight in the pricing dynamics [22]. 
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Figure 10 Expected costs of electricity bills [22]. 

Lastly, Figure 11 illustrates the variability in electricity prices across different states in Australia, 

showcasing the dissimilarity influenced by factors like weather, population, and resource 

distribution among domestic suppliers within the same state [21, 23, 24]. 

 

Figure 11 Suppliers' pricing of electricity in Australia in the same states [25, 26]. 
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6. Methods 

In this study, methods were employed to analyse electricity demand data sourced from the 

Australian Energy Market Operator (AEMO). The process adhered to the guidelines outlined in [1] 

and [2], utilising Python programming language to establish a data frame for subsequent analysis. 

Confidence levels of 99% and 1%, along with confidence intervals, were employed, forming a robust 

foundation for further exploration [1, 2]. Pearson's correlation coefficient (PCC) played a pivotal role 

in unveiling the relationships among variables. Employing PCC allowed for the identification of 

highly positive and negative correlations, providing insights into the unity of demand events, 

potentially influencing peak and off-peak patterns and contributing to energy loss [2]. The statistical 

robustness of PCC, ranging from perfect negative (-1) to perfect positive (+1), portrayed an accurate 

representation of data clustering performance. 

An additional step involved analytical resampling, utilising a nonparametric statistical inference 

method on the PCC results. This strategic approach aimed to retain highly associated demand 

variables, ultimately yielding less than 70 random samples for subsequent Energy Value 

Management (EVM) analysis [27-32]. The foundational plan was established by defining daily 

electricity demand for each end-user, encapsulating timely demand objectives (kWh) and 

corresponding budgets ($). These objectives were aligned with specific scopes, intending to meet 

approved total budget constraints for the entire day. The cyclic budget assumption postulated a 

consistent daily consumption pattern based on the benchmark measurements of Earned Value (EV), 

as defined in the provided formulas. 

Energy Value Management (EVM) was executed through a three-tiered approach, 

accommodating the complexities of supply and demand logistics extracted from [1, 2, 4]. The initial 

phase involved identifying individual demand scopes, breaking down desirable demand limits into 

miniature plans across forty-eight half-hour intervals daily. This delineation established the scope 

baseline, measuring kWh units against costs incurred and generated from energy loss. 

7. EVM Modelling 

The Earned Value Method (EVM) aims to compute the influence of energy loss-driven cost based 

on desirable and undesirable demands. EVM is restricted to defining series distortion of the scope, 

cost and schedule performance of end-users' demand in a time-phased budget in plotted curves 

caused by energy loss. The baseline schedule defines interval start and finish times for each demand 

activity used by each end-user every half an hour forty-eight times a day, denoted between t1 and 

t48. Three aggregated parameters of Planned Value (PV), Earned Value (EV) and Actual Cost (AC) 

against three demand ranges of average (AV), peak (P) and off-peak (OP) are used to measure the 

influence of energy loss driven cost based on end-users' performance. Generally, EV provides a 

continuous picture of where individual users' electricity demand stands versus where it should have 

been as planned. In similar words, EV measures the level of demand supplied by generators against 

PV enquired by end-users; simply, it is the interval time demand of each end-user to cover their 

timely energy needs. However, end-users assume this fact is not obtained from the attributes or 

characteristics of delivering the electricity itself but from the service of the coverage the 

consumption of end-users' demand. Therefore, there is substantial differentiation between PV and 

EV. At the same time, PV is affected by the energy consumption behaviour-oriented paradigm of 

individual users' dimensions. Ideally, PV relies on a single interval decision of end-user demand 
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system driven by passive attitudes that vary and affect different spatiotemporal levels. These 

individual demand metrics easily identify deviations from the PV values and the incremental 

progress from the expected baseline schedule. Thus, in simple words EV is the electricity supply 

delivered to cover end-users demand (PV). In the eyes of end-users, the expectations of EV must 

have two options: zero when the power of the end-user is purposely switched off (see Figure 12a), 

or intermittent, which out of end-users control (see Figure 12b), or equal to PV when one-self 

demand is covered (See Figures 12c-e). All other demand scenarios in Figures 12f-o are not related 

to the passive demand attitude of end-users PV ≠ EV, thus, do not satisfy the end-users need. 

