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Abstract 

In an electric power system operation, the main goal of economic dispatch (ED) is to schedule 

the power outputs of committed generating units efficiently. This involves consideration of 

relevant system equality and inequality constraints to meet the required power demand at 

the lowest possible operational cost. This is a challenging optimization problem for power 

system operators that can be dealt with efficient meta-heuristic algorithms. This article uses 

a recent meta-heuristic approach named the generalized normal distribution optimization 

(GNDO) algorithm to achieve near-optimal solutions. The efficacy of the proposed GNDO 

algorithm is validated through experimentation on three distinct test power system networks: 

one with three thermal units, the second one with six thermal-unit, and the third one with ten 

thermal units. The algorithm's performance is also assessed on a power network with 

renewable energy sources. All analyses of the four test cases are conducted on the 

MATLAB/SIMULINK platform. Finally, this article also compares the obtained results with 

other literature-reported strategies, genetic algorithm (GA), particle swarm optimization 
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(PSO), whale optimization algorithm (WOA), flower pollination algorithm (FPA), and bald eagle 

search (BES) algorithm. It is evident from the simulated cases that the employed GNDO 

algorithm exhibits superior performance for two cases and competitive performance for the 

remaining cases in achieving the lowest operation costs and power losses. 

Keywords  

Renewable energy; generalized normal distribution optimization algorithm; economic 

dispatch; energy management. 

 

1. Introduction 

Optimization challenges are prevalent in various scientific and technological domains, posing 

difficulties due to the practical nature of the target function or model constraints. The ED is one 

such significant challenge in power systems. The ED tackles the task of determining the best possible 

combination of power production from various power plants. The objective is to meet the critical 

power demand while minimizing operational costs and ensuring adherence to system constraints 

[1]. Enhancing the solution to the ED problem can lead to substantial cost savings, prompting 

extensive research in this field. Researchers have employed various methodologies to address this 

optimization challenge, including mathematical, artificial intelligence, and hybrid approaches, each 

offering unique perspectives and advantages [2]. 

Today, electric power systems are required to have a significant percentage of renewable energy 

sources, and there have been numerous initiatives to integrate renewable energy (RE) resources 

into ED issues [3-5]. Solar, wind, biomass, wave, geothermal, and other energy resources that can 

be used for power production repeatedly are examples of renewable energy. However, the power 

generated from RE sources cannot be directly supplied to the utility power grid as most RE sources 

produce direct current (DC) voltag. In contrast, the electric power transmission system and 

consumer loads are operated in alternating current (AC) systems [6]. To handle challenges like 

determining the appropriate operating level for electric power plants to fulfill demand, a variety of 

conventional and nonconventional optimization techniques are used. Traditional methods, i.e., 

lambda iteration [7], have failed to solve such a problem. The ED problem has been solved using 

nonconventional ways, such as artificial bee colony algorithms (ABC) [8], hybrid grey wolf optimizer 

algorithms (GWO) [9], genetic algorithms (GA) [10], particle swarm optimization (PSO) [11], moth 

flame optimization, algorithms (MFA) [12], chameleon swarm algorithm (CSA) [13], firefly 

algorithms (FA) [14]. Also, the woodpecker mating algorithm (WMA) [15], bald eagle search (BES) 

algorithm [16], whale optimization algorithm (WOA) [17], and bat-inspired algorithm [18] were also 

explored to solve the ED problems. 

As a result, using meta-heuristic optimization methods to resolve the ED problem has become 

increasingly wideheld in the last two decades, particularly ant colony optimization (ACO), genetic 

algorithm (GA) [10], and particle swarm optimization (PSO) [11], which have been helpful in a variety 

of fields of study. Meta-heuristics have become increasingly popular for four reasons: simplicity, 

adaptability, derivation-free method, and avoidance of local optima [19-22]. This task requires 

allocating loads to a plant's power generators to achieve the lowest fuel cost while addressing the 
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power demand and transmission loss constraints. Several other versions of this issue model the 

same goal functions and constraints in different ways. A brief comparison of the proposed model 

with the noteworthy prior research in this field is provided in Table 1, highlighting the differences 

and improvements. 

