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Abstract 

Integrating large-scale wind energy in modern power systems necessitates high-efficiency 

mathematical models to address classical assumptions in power systems. In particular, two 

main assumptions for wind energy integration in power systems have not been adequately 

studied. First, nonlinear AC power flow equations have been linearized in most of the 

literature. Such simplifications can lead to inaccurate power flow calculations and result in 

technical issues. Second, wind power uncertainties are inevitable and have been mostly 

modeled using traditional uncertainty modeling techniques, which may not be suitable for 

large-scale wind power integration. In this study, we addressed both challenges: we 

developed a tight second-order conic relaxation model for the optimal power flow problem 

and implemented the novel effective budget of uncertainty approach for uncertainty 

modeling to determine the maximum wind power admissibility and address the uncertainty 
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in the model. To the best of our knowledge, this is the first study that proposes an effective, 

robust second-order conic programming model that simultaneously addresses the issues of 

power flow linearization and wind power uncertainty with the new paradigm on the budget 

of uncertainty approach. The numerical results revealed the advantages of the proposed 

model over traditional linearized power flow equations and traditional uncertainty modeling 

techniques. 

Keywords  

Renewable energy sources; wind uncertainty; effective budget of uncertainty; second-order 

conic relaxation; AC power flow equations 

 

1. Introduction 

Due to recent advancements in optimization theory, optimization algorithms have been 

increasingly used to improve the performance of power systems and realize automatic voltage 

regulation [1], fault diagnosis under uncertainty [2], optimal design of battery management 

controller [3], and robust control methods for wind energy system [4]. Modern power systems are 

shifting from fossil fuels to clean, reliable, and emission-free wind energy. For example, 19.8% of 

electricity in North America is generated from wind energy [5]. However, integrating wind energy 

into large power systems is challenging and can affect the reliability of power systems due to two 

main reasons. First, the power system operation is usually simplified, and the effect of various 

aspects, such as voltage, on the system is neglected. Such simplifications can result in inaccurate 

estimation of the limits of the system and lead to damage to the system [6, 7]. Second, wind energy 

is inherently uncertain and cannot be accurately predicted. Such prediction inaccuracies can result 

in various operational issues [8, 9]. 

The optimal power flow (OPF) problem has been extensively studied and helps minimize the 

distribution cost while satisfying the power flow equations and operational constraints such as 

voltage magnitude, line flow, and generator limits [10, 11]. In OPF, the power flow equations are 

inherently nonlinear. However, most studies have linearized power flow equations to reduce the 

computational complexity; however, the effects of voltages, angles, and magnitudes are ignored 

[12-14]. Such simplifications lead to inaccurate power flow calculations and may lead to problems 

such as overloading and power mismatch [15]. To overcome this problem, relaxation techniques 

have been proposed in the literature [7, 16]. In recent decades, two efficient convex relaxations for 

nonlinear AC power flow equations have been proposed: second-order cone relaxation (SOCR) [6] 

and semidefinite relaxation (SDR) [17]. Such convex relaxations provide more accurate solutions for 

the OPF problem and consider the effects of voltages at all nodes of power systems [18]. In meshed 

networks, SDR is stronger than SOCR; however, SDR is more computationally challenging [19]. SOCR 

relaxation is accurate and highly efficient for various classes of problems in radial networks [6]. 

Recent surveys on these relaxations can be found in the literature [7, 20, 21]. 

In recent years, various prediction methods have been proposed to increase the prediction 

accuracy [22-25]. However, prediction errors are inevitable and can lead to severe problems in 

highly sensitive applications [26]. To overcome wind power uncertainties, such uncertainties must 
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be considered in OPF so that the solution is robust under variations of wind power availability. 

Unlike deterministic optimization, wherein the predicated data of an optimization problem is 

assumed to be always perfect, robust optimization (RO) [27, 28] considers that such perfect 

information is not always available due to prediction errors [29]. In the context of wind power 

integration, an RO model assumes that wind power availability can take any value within a given 

uncertainty set and obtains the optimal solution under the possible worst-case scenario for wind 

availability. Various RO methods have been proposed in the literature. In particular, the adjustable 

budget of uncertainty method [28] adjusts the solution degree of conservatism by changing the total 

amount of uncertainty in the model, and the total amount of uncertainty is modeled using a 

parameter called the budget of uncertainty. This method has been extensively studied [9, 12, 23-

31]. Alternatively, two-stage RO models [5, 26, 32-37] have been used in power systems, where the 

first stage decisions are made before realizing the actual wind power, and the second stage 

decisions are “wait-and-see” decisions that can be adjusted after the actual wind power output is 

known. Such two-stage RO models are computationally complex and difficult to implement in large 

power systems. 

Recently, a new robust optimization paradigm called effective budget of uncertainty [38] was 

proposed that more effectively adjusts the solution degree of conservatism. The robust solution is 

not sensitive to all changes in the amount of uncertainty and, after a threshold, the solution is not 

affected by the level of uncertainty. This phenomenon was not considered in the traditional budget 

of uncertainty method; thus, such advancements in RO models are shifting the trend toward the 

implementation of the effective budget of uncertainty in power systems [8, 39]. 