Exclusively, the motives and drivers of energy demand made by energy consumers' can be primarily 

simplified via binary notations. Either PV ≈ EV, that electricity demand being utilised and available 

to guarantee service levels, or EV = 0 when it is not. This assumption is because the willingness and 

the common objective of electricity consumption for end-users deny other influences caused by 

other consumption patterns. Such as those patterns driven by invisible environmental and technical 

consequences of demand practices that end-users deny, cause, or at least be part of. With the 

ubiquitous end-users demand in household energy-related settings, it is one case that makes the 

initial plan of PV unrealistic in the eyes of end-users and unequal to EV when the grid performance 

goes not deliver electricity. These realistic insights were considered for computing the set of time 

series data for analysis, where fifteen scenarios of demands are expected to be exhibited in the 

following Figures marked between Figure 12a and Figure 12o simultaneously. 
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Figure 12 Fifteen demand scenarios and their indicator changes for EV. a): Off grid & 

zero budget; b): Intermittent & zero budget; c): Ontime & within budget; d): Ontime & 

overspent; e): Ontime & underspent; f): Early & overspent; g): Late & overspent; h): Late 

& within budget; i): Early & underspent; j): Late & overspent; k): Early & underspent; l): 

Early & underspent; m): Late & underspent; n): Late & overspent; o): Early & overspent.  

Supplementing to PV and EV roles and understanding, we are using AC to estimate the actual 

production cost per unit based on incurred power capacity costs in its generation. Simply put, the 

combined cost of load capacity factor from various plants such as Coal plants, Open cycle gas turbine 

plants and Combined cycle gas turbine combined with ToU is utilised to signify the monetary value 

of energy loss incurred in a particular time slot (tn-1). The index of preliminary PVs has typically used 

the demand ranges of average (AV), peak (P), and off-peak (OP) values of end-users' timely 

consumption referring to the schema of Time of Use Tariff (ToU). The notions of AV, P and OP 

indicate three vectors of real life demands data. Thus, AV, P and OP are expressions of demand 

ranges based on activity durations denoted to tn. The ranges of AV, P and OP are estimated based 



JEPT 2024; 6(1), doi:10.21926/jept.2401004 
 

Page 15/29 

on the standard notation of the actual cost trading to the electric power generated by different 

sources of CP, OCGT, and CCGT. Based on this study objective, different results of end-users' 

demand predicted to be either one of Figures 12 b, c and f have Scheduled variance equal zero when 

SV = EV – PV Or when EV = 0.  

The following analysis combines the smart grid's timely target, cost and schedule dimensions for 

the individual cyclic demand and then generates metrics for planning, control and measurement. 

The calculation of EVM requires to use of the following analytical formulas, which are also displayed 

in Figure 12: 

𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡 𝐴𝐶 =  𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 (𝐴𝐶𝑊𝑃) (6) 

𝐸𝑎𝑟𝑛𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝐸𝑉 =  𝐵𝑢𝑑𝑔𝑒𝑡𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑 (𝐵𝐶𝑊𝑃) (7) 

𝑃𝑙𝑎𝑛𝑛𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 𝑃𝑉 =  𝐵𝑢𝑑𝑔𝑒𝑡𝑒𝑑 𝐶𝑜𝑠𝑡 𝑜𝑓 𝑊𝑜𝑟𝑘 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 (𝐵𝐶𝑊𝑆) (8) 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑡𝑖𝑚𝑒 =  𝑆𝑇 (9) 

𝐴𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 =  𝐴𝑇 (10) 

𝑇𝑖𝑚𝑒 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑇𝑉 =  𝑆𝑇 −  𝐴𝑇 (11) 

𝐶𝑜𝑠𝑡 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝐶𝑉 =  𝐸𝑉 −  𝐴𝐶 (12) 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑆𝑉 =  𝐸𝑉 –  𝑃𝑉 (13) 

𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 𝑆𝑃𝐼 =  𝐸𝑉/𝑃𝑉 (14) 