Table 1 Comparative study between previous literature and proposed model. 

Publishing 

year 
Papers Contribution and limitation Proposed model 

1995, 

2009, 

2014, 

2015 

[23-26] 

These papers used GA, PSO, GWO, and ABC 

for solving ED problems. But these 

algorithms are relatively old, and their 

convergence performance is slow compared 

to recently developed algorithms. 

The proposed model 

uses GNDO algorithm 

which is developed in 

2022, and is faster than 

GA, PSO, GWO, and ABC. 

2016, 

2017, 

2018, 

2022 

[8, 9, 

12, 13] 

Hybrid GWO, ABC, MFO, and CSA are 

implemented recently to address the ED 

problem with different modeling technique. 

However, none of these papers considered 

the effect of renewable energy integration 

into power system networks in modern 

days.  

This paper addresses the 

problem where solar and 

wind energy are 

considered for 

simulation results. 

Table 1 shows that the suggested model fixes most of the constraints with the earlier models. On 

the other hand, traditional methods become exceedingly complicated when dealing with 

increasingly complex dispatch problems. Their lack of robustness and efficacy further limits them in 

several practical applications.  

A new optimization approach has recently been proposed to address the photovoltaic (PV) 

module parameter estimations. Since normal distribution theory served as the foundation for this 

algorithm, it was named the generalized normal distribution optimization algorithm (GNDO) [27]. 

The efficiency of GNDO in avoiding local minima was demonstrated by its ability to estimate the 

parameters by minimizing the sum of squared error between the measured and calculated current 

and voltage values. The most notable quality of GNDO is that it doesn't require any work to fine-

tune initial parameters, which makes it superior to most other metaheuristic algorithms now in use. 

Three photovoltaic model parameters are extracted using GNDO to evaluate its performance. 

According to experimental findings, GNDO performs better in accuracy and efficiency than the 

comparison algorithms [27]. Recently, GNDO has been used to solve many recent problems like 

permutation flow shop scheduling [28], solar PV integration in monopolar DC networks [29], and 

the medical feature selection Approach [30]. However it has not yet been utilized to solve ED 

problems. Considering its better performance in solving complex, diverse problems, GNDO is 

considered in this research to solve ED problems in renewable source integrated power system 

networks. 

The main contributions of this paper are listed as follows: 

• Development of a generic mathematical formulation of the ED problem of electric power 

system networks considering renewable energy sources. 
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• Deployment of a recent effective meta-heuristic algorithm, the GNDO, to find optimal 

solutions for four test power system networks. 

• Comparison of the outcomes of the GNDO algorithm with the literature-reported strategies 

to demonstrate the effectiveness and superiority of the employed algorithm. 

The remaining sections of this paper are organized as follows: the problem formulation is 

explained in Section 2, and the generalized normal distribution optimization technique is 

summarized in Section 3. The results and findings are discussed in Section 4, and the conclusions 

are provided in Section 5. 

2. Problem Formulation 

The economic dispatch strategy aims to reduce fuel costs while following several equity and 

inequality criteria. As a result, the problem is stated as follows: 

2.1 Objective Function  

The quadratic fuel charge equation of the thermal generating units is the cost function of the ED 

problem, and it is expressed as follows:  

𝑀𝑖𝑛 (∑ 𝐹𝑖(𝑝𝑖)
𝑁

𝑖=1
) = 𝑀𝑖𝑛 (∑ 𝑎𝑖 + 𝑏𝑖𝑃𝑖

𝑁

𝑖=1
+ 𝑐𝑖𝑃𝑖

2) (1) 

Here, ai, bi, ci are ith generating unit's cost coefficients, pi is the generated power of the unit, and N 

is the number of generating units. 