In this study, we developed a new model for power distribution by considering the AC power 

flow equations and recent advances in robust optimization. We first identified an interval of 

available power under which the system can operate safely without any system limit violation. Next, 

given the identified interval, we implemented the robust optimization approach to handle the 

uncertainty in the system given the budget provided for the model. In this study, we extended the 

results presented in the literature [38, 39] to nonlinear AC power flow equations and developed a 

SOCR model by using the effective budget of uncertainty approach. To the best of our knowledge, 

this is the first paper that implements the recent advances of robust optimization in AC power flow 

equations [40]. Furthermore, we performed extensive numerical calculations to address the 

problems of estimating power flows as well as wind power uncertainties. The contributions of this 

study are presented as follows: 

1. We extended the recent effective budget of uncertainty approach [38] and applied it to a 

nonlinear model with AC power flow equations. We proposed a new modeling scheme called 

effective robust second-order conic programming (ERSOCP) for power systems with 

uncertainty. We theoretically and numerically demonstrated that the proposed model is 

computationally tractable and can be solved efficiently using the MOSEK solver. The proposed 

model effectively reduces the solution conservatism and considers the effects of voltage in 

wind power integration. 

2. The proposed ERSOCP model provides a high accuracy by considering both wind power 

uncertainty and nonlinearity in power flow equations. The numerical results demonstrated 

the advantages of the proposed model in comparison with traditional methods. 

The rest of the paper is organized as follows. In Section 2, the OPF problem and a reformulation 

using a second-order cone (SOC) are presented. In Section 3, the steps and backgrounds to 
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implement the effective budget of uncertainty approach [38] in the proposed model are presented. 

In Section 4, the ERSOCP model is presented. Numerical results are provided in Section 5. Finally, 

Section 6 concludes the paper. 

2. Optimal Power Flow Problem 

The OPF problem aids in determining the best operating levels of power generators to minimize 

the operating cost and satisfy the power demand, transmission network constraints, ramping rates, 

and reserve requirements. The notations used in the proposed OPF model are listed as follows. 

Notations 

𝐶1/𝐶2 Per-unit cost of power generation/wind curtailment 

𝐹̅𝑙/𝐹𝑙 Upper/lower power flow limit at line 𝑙 

𝑝𝑖
𝐷/𝑞𝑖

𝐷 Real/reactive power demand at bus 𝑖 

𝑃𝑡
𝑢/𝑃𝑡

𝑑 Upward/downward spinning reserve requirement of active power at time 𝑡 

𝑇/𝐿/𝑁 Set of time periods/transmission lines/buses 

𝑈̅𝑙
𝑃/𝑈𝑙

𝑃 Upper/lower limit of real power generation at bus i 

𝑈̅𝑙
𝑄/𝑈𝑙

𝑄 Upper/lower limit of real power generation at bus i 

𝑉̅𝑖/𝑉𝑖 Upper/lower limit of voltage at bus 𝑖 

𝑊̂𝑖,𝑡 Predicted available wind power at node i at time t 

𝒚𝐿/𝒚𝑆 Per-unit series/shunt admittance matrix  

Δ̅
𝑙
/Δ

𝑙
 Upper/lower limit of voltage angle at bus 𝑖 

𝜃𝐿𝑖𝑗/𝜃𝑆𝑖𝑗   The angle of the 𝑖𝑗𝑡ℎ element of the series/shunt admittance matrix 

𝑄𝑡
𝑢/𝑄𝑡

𝑑 Upward/downward spinning reserve requirement of reactive power at time 𝑡 

Decision variables 

𝑝𝑖𝑗,𝑡/𝑞𝑖𝑗,𝑡 Real/reactive power flow between bus 𝑖 and bus 𝑗 at time t 

𝑝𝑖,𝑡
𝐺 /𝑞𝑖,𝑡

𝐺  Real/reactive power produced by the generator located at bus i at time t 

𝑝𝑖,𝑡
𝑊 Real power produced by the wind turbine at bus i at time t 

𝑟𝑖,𝑡
𝑝+/𝑟𝑖,𝑡

𝑝− 
Upward/downward spinning reserve of the active power of generator at bus 𝑖 at time 

𝑡 

𝑟𝑖,𝑡
𝑞+/𝑟𝑖,𝑡

𝑞− Upward/downward spinning reserve of reactive power of generator at bus 𝑖 at time 𝑡 

𝑉𝑖,𝑡/𝛿𝑖,𝑡 Voltage magnitude/angle at bus 𝑖 at time t 

The OPF can be expressed as follows: 

min
 

∑ ∑ 𝐶1𝑝𝑔,𝑡
𝐺

𝑔∈𝐺𝑡∈𝑇

+ ∑ ∑ 𝐶2(𝑊̂𝑘,𝑡 − 𝑝𝑘,𝑡
𝑊 )