𝐶𝑜𝑠𝑡 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 𝐶𝑃𝐼 = 𝐸𝑉/𝐴𝐶 (15) 

𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 𝑇𝑃𝐼 = 𝑆𝑇/𝐴𝑇 (16) 

𝐶𝑜𝑠𝑡 𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒 𝐼𝑛𝑑𝑒𝑥 𝐶𝑆𝐼 = 𝐸𝑉/𝐴𝐶 ×  𝑃𝑉 (17) 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑟𝑜𝑗𝑒𝑐𝑡 𝐵𝑢𝑑𝑔𝑒𝑡 𝑎𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =  𝐵𝐴𝐶 (18) 

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑎𝑡 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝐸𝐴𝐶 =  𝐵𝐴𝐶 / 𝐶𝑃𝐼 (19) 

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑡 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 𝑉𝐴𝐶 =  𝐵𝐴𝐶 −  𝐸𝐴𝐶 (20) 

𝑇𝑜 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝐼𝑛𝑑𝑒𝑥 (𝑇𝐶𝑃𝐼) =

𝑊𝑜𝑟𝑘 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 (𝐵𝐴𝐶 –  𝐸𝑉) / 𝐹𝑢𝑛𝑑𝑠 (𝐵𝐴𝐶 –  𝐴𝐶. ) (21)
 

Based on the studies [1-3] the values 0.30–0.46 units denoted the range of desirable demand 

units. The time series data frame is divided into five observation points in time to trace the changing 

conditions of end-users incremental behaviours. The first EVM analysis assumes no operation 

circumstances are involved, and all data readings start from zeros; this step requires no simulation. 

The second, third, fourth and fifth observation points refer to 25%, 50%,75% and 100% of the 

demand progress on a daily bases and assume CPI variations at certain points where t ∈ 1…48, as Xn 
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= {EV, PV, AC, CV, SV, CPI, SPI, TCPI, EV (t), PV (t), AC (t), CV(t), SV (t), CPI(t), SPI(t), TCPI(t)}. 

Subsequently, the observations of the preliminary vector of all time series data made up to the point 

t denoted to X1…48 and the vector of all end-users' observations of time series data denoted to X = 

X1…68 to estimate the changes occur in accordance with the influence of energy loss. In order to 

illustrate energy loss-driven cost, we defined the highest and lowest actual costs ACHigh and ACLow 

concerning overspent values (See Table 1). Figure 13 illustrates 25% of data results between t1 and 

t12 constitute the values of ACHigh = 490.27 unit and ACLow = 419.54 unit while PV = EV = 397.32 unit. 

Accordingly, the highest variance VARHigh = CVHigh = ACHigh -EV = 56.83 unit while the lowest variance 

VARLow = CVLow= ACLow -EV = 419.54 -397.32 = -13.90 unit and driven by energy loss.  
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Table 1 EVM Simulation Results. 

 Cumulative Parameters  None Cumulative Parameters  

t ToU Tariff WAP PV AC High CV High AC Low CV Low EV PV AC High CV High AC Low CV Low EV 

00:00 OP ≤ i < AV min 

  

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

00:30 OP ≤ i < AV min 36.12 47.75 11.63 31.58 -4.54 36.12 36.12 47.75 11.63 31.58 -4.54 36.12 

01:00 OP ≤ i < AV min 72.24 96.25 24.01 64.11 -8.13 72.24 36.12 48.50 12.38 32.52 -3.60 36.12 

01:30 OP ≤ i < AV min 108.36 143.29 34.93 97.75 -10.61 108.36 36.12 47.04 10.92 32.84 -3.28 36.12 

02:00 OP ≤ i < AV min 144.48 186.52 42.04 132.59 -11.89 144.48 36.12 43.23 7.11 32.47 -3.65 36.12 

02:30 OP ≤ i < AV min 180.60 212.11 31.51 169.01 -11.59 180.60 36.12 39.81 3.69 25.58 -10.54 36.12 

03:00 OP ≤ i < AV min 216.72 265.11 48.39 203.87 -12.85 216.72 36.12 53.00 16.88 32.78 -3.34 36.12 