2.2 Power Balance Constraint 

𝑃𝐷 + 𝑃𝐿 − ∑ 𝑃𝑖

𝑁𝑔

𝑖=1
= 0 (2) 

Equation (2) is the power balance constraints equation. Here, PL is Transmission losses and PD is 

total load demand. The transmission loss, PL may be depicted by (3): 

𝑃𝐿 = ∑ ∑ 𝑃𝑖𝐵𝑖𝑗𝑃𝑗 +
𝑁

𝑗=1
∑ 𝐵0𝑖𝑃𝑖 + 𝐵00

𝑁

𝑖=1

𝑁

𝑖=1
(3) 

Here, N is the number of generating units and Bij is transmission loss coefficient. 

2.3 Power Output Limits 

Each generating unit has minimum and maximum limits, i.e. 

𝑃𝑖
𝑚𝑖𝑛 ≤ 𝑃𝑖 ≤ 𝑃𝑖

𝑚𝑎𝑥 (4) 
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3. Generalized Normal Distribution Optimization 

This section describes the GNDO algorithm's specifics [27], divided into sub-sections. The first 

subsection focuses on the motivations for the GNDO algorithm. The outline of GNDO is then 

presented in another sub-section. Lastly, the application of GNDO for optimization is explained. 

3.1 Description  

Based on population location data, a generalized normal distribution approach is used to keep 

the individual's position current. The normal distribution concept influenced GNDO. The normal 

distribution, often called the Gaussian distribution, is a helpful tool for characterizing common 

phenomena. The following is an explanation of a normal distribution. Here, x is assumed as an 

arbitrary variable that follows a possible arrangement with location and scale parameters, and its 

probability solidity function can be formulated as below. 

𝑓(𝑥) =
1

√2𝜋𝛿
𝑒𝑥𝑝 (−

(𝑥 − 𝜇)2

2𝛿2
) (5) 

The normal distribution has two variables, according to equation (5): the scale parameter δ and 

the location parameter μ. The mean value and standard variance of random variables are expressed 

using the location and scale parameters. 

Generally, there are three stages to the search procedure for population-based optimization 

approaches. Firstly, the dispersed distribution contains all initialized persons. Previously, individuals 

started moving toward the best overall solution while supervised by the planned exploration and 

exploitation strategies. Finally, everyone gathers around the best solution that has been found. In 

reality, numerous normal distributions can construct this search procedure. 

To put it another way, all people's positions can be considered random variables with a normal 

distribution. The average position and the ideal location are more comprehensive in the first stage. 

The ranking standard deviation across all individuals is significantly more significant. The second 

step steadily reduces the disparity between the mean and optimum positions. The average change 

in all people's positions is getting smaller and smaller. In addition to the standard change of all 

individual positions, the space between the mean and optimal positions can be reduced to zero in 

the final stage. 

3.2 The Structure of the Proposed Method 

The proposed information exchange process in GNDO is local exploitation and global exploration, 

and it has a straightforward structure. The present mean and ideal positions guide local exploitation 

and are built on the generalized normal distribution model. In addition, three randomly chosen 

persons are linked to global exploration. A detailed explanation of both learning strategies is 

provided as follows. 
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3.2.1 Local Exploitation 

Local exploitation is locating improved results within a search space that includes all persons' 

existing places. A GNDO model for optimization can be constructed for the association between a 

normal distribution and the distribution of people in the population. 

𝑣𝑖
𝑡 = 𝜇𝑖 + 𝛿𝑖 × 𝜂, 𝑖 = 1,2,3, … , 𝑁 (6) 

Here, δi is generalized standard alteration, vt
i is the trailing vector of the ith individual at time t, μi 

is the generalized mean position of the ith individual, and η is the penalty factor. In addition, μi, δi, 

and η can be defined as in (7), (8), and (9). 