𝑘∈𝐾𝑡∈𝑇

(1) 

𝑝𝑖𝑗,𝑡 = 𝑉𝑖,𝑡
2 𝑦𝐿𝑖𝑗cos(𝜃𝐿𝑖𝑗) − 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑦𝐿𝑖𝑗 cos(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 − 𝜃𝐿𝑖𝑗) +

1

2
𝑉𝑖,𝑡

2 𝑦𝑆𝑖𝑗 cos(𝜃𝑆𝑖𝑗) ,

∀𝑖, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (2)
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𝑞𝑖𝑗,𝑡 = −𝑉𝑖,𝑡
2 𝑦𝐿𝑖𝑗sin(𝜃𝐿𝑖𝑗) − 𝑉𝑖,𝑡𝑉𝑗,𝑡𝑦𝐿𝑖𝑗 sin(𝛿𝑖,𝑡 − 𝛿𝑗,𝑡 − 𝜃𝐿𝑖𝑗) −

1

2
𝑉𝑖,𝑡

2 𝑦𝑆𝑖𝑗 sin(𝜃𝑆𝑖𝑗) ,

∀𝑖, 𝑗 ∈ 𝑁, 𝑡 ∈ 𝑇 (3)
 

𝑝𝑖,𝑡
𝐺 + 𝑝𝑖,𝑡

𝑊 − 𝑝𝑖,𝑡
𝐷 = ∑ 𝑝𝑖𝑗,𝑡

𝑗∈𝑁

, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (4) 

𝑞𝑖,𝑡
𝐺 − 𝑞𝑖,𝑡

𝐷 = ∑ 𝑞𝑖𝑗,𝑡

𝑗∈𝑁

, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (5) 

𝐹𝑙 ≤ 𝑝
𝑖𝑗,𝑡

≤ 𝐹̅𝑙, ∀(𝑖, 𝑗): 𝑙 ∈ 𝐿, 𝑡 ∈ 𝑇 (6) 

𝑉𝑖 ≤ 𝑉𝑖,𝑡 ≤ 𝑉̅𝑖, Δ𝑖 ≤ 𝛿𝑖,𝑡 ≤ Δ̅𝑖, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (7) 

𝑈𝑙
𝑃 ≤ 𝑝𝑖,𝑡

𝐺 ≤ 𝑈̅𝑙
𝑃, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (8) 

𝑈𝑙
𝑄 ≤ 𝑞𝑖,𝑡

𝐺 ≤ 𝑈̅𝑙
𝑄, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (9) 

∑ 𝑟𝑖,𝑡
𝑝+

𝑖∈𝑁

≥ 𝑃𝑡
𝑢, ∀𝑡 ∈ 𝑇 (10) 

∑ 𝑟𝑖,𝑡
𝑝−

𝑖∈𝑁

≥ 𝑃𝑡
𝑑 , ∀𝑡 ∈ 𝑇 (11) 

∑ 𝑟𝑖,𝑡
𝑞+

𝑖∈𝑁

≥ 𝑄𝑡
𝑢, ∀𝑡 ∈ 𝑇 (12) 

∑ 𝑟𝑖,𝑡
𝑞−

𝑖∈𝑁

≥ 𝑄𝑡
𝑑, ∀𝑡 ∈ 𝑇 (13) 

0 ≤ 𝑟𝑖,𝑡
𝑝+ ≤ 𝑈̅𝑙

𝑃 − 𝑝𝑖,𝑡
𝐺 , ∀𝑡 ∈ 𝑇 (14) 

0 ≤ 𝑟𝑖,𝑡
𝑝− ≤ 𝑝𝑖,𝑡

𝐺 − 𝑈𝑙
𝑃, ∀𝑡 ∈ 𝑇 (15) 

0 ≤ 𝑟𝑖,𝑡
𝑞+ ≤ 𝑈̅𝑙

𝑄 − 𝑞𝑖,𝑡
𝐺 , ∀𝑡 ∈ 𝑇 (16) 

0 ≤ 𝑟𝑖,𝑡
𝑞− ≤ 𝑞𝑖,𝑡

𝐺 − 𝑈𝑙
𝑄 , ∀𝑡 ∈ 𝑇 (17) 

0 ≤ 𝑝𝑖,𝑡
𝑊 ≤ 𝑊̂𝑖,𝑡, ∀𝑖 ∈ 𝑁, 𝑡 ∈ 𝑇 (18) 

where objective function (1) minimizes the generation cost and wind curtailment cost to aid in the 

integration of wind power in the power system. Constraints (2) and (3) are the real and reactive 

power flow equations, respectively [41]. Constraints (4) and (5) are the real and reactive power 

balance, respectively, at each node where wind power plays a role in the active power balance 

constraints [42]. Constraint (6) limits the active power flow in transmission lines. Constraint (7) 

enforces the limits of voltage angle and magnitude. Constraints (8) and (9) enforce the upper limits 

for real and reactive power generations, respectively, at all generators. Constraints (10) and (11) 
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ensure that the upward and downward spinning reserves, respectively, of active power are greater 

than a certain amount. The spinning reserve is the available capacity of generators to increase or 

decrease the power output in 10 minutes. Similarly, constraints (12) and (13) correspond to the 

spinning reserve constraints of reactive power. Constraints (14)–(17) enforce the limits of spinning 

reserves. Finally, in constraint (18), the wind power output limit is considered. 