03:30 OP ≤ i < AV min 252.84 303.59 50.75 239.77 -13.07 252.84 36.12 39.45 3.33 33.99 -2.13 36.12 

04:00 OP ≤ i < AV min 288.96 339.45 50.49 275.65 -13.31 288.96 36.12 39.01 2.89 34.00 -2.12 36.12 

04:30 OP ≤ i < AV min 325.08 376.44 51.36 311.64 -13.44 325.08 36.12 39.91 3.79 33.79 -2.33 36.12 

05:00 OP ≤ i < AV min 361.20 413.43 52.23 347.58 -13.62 361.20 36.12 39.65 3.53 33.49 -2.63 36.12 

05:30 OP ≤ i < AV min 397.32 449.35 52.03 383.68 -13.64 397.32 36.12 40.15 4.03 33.67 -2.45 36.12 

06:00 OP ≤ i < AV min 25% 433.44 490.27 56.83 419.54 -13.90 433.44 36.12 40.92 4.80 32.34 -3.78 36.12 

06:30 OP ≤ i < AV min 

  

469.56 534.53 64.97 455.51 -14.05 469.56 36.12 44.26 8.14 32.57 -3.55 36.12 

07:00 AVmax < i ≤ P 497.33 575.78 78.45 491.41 -5.92 497.33 27.77 41.24 13.47 31.98 4.21 27.77 

07:30 AVmax < i ≤ P 525.10 613.29 88.19 527.10 2.00 525.10 27.77 40.97 13.20 31.87 4.10 27.77 

08:00 AVmax < i ≤ P 552.87 652.22 99.35 562.17 9.30 552.87 27.77 41.76 13.99 31.54 3.77 27.77 

08:30 AVmax < i ≤ P 580.64 690.57 109.93 596.88 16.24 580.64 27.77 42.50 14.73 30.64 2.87 27.77 

09:00 AVmax < i ≤ P 608.41 729.13 120.72 631.37 22.96 608.41 27.77 44.40 16.63 31.80 4.03 27.77 

09:30 AVmin ≤ i ≤ 637.17 766.42 129.25 666.04 28.87 637.17 28.76 39.11 10.35 33.05 4.29 28.76 

10:00 AVmin ≤ i ≤ 665.93 803.00 137.07 700.35 34.42 665.93 28.76 39.09 10.33 32.83 4.07 28.76 

10:30 AVmin ≤ i ≤ 694.69 839.36 144.67 735.02 40.33 694.69 28.76 41.30 12.54 33.13 4.37 28.76 

11:00 AVmin ≤ i ≤ 723.45 876.54 153.09 770.04 46.59 723.45 28.76 40.50 11.74 33.19 4.43 28.76 

11:30 AVmin ≤ i ≤ 752.21 913.43 161.22 804.91 52.70 752.21 28.76 40.43 11.67 32.74 3.98 28.76 
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12:00 AVmin ≤ i ≤ 50% 780.97 950.63 169.66 839.23 58.26 780.97 28.76 40.71 11.95 31.48 2.72 28.76 

12:30 AVmin ≤ i ≤ 

  

809.73 988.14 178.41 872.66 62.93 809.73 28.76 39.96 11.20 30.84 2.08 28.76 

13:00 AVmin ≤ i ≤ 838.49 1025.65 187.16 906.14 67.65 838.49 28.76 40.00 11.24 30.83 2.07 28.76 

13:30 AVmin ≤ i ≤ 867.25 1062.97 195.72 940.12 72.87 867.25 28.76 39.22 10.46 30.81 2.05 28.76 

14:00 AVmin ≤ i ≤ 896.01 1100.34 204.33 974.78 78.77 896.01 28.76 40.01 11..25 31.22 2.46 28.76 

14:30 AVmin ≤ i ≤ 924.77 1137.97 213.20 1009.22 84.45 924.77 28.76 37.78 9.02 31.83 3.07 28.76 

15:00 AVmin ≤ i ≤ 953.53 1175.31 221.78 1044.31 90.78 953.53 28.76 37.66 8.90 32.07 3.31 28.76 

15:30 AVmin ≤ i ≤ 982.29 1212.59 230.30 1079.39 97.10 982.29 28.76 37.64 8.88 32.55 3.79 28.76 