𝜇𝑖 =
1

3
(𝑥𝑖

𝑡 + 𝑥𝐵𝑒𝑠𝑡
𝑡 + 𝑀) (7) 

𝛿𝑖 = √
1

3
[(𝑥𝑖

𝑡 − 𝜇)2 + (𝑥𝐵𝑒𝑠𝑡
𝑡 − 𝜇)2 + (𝑀 − 𝜇)2] (8) 

𝜂 = {
√− 𝑙𝑜𝑔(𝜆1) × 𝑐𝑜𝑠(2𝜋𝜆2), 𝑖𝑓 𝑎 ≤ 𝑏

√− 𝑙𝑜𝑔(𝜆1) × 𝑐𝑜𝑠(2𝜋𝜆2 + 𝜋), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(9) 

Here, a, b, λ1, and λ2 are unsystematic numbers between 0 and 1, M (10) is the mean position, 

and xt
Best is the present top position of the existing population. In total, calculating M, 

𝑀 =
∑ 𝑥𝑖

𝑡𝑁
𝑖=1

𝑁
(10) 

3.2.2 Global Exploration 

Global exploration is searching a speech space around the globe for promising places. In GNDO, 

the global exploration is established on three persons chosen at random, which can be stated as: 

𝑣𝑖
𝑡 = 𝑥𝑖

𝑡 + 𝛽 × (|𝜆3| × 𝑣1) + (1 − 𝛽) × (|𝜆4| × 𝑣2) (11) 

In equation (11), β × (|λ3| × v1) is local information sharing and (1-β) × (|λ4| × v2) is global 

information sharing. 

Here, λ3 and λ4 are arbitrary figures dependent on the standard normal distribution. Modify 

parameter (β) is a random quantity between 0 and 1, and v1 and v2 are two trail vectors. 

Furthermore, v1 and v2 can be determined by: 

𝑣1 = {
𝑥𝑖

𝑡 − 𝑥𝑝1
𝑡 , 𝑖𝑓 𝑓(𝑥𝑖

𝑡) < 𝑓(𝑥𝑝1
𝑡 )

𝑥𝑝1
𝑡 − 𝑥𝑖

𝑡, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(12) 

𝑣2 = {
𝑥𝑝2

𝑡 − 𝑥𝑝3
𝑡 , 𝑖𝑓 𝑓(𝑥𝑝2

𝑡 ) < 𝑓(𝑥𝑝3
𝑡 )

𝑥𝑝3
𝑡 − 𝑥𝑝2

𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(13) 

Here, p1, p2, and p3 are three different numbers ranging from 1 to N, which come across i ≠ p1 
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≠ p2 ≠ p3. Equations (12) and (13), the subsequent term on the right of (11) can be termed local 

knowing term, which signifies that the result p1 has information in common with the resolution i; 

global information sharing is the third term on the right of (11) that defines the individual i is 

specified information by those p2 and p3. Furthermore, λ3 and λ4 are casual numbers with the usual 

normal distribution, which can sort GNDO has more excellent search space in acting out the global 

exploration. The adjustment parameter (β) equates the two information distribution approaches. 

The total sign in (11) is to stay steady with the showing mechanism in (12) and (13). 

3.2.3 The GNDO Implementation for Optimization 

The operation of GNDO is discussed in this section. The suggested GNDO is founded on local 

exploitation and global exploration tactics that have been established. The two strategies are 

equally crucial to GNDO and have the same chance of being chosen. Furthermore, like with other 

population-based optimization techniques, GNDO's population is initialized by 

𝑥𝑖,𝑗
𝑡 = 𝐼𝑗 + (𝑢𝑗 − 𝐼𝑗) × 𝜆5 (14) 

Here, i is 1, 2, 3, 4, …, N, and j is 1, 2, 3, 4, …, D. 

Where λ5 is an arbitrary digit between 0 and 1, D is the number of design variables, the upper 

and lower limits of the jth design variables are uj and Ij, respectively. Reminder that the ith specific 

may not discover a good result through global exploration or local exploitation strategies. To carry 

the improved solution into the following generation population, a showing mechanism (15) is 

considered; it can be denoted as: 

𝑥𝑖
𝑡+1 = {

𝑣𝑖
𝑡, 𝑖𝑓 𝑓(𝑣𝑖

𝑡) < 𝑓(𝑥𝑖
𝑡)

𝑥𝑖
𝑡 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(15) 

3.2.4 The Computation Difficulty of the Proposed Algorithm 

Computation difficulty is an essential statistic for estimating the execution time of an algorithm. 