2.1 Reformulation of Power Flow Equations 

Constraints (2) and (3) correspond to the real and reactive power equations, respectively [41]. 

Let the admittance matrix 𝒚 be decomposed as 𝑦𝑖𝑗 = 𝐺𝑖𝑗 + i𝐵𝑖𝑗, where 𝐺𝑖𝑗  and 𝐵𝑖𝑗 are, respectively 

the real and imaginary parts of the admittance matrix. Given the complex voltage, 𝑉𝑖 =

|𝑉𝑖|(cos 𝜃𝑖 + isin 𝜃𝑖)  can be expressed as 𝑉𝑖 = 𝑒𝑖 + i𝑓𝑖  in the rectangular form. To that end, the 

following substitutions can be made: 

𝑉𝑖
2 = 𝑒𝑖

2 + 𝑓𝑖
2 

|𝑉𝑖||𝑉𝑗| cos(𝛿𝑖 − 𝛿𝑗) = 𝑒𝑖𝑒𝑗 + 𝑓𝑖𝑓𝑗  

|𝑉𝑖||𝑉𝑗| sin(𝛿𝑖 − 𝛿𝑗) = 𝑒𝑖𝑓𝑗 − 𝑒𝑗𝑓𝑖  

Thus, power flow equations (2) and (3) can be represented in the rectangular form [43]: 

𝑝𝑖𝑗 = 𝐺𝑖𝑖(𝑒𝑖
2 + 𝑓𝑖

2) + 𝐺𝑖𝑗(𝑒𝑖𝑒𝑗 + 𝑓𝑖𝑓𝑗) − 𝐵𝑖𝑗(𝑒𝑖𝑓𝑗 − 𝑒𝑗𝑓𝑖) (19) 

𝑞𝑖𝑗 = −𝐵𝑖𝑖(𝑒𝑖
2 + 𝑓𝑖

2) − 𝐵𝑖𝑗(𝑒𝑖𝑒𝑗 + 𝑓𝑖𝑓𝑗) − 𝐺𝑖𝑗(𝑒𝑖𝑓𝑗 − 𝑒𝑗𝑓𝑖) (20) 

The rectangular equations (19) and (20) are nonconvex quadratic functions. However, a SOC 

relaxation can be obtained by defining auxiliary variables 𝑐𝑖𝑖 for each node and by defining 𝑐𝑖𝑗 and 

𝑠𝑖𝑗 for transmission lines so that 𝑐𝑖𝑖 = 𝑒𝑖
2 + 𝑓𝑖

2, 𝑐𝑖𝑗 = 𝑒𝑖𝑒𝑗 + 𝑓𝑖𝑓𝑗 , and 𝑠𝑖𝑗 = 𝑒𝑖𝑓𝑗 − 𝑒𝑗𝑓𝑖. Furthermore, 

𝑐𝑖𝑗
2 + 𝑠𝑖𝑗

2 = 𝑐𝑖𝑖𝑐𝑗𝑗. Because 𝑐𝑖𝑗  and 𝑠𝑖𝑗   correspond to each line and capture some components of 

the flow, it is interpreted that 𝑐𝑖𝑗 = −𝑐𝑗𝑖  and 𝑠𝑖𝑗 = −𝑠𝑗𝑖. Therefore, the power flow equations can 

be reformulated as follows (for all 𝑖 and 𝑗): 

𝑝𝑖𝑗 = 𝐺𝑖𝑖𝑐𝑖𝑖 + 𝐺𝑖𝑗𝑐𝑖𝑗 − 𝐵𝑖𝑗𝑠𝑖𝑗 (21) 

𝑞𝑖𝑗 = −𝐵𝑖𝑖𝑐𝑖𝑖 − 𝐵𝑖𝑗𝑐𝑖𝑗 − 𝐺𝑖𝑗𝑠𝑖𝑗 (22) 

𝑐𝑖𝑗
2 + 𝑠𝑖𝑗

2 = 𝑐𝑖𝑖𝑐𝑗𝑗 (23) 

𝑐𝑖𝑗 = −𝑐𝑗𝑖, 𝑠𝑖𝑗 = −𝑠𝑗𝑖 (24) 

2.2 Second-Order Conic Relaxation of Power Flow Equations 

Here we present a relaxation for the power flow equations that can be represented using SOCs. 