16:00 AVmin ≤ i ≤ 1011.05 1249.92 238.87 1114.46 103.41 1011.05 28.76 39.12 10.36 32.58 3.82 28.76 

16:30 AVmin ≤ i ≤ 1039.81 1287.66 247.85 1148.95 109.14 1039.81 28.76 39.44 10.68 32.87 4.11 28.76 

17:00 AVmax < i ≤ P 1067.58 1326.03 258.45 1183.51 115.93 1067.58 27.77 40.67 12.90 32.35 4.58 27.77 

17:30 AVmax < i ≤ P 1095.35 1365.36 270.01 1217.13 121.78 1095.35 27.77 43.39 15.62 32.47 4.70 27.77 

18:00 AVmax < i ≤ P 75% 1123.12 1406.00 282.88 1249.73 126.61 1123.12 27.77 47.98 20.21 32.60 4.83 27.77 

18:30 AVmax < i ≤ P 

  

1150.89 1448.10 297.21 1281.67 130.78 1150.89 27.77 48.75 20.98 31.94 4.17 27.77 

19:00 AVmax < i ≤ P 1178.66 1489.74 311.08 1313.57 134.91 1178.66 27.77 48.40 20.63 31.51 3.74 27.77 

19:30 AVmax < i ≤ P 1206.43 1528.48 322.05 1344.82 138.39 1206.43 27.77 46.31 18.54 30.79 3.02 27.77 

20:00 AVmax < i ≤ P 1234.20 1565.25 331.05 1376.11 141.91 1234.20 27.77 43.42 15.65 30.20 2.43 27.77 

20:30 OP ≤ i < AV min 1270.32 1601.03 330.71 1407.40 137.08 1270.32 36.12 43.53 7.41 29.26 -6.86 36.12 

21:00 OP ≤ i < AV min 1306.44 1636.20 329.76 1439.07 132.63 1306.44 36.12 44.07 7.95 29.68 -6.44 36.12 

21:30 OP ≤ i < AV min 1342.56 1671.04 328.48 1469.96 127.40 1342.56 36.12 44.64 8.52 30.25 -5.87 36.12 

22:00 OP ≤ i < AV min 1378.68 1704.29 325.61 1501.67 122.99 1378.68 36.12 44.85 8.73 30.22 -5.90 36.12 

22:30 OP ≤ i < AV min 1414.80 1737.81 323.01 1532.44 117.64 1414.80 36.12 44.18 8.06 30.09 -6.03 36.12 

23:00 OP ≤ i < AV min 1450.92 1774.34 323.42 1563.36 112.44 1450.92 36.12 41.08 4.96 30.92 -5.20 36.12 

23:30 OP ≤ i < AV min 1487.04 1812.74 325.70 1594.10 107.06 1487.04 36.12 40.15 4.03 30.74 -5.38 36.12 

00:00 OP ≤ i < AV min 100% 1523.16 1858.71 335.55 1625.34 102.18 1523.16 36.12 45.98 9.86 31.24 -4.88 36.12 
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Figure 13 EVM simulation of 25% demand. 

Mimics of end-users demands have been generated from a set of EVM metrics to emulate several 

estimates of the activity cost within tn durations and for Xn variables. EVM simulation in this study 

measures a volume of demand earned by end-users versus a volume of demand planned by 

suppliers that are expected to be earned as per the plan designed to avoid the phenomena of energy 

loss. The analysis was made to distinguish between four milestones to track the highest and lowest 

ranges of energy loss-driven cost based on the cyclic demand changes. Referring to the data of the 

simulation results in Table 1, simultaneously, Figure 13 displayed the analysis results after 25% of 

the allocated time passed, particularly for the first six hours of demand during a day. The 

expectations of earlier analysis will lead to discovering the problem earlier and provide a better 

chance to fix it, although it is not the case with the electricity demand. The deviation between 

planned and actual costs has been defined based on EVM metrics. The results of low demand levels 

found CVl1 = +13.90 and EACl1 = 1474.31 indicate no energy loss-driven cost occurs at the specified 

ranges. However, false probability signals were found within the ranges of maximum values where 

CVh1 = -56.83, and EACh1 = 1722.87, evidence of several demands' overreactions occurred via 

demands cumulated. We can note that EAC is a linear extrapolation of current tendencies that could 

not influence corrective measures, deliver corrective actions to future risks, or confirm any 

assurance to rely on the system's current pattern. Instead, EAC helps indicate the potential cost 

problems based on the demand scale ranges to provide a warning signal and trigger the need for 

rectifying actions. 