The computational complexity of GNDO comprises the period spent comparing and updating 

positions, which depends on the number of participants, iterations, and variables. N individuals 

must update their locations in each cycle, and N comparisons must be made. As a result, GNDO's 

overall computing complexity can be expressed as O (NDTmax + NTmax). The proposed GNDO 

algorithm's flowchart is shown in Figure 1. A flow chart illustrating the simulation process approach 

is displayed in Figure 2. 
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Figure 1 GNDO algorithm flowchart. 

 

Figure 2 Methodology for the simulation process. 

4. Results and Discussion 

The proposed approach has undergone verification in four distinct power systems, encompassing 

three thermal units, six thermal units, ten thermal units, and three thermal units with two 

renewable resources power systems. In each of these setups, the cost function for the system's 

units is represented by a quadratic function. To address the economic dispatch problems, various 

techniques, including GNDO, GA, WOA, PSO, and other methods, are employed, and their outcomes 

are thoroughly analyzed. To conduct a comparative study, all algorithms are implemented using 

MATLAB to tackle ED problems effectively. The primary objective is to use GNDO to optimize power 

generation costs. 
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4.1 First Case: Three Thermal-Unit System 

Table 2 provides the fuel cost coefficients for three thermal-unit systems. The results acquired 

for the system employing the GNDO are shown in Table 3 and compared with GA [31] ,BES [16], and 

WOA [17]. Figure 3 shows the convergence curve of three thermal fuel costs using the GNDO 

algorithm for 1000 iterations. It gives the optimum value within 40 iterations. Table 3 shows the fuel 

costs for the three-unit system at 400MW using different algorithms, where the GNDO algorithm 

provides minimum fuel cost compared to GA, BES, and WOA. Also, compared to GA, BES, and WOA, 

power loss is reduced while utilizing the GNDO algorithm. In this case, the computation time for 

1000 iterations is 9.44 seconds. 

Table 2 Coefficients of fuel cost for three thermal-unit systems [32]. 

 a b c 𝑷𝒎𝒊𝒏 (MW) 𝑷𝒎𝒂𝒙 (MW) 

1 1243.5311 38.30553 0.03546 35 210 

2 1658.5696 36.32782 0.02111 130 325 

3 1356.6592 38.27041 0.01799 125 315 

 

Figure 3 Cost convergence characteristics of GNDO for three thermal-unit systems. 

Table 3 Comparison of three thermal-unit systems at a power demand of 400MW. 

Power Output (MW) GA [31] BES [16] WOA [17] GNDO 

P1 102.61 83.091 110.59 87.99 

P2 153.82 182.349 130 174.97 

P3 151.01 142.129 166.91 144.56 

Total generation 407.41 407.41 407.45 407.35 

Loss 7.41 7.571 7.45 7.35 

Total cost ($/h) 20840 20815.54 20897.63 20814.9075 



JEPT 2023; 5(3), doi:10.21926/jept.2303030 
 

Page 10/17 

4.2 Second Case: Six Thermal-Unit System 

Table 4 for the six thermal-unit systems shows the fuel cost coefficients. The results acquired for 

the six thermal-unit systems by the GNDO are shown in Table 5 and are compared with GA and WOA. 

Table 4 Coefficients of fuel cost for six thermal-unit systems [33]. 

Power Output (MW) 𝑷𝒎𝒊𝒏 (MW) 𝑷𝒎𝒂𝒙 (MW) a b c 

P1 100 500 240 7 0.007 

P2 50 200 200 10 0.0095 

P3 80 300 220 8.5 0.009 

P4 50 150 200 11 0.009 

P5 50 200 220 10.5 0.008 

P6 50 120 120 12 0.0075 

Table 5 Comparison of a six thermal-unit system at PD = 1263 MW. 