Definition 1: 𝑄𝑛 is an n-dimensional SOC if  
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𝑄 = {𝑥 ∈ ℝ𝑛: 𝑥1 ≥ (𝑥2
2 + 𝑥3

2 + ⋯ + 𝑥𝑛
2)

1
2}. 

SOCs are convex and can be efficiently solved using the MOSEK solver. Another variant of SOC is 

the rotated SOC, which can be defined as follows: 

Definition 2: 𝑄𝑟
𝑛 is an n-dimensional rotated SOC if  

𝑄 = {𝑥 ∈ ℝ𝑛: 2𝑥1𝑥2 ≥ 𝑥3
2 + ⋯ + 𝑥𝑛

2, 𝑥1, 𝑥2 ≥ 0}. 

𝑄𝑛 and 𝑄𝑟
𝑛 are equivalent [44]. 

In the rectangular power flow equations (21)–(24), constraint (23) is a quadratic constraint, and 

the rest of the constraints are linear. By converting the equality constraint (23) into an inequality 

constraint, we can relax (23) and rewrite it as follows 

𝑐𝑖𝑗
2 + 𝑠𝑖𝑗

2 ≤ 𝑐𝑖𝑖𝑐𝑗𝑗 , ∀𝑖, 𝑗 ∈ 𝑁 (25) 

The relaxed constraint (25) can be represented using a rotated SOC. If the relaxed constraint (25) 

becomes binding at optimality, then the proposed SOC relaxation is exact and constraint (25) is 

equivalent to the original power flow constraint (23) [43]. We further investigated the exactness of 

the proposed SOC relaxation through numerical calculations. 

3. Effective Budget of Uncertainty in Power Systems 

We modeled the wind power uncertainty by using the new RO paradigm of the effective budget 

of uncertainty. 

In competitive electricity markets, wind power availability is predicted and priced in a day-ahead 

manner, and predictions are employed in power distribution planning [45-47]. However, in real-

time operation, the actual wind power might differ from the predicted wind power; this may lead 

to the violation of the operational requirements and limits of the power system if such deficiencies 

are not considered in advance [9]. RO considers such differences in wind power availability by using 

an uncertainty set, which includes all possible scenarios of actual wind power. Let 𝑊𝑘,𝑡
𝑎𝑐𝑡  be the 

actual wind power of wind turbine 𝑘 at time 𝑡; 𝑊̅𝑘,𝑡 and 𝑊𝑘,𝑡 be the upper and lower limit of the 

actual wind power, respectively; and 𝑊̂𝑘,𝑡  be the predicted wind power. Let parameter 𝑊̃𝑘,𝑡 

represent the uncertain wind power that can take any value in [𝑊𝑘,𝑡, 𝑊̅𝑘,𝑡]. In the traditional budget 

of uncertainty method, the uncertainty set is represented as follows (constraints (26a), (26b), and 

(26d) are written for all time periods 𝑡 ∈ 𝑇 and all wind turbines 𝑘 ∈ 𝐾): 

𝑊̃𝑘,𝑡 = 𝑊̂𝑘,𝑡 + 𝑧𝑘,𝑡
+ (𝑊̅𝑘,𝑡 − 𝑊̂𝑘,𝑡) + 𝑧𝑘,𝑡

− (𝑊𝑘,𝑡 − 𝑊̂𝑘,𝑡) (26a) 

0 ≤ 𝑧𝑘,𝑡
+ , 𝑧𝑘,𝑡

− ≤ 1 (26b) 

∑ (𝑧𝑘,𝑡
+

𝑡∈𝑇
+ 𝑧𝑘,𝑡

− ) ≤ Γ𝑡 (26c) 

𝑝𝑘,𝑡
𝑊 ≤ 𝑊̃𝑘,𝑡 (26d) 
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where constraint (26a) represents all possibilities for wind power, constraint (26b) defines the limits 

for the deviation variables, and constraint (26c) limits all possible deviations by a parameter called 

the budget of uncertainty [28, 39]. Finally, constraint (26d) considers the generated wind power 

that is limited by the available wind power output (i.e., 𝑊̃𝑘,𝑡) that is uncertain. Constraints (26a)–

(26c) allow users to select the level of uncertainty at each time period (Γ𝑡) and then yields a set of 

acceptable values for the budget of uncertainty parameter. Γ𝑡  also controls the degree of 

conservatism of the solution. For instance, Γ𝑡 =  0 indicates that no uncertainty is considered in the 

system; thus, in constraints (26a)–(26c), we set 𝑊̃𝑘,𝑡 = 𝑊̂𝑘,𝑡, meaning that the uncertain parameters 

are equivalent to the predicted values because it is assumed that there is no uncertainty. Thus, 

constraint (26d) reduces to constraint (18). However, Γ𝑡 = |𝐾|, where |𝐾| is the number of wind 

turbines, means that the outputs of all wind turbines are uncertain and their inputs may deviate 

from the predicted values and can even take either their lower or upper bound values (i. e. , 𝑊̅𝑘,𝑡 

and 𝑊𝑘,𝑡). Further details can be found in the literature [16]. 