The second stage of demand progress shown in Figure 14 is the values of all individual demands 

computed on the same basis being done to the first milestone but for twelve hours of the day (50% 

of the daily demand load).  
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Figure 14 EVM simulation of 50% demand. 

After twelve hours of end-users demand, the line scatters in Figure 14 represent CV2 and EAC2, 

while the bar chart in Figure 15 illustrates the CPI. These new results indicate an increase in energy 

loss and cause more expensive demand than planned; this issue can also be distinguished through 

the increasing gap between PV2, EV2 and ACH2, ACL2. 

 

Figure 15 CPI analysis. 

Figure 16 and Figure 17 of the third and fourth stages of analysis mimic the measures of 75% of 

total demand (demand of eighteen hours a day) and 100% of total demand (twenty-four hours a 

day), subsequently capturing the scales of deviations. Figure 16 represents the cost overrun results 

of CVh3 = -282.88, CVl3 = -126.61, EACh3 = 1906.8 and EACl3 = 1694.87. In this stage three, the 

tendencies of EACh3 and EACl3 display potential slippage of the cost overrun, likely providing a 

warning signal of continuously increasing the cost of energy loss as that can also be defined via CVh3 

and CVl3. At a certain point in time, the S curve of EVM is often the most critical period, which at the 

earlier stages of the forecasts, requires reliable information on how to move up into the next stage. 

The variance tendencies found from the analysis patterns of BAC1,2,3,4, EACl1,2,3,4, EACh1,2,3,4, CVh1,2,3,4, 

CVl1,2,3,4 are reliable indicators to show the variances of the past demand costs but unlikely to 
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provide an accurate assumption of the future incurred costs, give room to consider other solution 

scenarios to assess the influence of energy loss.  

 

Figure 16 EVM simulation of 75% demand. 

 

Figure 17 EVM simulation of 100% demand. 

Maximum demand: 

(𝑇𝐶𝑃𝐼ℎ1)  =  (𝐵𝐴𝐶ℎ1 – 𝐸𝑉ℎ1)/ (𝐵𝐴𝐶ℎ1 – 𝐴𝐶ℎ1)  = 1.06 (22) 

(𝑇𝐶𝑃𝐼ℎ2)  =  (𝐵𝐴𝐶ℎ2 – 𝐸𝑉ℎ2)/ (𝐵𝐴𝐶ℎ2 – 𝐴𝐶ℎ2) = 1.30 (23) 

(𝑇𝐶𝑃𝐼ℎ3)  =  (𝐵𝐴𝐶ℎ3 – 𝐸𝑉ℎ3)/ (𝐵𝐴𝐶ℎ3 – 𝐴𝐶ℎ3) = 3.41 (24) 

Minimum demand:  

(𝑇𝐶𝑃𝐼𝑙1)  =  (𝐵𝐴𝐶𝑙1 – 𝐸𝑉𝑙1)/ (𝐵𝐴𝐶𝑙1 – 𝐴𝐶𝑙1) =  0.99 (25) 

(𝑇𝐶𝑃𝐼𝑙2)  =  (𝐵𝐴𝐶𝑙2 – 𝐸𝑉𝑙2)/ (𝐵𝐴𝐶𝑙2 – 𝐴𝐶𝑙2) =  1.09 (26) 
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(𝑇𝐶𝑃𝐼𝑙3)  =  (𝐵𝐴𝐶𝑙3 – 𝐸𝑉𝑙3)/ (𝐵𝐴𝐶𝑙3 – 𝐴𝐶𝑙3) = 1.46 (27) 