Power Output (MW) GA [33] WOA [17] GNDO 

P1 447.80 499.98 487.68 

P2 178.63 188.19 141.31 

P3 262.20 299.98 295.86 

P4 134.28 101.26 110.90 

P5 151.90 68.06 162.39 

P6 74.18 119.99 78.58 

Total generation (MW) 1276.03 1277.49 1276.74 

Loss (MW) 13.02 14.49 13.75 

Total cost ($/h) 15459.0 15603.95 15490.40 

Table 4 shows the fuel costs for six thermal-unit systems at 1263MW using different algorithms, 

where the GNDO algorithm provides the lowest fuel cost and less power loss compared to the WOA 

algorithm. And nearly identical fuel costs and power loss compared to GA [33], a well-established 

methodology. Figure 4 indicates the cost convergence curve of six thermal-unit systems using the 

GNDO algorithm for 1000 iterations. It provides optimum value within 60 iterations. In this instance, 

the process takes 9.56 seconds to complete 1000 iterations. 
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Figure 4 Cost convergence characteristics of GNDO for six thermal-unit system. 

4.3 Third Case: Ten Thermal-Unit System 

The results acquired for the ten generator systems for ten thermal-unit coefficients [32] by the 

GNDO are given in Table 6 and compared with other algorithms.  

Table 6 Comparison of ten thermal-unit systems at PD = 2000MW. 

Power Output (MW) FPA [17] WOA [17] GNDO 

P1 53.18 20.26 52.33 

P2 79.97 61.61 71.22 

P3 78.10 112.57 97.79 

P4 97.11 111.15 74.79 

P5 152.74 139.17 58.40 

P6 163.08 222.07 220.32 

P7 258.61 263.29 293.93 

P8 302.22 301.35 297.49 

P9 433.21 415.20 461.97 

P10 466.07 435.69 458.24 

Loss (MW) 84.3 82.17 85.49 

Total cost ($/h) 113370.01 115345.37 113921.95 

Figure 5 illustrates the cost convergence curve of ten thermal units using the GNDO algorithm 

for 1000 iterations. It offers optimum value within 110 iterations. Table 6 shows the fuel costs for 

ten thermal-unit systems at 2000 MW using different algorithms, where the GNDO algorithm 

provides less fuel cost than the WOA algorithms and almost similar fuel cost compared to a well-

established algorithm, FPA. In this case, 1000 iterations are completed in 9.48 seconds. 
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Figure 5 Cost convergence characteristics of GNDO for ten thermal-unit systems. 

4.4 Fourth Case: Three Thermal-Unit with Two Renewable-Unit System 

In this case, solar and wind generation data are considered renewable energy, as given in Table 

7, where Table 8 provides the fuel price coefficients. The GNDO's three thermal-unit and two 

renewable-unit system results are presented in Table 9 and distinguished with WOA. The wind and 

solar generation values in Table 7 are plotted in Figure 6. These wind and solar power are added to 

the load. In this case, total fuel cost is reduced as they are renewable energy. 

Table 7 The data of solar and wind generation (24-hour) [34]. 

Time (h) Solar (MW) Wind (MW) Time (h) Solar (MW) Wind (MW) 

1  0  1.7  13  31.94  14.35  

2 0  8.5  14  26.81  10.35  

3  0  9.27  15  10.08  8.26  

4  0  16.66  16  5.30  13.71  

5  0  7.22  17  9.57  3.44  

6  0.03  4.91  18  2.31  1.87  

7  6.27  14.66  19  0  0.75  

8  16.18  26.56  20  0  0.17  

9  24.05  20.58  21  0  0.15  

10  39.37  17.85  22  0  0.31  

11  7.41  12.80  23  0  1.07  

12  3.65  18.65  24  0  0.58  

Table 8 Fuel cost coefficients for three thermal-unit and two renewable-unit system [34]. 

Unit 𝑷𝒎𝒊𝒏 (MW) 𝑷𝒎𝒂𝒙 (MW) a b c 
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1 37 150 1530 21 0.024 

2 40 160 992 20.16 0.029 

3 50 190 600 20.4 0.021 

 

Figure 6 Wind and solar power generation for 24 hours. 

Figure 7 shows the changes in fuel cost concerning time, considering the power demand 

variations over 24 hours. Table 9 shows the fuel costs for three thermal-unit and two renewable-

unit systems using WOA and GNDO algorithms, where the GNDO algorithm provides the lowest fuel 

cost compared to the WOA algorithms. One thousand iterations are completed in this case in 14.98 

seconds. 