The main disadvantage of uncertainty set (26a)–(26c) is that, depending on the system worst-

case scenario, it allows 𝑊̃𝑘,𝑡 to take the upper bound or lower bound of [𝑊𝑘,𝑡, 𝑊̅𝑘,𝑡], restricted by 

parameter Γ𝑡. However, as demonstrated in previous studies [38, 39], the uncertain wind power 

output of wind turbines depends on two factors: (i) the budget of uncertainty, which directly affects 

the uncertain wind power output ((26a)–(26c)); and (ii) the operational limits and capabilities of the 

system to handle wind power. For example, assume that the budget of uncertainty is Γ𝑡 = |𝐾|, 

meaning that the output of all wind turbines can have maximum deviations from the predicted 

values and take their upper bounds, that is, 𝑊̃𝑘,𝑡 = 𝑊̅𝑘,𝑡 . Thus, appropriate measures can be 

planned for this scenario, known as the worst-case scenario, to mitigate the risk of having issues in 

the system in case of unforeseen events [16]. However, planning under this scenario may conflict 

with the operational limits of the system. In particular, if the limits of the system are not sufficient 

to handle 𝑊̅𝑘,𝑡 amount of power, then it is obvious that there are other factors limiting the amount 

of wind power output rather than merely the uncertainty budget. This phenomenon [38-40] can 

cause various issues, such as overprotection against uncertainty, and would result in higher 

operational costs. 

Therefore, in RO models, first, the maximum admissibility of wind power, which is the threshold 

beyond which the uncertainty has no effect on the system, must be determined. If the wind 

uncertainty is more than the threshold, the system reaches its limits, and the solution is determined 

by the system limits, not the budget of uncertainty [8, 39]. Therefore, the uncertainty set must be 

modified based on the wind power admissibility before incorporating the budget of uncertainty in 

the model. By doing so, the ineffective part of the uncertainty set that does not affect the solution 

can be removed, and the effective budget of uncertainty can be obtained [25, 38] to include in the 

model. 

Let 𝑠̅𝑘,𝑡 be the maximum wind power admissibility in the system after determining the limits of 

the system. In other words, 𝑠̅𝑘,𝑡 indicates the maximum amount of power that can be handled by 

the system. Assuming that 𝑠̅𝑘,𝑡 has been obtained, the uncertainty set (26a)–(26c) can be modified 

as follows (constraints (27a), (27b), and (27d) are written for all time periods 𝑡 ∈ 𝑇 and all wind 

turbines 𝑘 ∈ 𝐾): 

𝑊̃𝑘,𝑡
𝑛𝑒𝑤 = 𝑊̂𝑘,𝑡 + 𝑧𝑘,𝑡

𝑛𝑒𝑤+(𝑠̅𝑘,𝑡 − 𝑊̂𝑘,𝑡) + 𝑧𝑘,𝑡
𝑛𝑒𝑤−(𝑊𝑘,𝑡 − 𝑊̂𝑘,𝑡) (27a) 
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0 ≤ 𝑧𝑘,𝑡
𝑛𝑒𝑤+, 𝑧𝑘,𝑡

𝑛𝑒𝑤− ≤ 1 (27b) 

∑ (𝑧𝑘,𝑡
𝑛𝑒𝑤+

𝑡∈𝑇
+ 𝑧𝑘,𝑡

𝑛𝑒𝑤−) ≤ Γ𝑡 (27c) 

𝑝𝑘,𝑡
𝑊 ≤ 𝑊̃𝑘,𝑡

𝑛𝑒𝑤 (27d) 

The scaled deviation variables 𝑧𝑘,𝑡
𝑛𝑒𝑤+  are scaled differently so that one unit of 𝑧𝑘,𝑡

𝑛𝑒𝑤+  is 

equivalent to (𝑠̅𝑘,𝑡 − 𝑊̂𝑘,𝑡) amount of deviation from the predicted wind power output 𝑊̂𝑘,𝑡 . In 

contrast, in the traditional uncertainty set (26a)–(26c), one unit of scaled deviation 𝑧𝑘,𝑡
+  corresponds 

to (𝑊̅𝑘,𝑡 − 𝑊̂𝑘,𝑡) amount of deviation. As a result, in constraint (26), the budget of uncertainty Γ𝑡 

controls the total amount of deviations over all wind turbines, whereas in constraint (27), the 

budget of uncertainty Γ𝑡 controls only the effective deviations and is denoted as an effective budget 

of uncertainty [38]. 