So far, the EVM results found no chance for the end-users demand to complete its iterative cyclic 

demand on the proposed budget unless the cost performance index (TCPI) is improved, which 

computes the future required cost efficiency to fulfil a target EAC. TCPI is a comparative metric to 

indicate whether or not the estimate of EAC is realistic and reasonable. Given the TPCI of maximum 

demand (see formulas 22, 23 and 24) that found TCPI >1 shows the cost of the demand exceeds the 

existing budget, which arises when energy loss increases. TCPIh1 indicates that the performance 

needs to be raised at a cost efficiency of 106% from stage one to the end of the twenty-four hours 

demand. Likewise, the second and third stages of the analysis show TCPIh2  = 130% and TCPIh3 = 341% 

means higher margins of 0.30 and 2.41 require continuous increases to the performance at an 

efficiency cost, which is overly pessimistic. With minimum demand levels (equations 25, 26 and 27) 

in the first quarter of TCPIl (25%), the target value is assumed to be reasonable within 99%. In 

comparison, the results of the second and third quarters did not meet the specified management 

goal where extra work performance is needed at cost efficiency of 109% and 146%. In order to make 

the analysis results of TCPI meaningful, we compare it with the demand CPI illustrated in Figure 18, 

which indicates the cost efficiency possibly achieved if TCPI is reasonable. CPILow results are 1.033, 

0.93, 0.89 and 0.94, while CPIHigh results are 0.88, 0.82, 0.79 and 0.81, and have asymmetrical 

distribution among the four tested quarters to demonstrate that the values occur at varying 

frequencies. 

 

Figure 18 Variations of BAC, EAC, ETC. 

In Figure 18, the markers in the smooth lines scatter speak in favour of three measures: (1) BAC 

as a fixed amount and denoted to 1500 units; (2) EAC has a reasonable variation between 0.25% 

and 9.6%, particularly the gap increase between the second and fourth milestones; (3) ETC, where 

a slight slippage of unit averages found between high and low estimates for the four computed 

quarters, the estimated cost found decreases within a range of 55% and gradually toward the end 

of the iterative time-interval demand (t1…48). Figure 19 on the right-hand side, the lines and markers 

display the cost gap driven by energy loss denoted by upper black and dark grey lines and the gaps 

with the planned red demand line. 
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Figure 19 Cost gap driven by energy loss. 

From the analysis results of EV, PV, AC, CV, SV, BAC, EAC, CPI, SPI, and TCPI is worth mentioning 

that there are some significant challenges caused by energy loss implied in cost variances that 

should be overcome. As for cost, we can conclude that end-user demand causes disagreement in 

CPI values (See Figure 20). The inconsistency of CPIs alarming an anti-persistent issue, and the 

problem is more complex due to precedence relevance between multiple demand tasks. We can 

note that time management implied in the SPILow and SPIHigh is not a concern because there is no 

intermittent issue of the power supply. And the energy demand was continuously flowing to cover 

end-users demand with no interruption counted or observed exclusively in the data used for this 

study. Another shortcoming of overrun cost driven by energy loss could be related to the demand 

system memory defined through the unreliable anti-persistent results, i.e., EAC, CV, BAC...etc., 

which may need further investigation in other future studies. And yet another drawback of critical 

tasks is the evidence of minimum and maximum risks proportional to the cumulated AC of energy 

cost against EV and PV (See Figure 20). It displays the influence ranges of actual cost driven from 

energy loss where the gap between AC and EV and PV speaks for itself that diverges from the 

planned demand target toward increasingly cost overrun. The illustrations in Table 1 and Figures 

14-20 arouse a curiosity exhibited by EVM metrics to monitor EVs from the perspective of energy 

loss-driven cost via ACs analysis where the proposed end-users demand is equal to EV = PV = BAC. 

Per Australian Electricity Market plans, the preference of PV values to act within lower and higher 

demand ranges that the supplier prefers to achieve makes sense of the meaning of control where 

the spatiotemporal EV demand of end-users should match. 
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Figure 20 AC, EV and PV of energy cost. 