 

Figure 7 Hourly operation cost with GNDO for three thermal-unit and two renewable-

unit systems. 
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Table 9 Data of fuel cost of three thermal-unit and two renewable-unit systems for 24 

hours. 

Time (h) PD (MW) P1 (MW) P2 (MW) P3 (MW) WOA ($/h) [17] GNDO ($/h) 

1 140 45.39 43.03 50.71 6838.75 6838.65 

2 150 48.76 40.08 53.54 6997.13 6994.11 

3 155 53.88 42.18 50.60 7103.87 7104.28 

4 160 38.12 52.42 53.72 7133.74 7131.59 

5 165 40.39 62.05 56.45 7376.64 7359.40 

6 170 51.46 42.11 72.72 7530.84 7503.32 

7 175 48.13 40.00 67.02 7447.30 7433.21 

8 180 39.37 48.64 50.08 7305.53 7302.37 

9 210 49.56 61.37 55.65 7992.54 7983.71 

10 230 39.85 45.04 89.31 8339.31 8325.35 

11 240 77.75 92.74 51.47 9047.65 9046.33 

12 250 39.40 63.87 127.0 9360.27 9270.65 

13 240 38.16 55.83 101.5 8770.22 8699.37 

14 220 57.96 40.03 86.39 8316.87 8318.85 

15 200 82.19 41.60 59.35 8111.73 8083.25 

16 180 46.00 40.53 75.66 7595.14 7574.98 

17 170 44.93 61.77 51.38 7418.9 7410.38 

18 185 49.95 44.15 88.25 7923.13 7874.25 

19 200 77.01 50.53 73.49 8376.48 8279.83 

20 240 92.64 41.93 107.9 9344.58 9302.71 

21 225 40.91 90.46 95.87 9044.12 8916.91 

22 190 77.37 40.29 73.65 8110.03 8054.18 

23 160 42.75 65.94 51.36 7329.17 7319.09 

24 145 37.00 58.31 50.03 6970.52 6970.43 

Total 

Cost 

4580 

MW 

1260.8 

MW 

1266.9 

MW 

1695.2 

MW 

189780.1 

($/day) 

189100.1 

($/day) 

5. Conclusions 

This paper employed GNDO to solve the ED problem for four electric power system networks: 

three thermal units, six thermal units, ten thermal units, and three thermal units with two 

renewable resources under load and generator limit constraints. The placement of each individual 

is rearranged using the GNDO. The key feature of the GNDO, connected to the most recent 

metaheuristic algorithms, is that it does not require a contest for suitable initial parameter 

adjustment. The employed algorithm significantly outperformed WOA in all scenarios. Considering 

the availability of solar and wind power demonstrated that the proposed method could boost 

convergence and pursue the ideal global solution. 

In most cases, the simulation results have shown that the proposed algorithm outperforms other 

selected algorithms concerning determining the minimum generation cost and power losses. 

Besides, the employed strategy exhibited competitive performances for the remaining test cases. 
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However, it is worth noting that this article does not consider network constraints, such as 

transmission congestion. Including these constraints couldcan be considered regarded for future 

research and analysis. 
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Abbreviations 

ABC Artificial Bee Colony 

AOC Ant Colony Optimization 

BES Bald Eagle Search Optimization Algorithm 

BIT Bat-Inspired Algorithm 

CEED Combining Economic and Emission Dispatch 

CSA Chameleon Swarm Algorithm 

ED Economic Dispatch 

FA Firefly Algorithms  

FPA Flower Pollination Algorithm 

GA Genetic Algorithm 

GNDO Generalized Normal Distribution Optimization 

HGWO Hybrid Grey Wolf Optimizer Algorithms  

MFOA Moth Flame Optimization Algorithms  

PSO Particle Swarm Optimization 

RE Renewable Energy 

WMA Woodpecker Mating Algorithm 

WOA Whale Optimization Algorithm 
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