𝑠̅𝑘,𝑡  is not known in the system. Thus, the maximum wind power admissibility 𝑠̅𝑘,𝑡  must be 

determined by analyzing the system requirements. 𝑠̅𝑘,𝑡  determines the maximum value of wind 

power that can be handled by the system without resulting in any operational issues. Thus, we 

considered the worst-case scenarios of constraints (10) and (11) because the spinning reserve of 

active power is a function of wind power output. Thus, by ensuring that the worst-case scenarios of 

these constraints are met, the maximum wind power admissibility can be determined. For each 

wind turbine 𝑘 and time period 𝑡, problem (28) can be solved to determine 𝑠̅𝑘,𝑡 as follows [39]: 

min
ℂ1

(𝑊̅𝑘,𝑡 − 𝑠̅𝑘,𝑡) (28a) 

𝑠. 𝑡.         min
𝑠̅𝑘,𝑡

∑(𝑝𝑖,𝑡
𝐺 + 𝑟𝑖,𝑡

𝑝+ + 𝑠̅𝑘,𝑡 − 𝑝𝑖,𝑡
𝐷 )

𝑖∈𝑁

≥ 𝑃𝑡
𝑢 (28b) 

min
𝑠̅𝑘,𝑡

∑(−𝑝𝑖,𝑡
𝐺 + 𝑟𝑖,𝑡

𝑝− − 𝑠̅𝑘,𝑡 + 𝑝𝑖,𝑡
𝐷 )

𝑖∈𝑁

≥ 𝑃𝑡
𝑑 (28c) 

where set ℂ1 = {𝑝𝑖,𝑡
𝐺 , 𝑟𝑖,𝑡

𝑝+, 𝑟𝑖,𝑡
𝑝−, 𝑠̅𝑘,𝑡} is the set of decision variables that are optimized. Constraints 

(28b) and (28c) aim to ensure that the upward and downward active power reserve constraints are 

met, respectively, under the worst-case scenario of 𝑠̅𝑘,𝑡. In (28a), the objective function aims to 

increase the wind power admissibility of unit 𝑘 at time 𝑡 so that more wind power can be utilized as 

long as the worst-case scenarios of reserve constraints are met. 

Problem (28) is a two-stage problem and can be solved using the strong duality theorem [28]. 

Thus, by introducing dual variables 𝛼𝑘,𝑡  and 𝛽𝑘,𝑡 , problem (28) can be transformed into an 

equivalent problem as follows: 

min
ℂ2

(𝑊̅𝑘,𝑡 − 𝑠̅𝑘,𝑡) (29a) 

𝑠. 𝑡.       ∑(𝑝𝑖,𝑡
𝐺 + 𝑟𝑖,𝑡

𝑝+ − 𝑝𝑖,𝑡
𝐷 − 𝛼𝑘,𝑡)

𝑖∈𝑁

≥ 𝑃𝑡
𝑢 (29b) 

𝛼𝑘,𝑡 ≥ −𝑠̅𝑘,𝑡 (29c) 
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∑(𝑝𝑖,𝑡
𝐺 − 𝑟𝑖,𝑡

𝑝− − 𝑝𝑖,𝑡
𝐷 + 𝛽𝑘,𝑡)

𝑖∈𝑁

≤ 𝑃𝑡
𝑑 (29d) 

𝛽𝑘,𝑡 ≥ 𝑠̅𝑘,𝑡 (29e) 

where set ℂ2 = {𝑝𝑖,𝑡
𝐺 , 𝑟𝑖,𝑡

𝑝+, 𝑟𝑖,𝑡
𝑝−, 𝑠̅𝑘,𝑡, 𝛼𝑘,𝑡, 𝛽𝑘,𝑡} is the set of decision variables. 

Once 𝑠̅𝑘,𝑡  is obtained for all wind turbines, the effective uncertainty set (27a)–(27c) can be used. 

Next, a robust solution is determined under the worst-case wind power scenario to ensure a stable 

system under all scenarios. However, the robust solution may be overconservative because it 

protects against the absolute worst-case scenario, which may not happen. 

Most RO models rely only on the budget of uncertainty to adjust the solution’s level of 

conservatism and do not consider the maximum admissible wind power. However, in this study, we 

demonstrated that the budget of uncertainty and the wind power admissibility level should be 

simultaneously considered in the optimization problem to accurately control the solution’s degree 

of conservatism. In the following subsections, we describe how the proposed RO model determines 

the maximum admissibility of wind power and modifies the uncertainty set based on wind power 

admissibility before incorporating the budget of uncertainty in the model. 

4. Effective Robust Second-Order Conic Programming Model 

Here we present the ERSOCP model for the OPF problem with wind power integration. The 

proposed model considers the effect of voltage on the system by considering a relaxation for AC 

power flow equations and effectively tackles wind power uncertainty by implementing the effective 

budget of uncertainty approach. The complete ERSOCP model is presented as follows: 

ERSOCP Model 

Objective function: Eq. (1) 

(30) 

s.t.  

SOCR of power flow equations: Eqs. (21), (22), (24), (25)  

Operational constraints:  Eqs. (4)–(17) 

Effective budget of uncertainty:  Eqs. (27a) –(27d) 

To obtain the ERSCOP model (30), problem (29) must be solved to obtain the maximum wind 

power admissibility 𝑠̅𝑘,𝑡. 