In Figure 21, the non-cumulative structures of the demand variables (Xn) of end-users input space 

are displayed using EVM to derive control limits for multivariate independent variables. Figure 21 

reveals the fluctuation range of non-cumulative levels of energy loss when not summed up to induce 

the individual effect. In this Figure, we can observe the timely extent of the energy loss issue by 

getting to the bottom where the individual demand behaviour of end-users. The variance at each 

point in the selected time interval is evident but during the first six hours and last four hours, the 

results were above and below the datum line of energy loss, showing some end-user behaviours 

could smoothen the loss curve plot that can be clarified via the following results of the cumulative 

curve. 

 

Figure 21 Non-cumulative energy loss. 
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Figure 22 shows the cumulative noise, and the patterns of independent demand variables 

denoted to the CVhigh (black curve) and CVLow (Purple curve). No real significant differences in anti-

losses behaviours can be observed; in some limited occasions, a slight incline into lower than zero 

levels was observed within the first six hours of the day (12:00- 06:00 am), which makes sense as all 

the household demands slowdown during that period of time. The significant observation that the 

cumulative energy loss-driven cost consistently increases is denoted by the stripped gap between 

CVLow and CVhigh. 

 

Figure 22 Cumulative energy loss. 

Figure 23 shows the vertical and horizontal measurements of the geometric distances among PV, 

EV and AC versus the cost and time scales. Our results highlight two aspects of energy loss-driven 

costs: (1) With distance from the preferred demand stripped area; the lowest demands of ACLow 

were found mostly within the preferred ranges (green line); (2) With distance from the preferred 

demand stripped area; the highest demands of ACHigh were found entirely out of the preferred 

ranges, resulting in more intensively occur of energy loss which also increase the risk factor (red 

line). 

 

Figure 23 Geometric distances between PV, EV and AC. 
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8. Conclusion 

Complexity study has become popular in addressing system dynamics and framing networks. Yet, 

there is more to learn about linking simple events created by human behaviour, which leads to a 

complex end and influences organisations' outcomes. Mainly when focusing on subjective people 

in a complex system, such as residential end-users in electrical smart grid systems, such knowledge 

would be expected to have the greatest influence on developing a system. Perhaps understandably, 

end-users cause complexity and lie at the heart of the internal factors influencing and hovering 

around the electricity business performance by making an inconstant demand, affecting cost and 

price. The observations exhibit the extent of human behaviour as an example of non-linear dynamic 

behaviour in a complex system such as an electrical grid system. In particular, this study focuses on 

the spontaneous emergence of human actions to understand the consequences of events' 

scalability and the clustering dynamic of non-linearity. Despite the work done in this area, there is 

still a gap in the general conceptualisation of subjective human behaviours in electrical smart grid 

systems. A lack of integration of subjective end-user behaviours into accepted system operation 

models and a lack of agreement on facilitating a 'microgrid system' are obstacles to increase system 

efficiency.  

An analytical model drew on the energy demand cultures' by using the EVM tool to support new 

strategies. Meaningful evidence of energy loss was found via the results of EV, PV, AC, CV, SV, BAC, 

EAC, CPI, SPI, and TCPI-defined venues that support the perception of optimising end-user 

behaviours and develops our understanding of human networks. As for the argument in this study, 

the problem is apparent confusion amongst end-users of electricity about what constitutes their 

demand "best interest". It is a businesslike matter with unfavourable consequences featured via the 

words "energy loss" to be aware of concerns raised with the end-users placement that affects 

electricity prices. We put energy loss under review to support the efforts of newly revised guidelines. 

It is hoped that the research will better support policymakers in taking on board the needed scope 

of restructuring, especially for the use of renewables in homes. In addition, this research would also 

support the reform approaches to new tariffs to mediate the relationship between all stakeholders 

and derive an equal advantage from the electricity utilities. This study further identified the key 

societal factors leading to losses and their significant relative costs by describing the pricing factors 

and estimating their magnitude and relative impact on energy loss with peak and off-peak demands, 

which is evident. This work helps fine-tune the Electricity Market Rules and regulates them based 

on consumers' diverse behaviours. It seemed to be our concern being valid that electricity cost and 

price are likely active when the electricity system is interconnected when the demand side of 

electricity is alive.  
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