5. Numerical Results 

To demonstrate the merits of the proposed ERSCOP model, we performed numerical analysis on 

three test systems, namely IEEE 14, IEEE 118, and reliability test system (RTS) 96, which were 

modified by adding a number of wind farms to the systems. In IEEE 14, we added one wind farm 

(capacity: 300 MW) to bus #9. In IEEE 118, we added wind farms to bus #1 (capacity: 500 MW), bus 

#9 (capacity: 500 MW), and bus #26 (capacity: 800 MW). In RTS 96, we added five wind farms to the 

system and reconstructed the system, as explained in a previous study [39]. In the IEEE 14 and IEEE 

118 test systems, the wind power forecast errors were derived from the real wind sampling data 

from hourly wind power measurements [48] and as described in the literature [49]. However, in the 
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RTS 96 test system, we obtained the data from another study [39] to make a comparison. All 

parameters for the lower and upper bounds of the available wind power were obtained from the 

historical data of recent years. 

We considered four models: 

i. Linear model [39]: The linear model [39] is considered where power flow equation (2) is 

linearized and reactive power and voltage are neglected. However, this model considers the 

effective budget of uncertainty [38]. 

ii. SOCP model [49]: The SOCP OPF model employs the traditional budget of uncertainty 

approach. 

iii. ERSOCP model: The proposed ERSOCP model combines SOCP relaxation and effective budget 

of uncertainty.  

iv. LINDOGLOBAL: The solution of ACOPF from the LINDOGLOBAL solver is obtained as the 

benchmark. The LINDOGLOBAL solver employs branch-and-cut methods to obtain the global 

optimal solution of ACOPF for relatively simple problems. 

In this study, all the models were implemented in GAMS, and the global optimal solution was 

obtained using MOSEK on a computer with a 2.4-GHz CPU and 8-GB RAM. 

In Table 1, the objective function values (total operating cost) for various budgets of uncertainty 

are presented for all the models. The quality of the SOCP and ERSOCP relaxations impact the solve 

time. The violation of equality constraint (23) provides a measure to the relaxation quality for the 

AC power flow equations, and is represented in Table 1. 

Table 1 Comparison of the objective function value and solution accuracy. 

  
Linear 

Model [39] 
SOCP Model [49] 

Proposed ERSOCP 

Model 
LINDOGLOBAL 

System Budget 
Objective 

Value ($) 

Objective 

Value ($) 

Eq (23) 

violation 

Objective 

Value ($) 

Eq (23) 

violation 

Objective 

Value ($) 

IEEE 14 

Γ
𝑡

=  0.5 
8,339.12 8,348.89 0.0120 8,351.54 0.0037 8,354.41 

Γ
𝑡

=  1.0 
8,291.34 8,402.01 0.0383 8,351.54 0.0061 8,405.19 

IEEE 

118 

Γ
𝑡

=  0.0 
129,190.50 129,339.60 0.0447 129541.54 0.0193 129,660.54 

Γ
𝑡

=  1.0 
130,056.12 129,615.73 0.0711 129,794.12 0.0507 130,189.91 

Γ
𝑡

=  2.0 
129,562.02 129,894.83 0.0632 129,983.45 0.0596 130.221.34 

Γ
𝑡

=  3.0 
129,941.88 131,713.02 0.0398 131,972.31 0.0164 131,962.11 

RTS 96 
Γ

𝑡

=  0.0 
36,717.23 36,521.23 0.0562 36,702.23 0.0134 36,756.23 
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Γ
𝑡

=  1.5 
37,189.67 37,061.67 0.0491 37,291.88 0.0256 37,386.90 

Γ
𝑡

=  3.5 
38,622.91 38.561.12 0.0560 39,029.32 0.0322 39,165.33 

Γ
𝑡

=  5.0 
40,192.54 39,894.19 0.0598 40,239.34 0.0301 40,359.12 

Eq (23) violation.: ∑ |𝑐𝑖𝑗
2 + 𝑠𝑖𝑗

2 − 𝑐𝑖𝑖𝑐𝑗𝑗|𝑖,𝑗   

The last column in Table 1 provides the global solution LINDOGLOBAL as a reference to evaluate 

the solution accuracy of each model. As can be observed, in most cases, the proposed ERSOCP 

model yielded a more accurate solution that was closer to the solution of LINDOGLOBAL compared 

to other alternatives. In addition, the proposed ERSOCP model outperformed the SOCP model with 

the traditional budget of uncertainty approach. In particular, the quality of the SCOP relaxation 

depends on the violations of equation (23). If the optimal solution satisfies the relaxed constraint 

(25) at equality, it means constraint (23) is satisfied with no violation, and thus the SOCP relaxation 

is exact. The proposed ERSOCP model corresponded to smaller violations in constraint (23), as 

clearly observed from the higher degree of accuracy achieved by the proposed model. Furthermore, 

as the budget of uncertainty increased, the objective function value increased as more budget 

corresponded to more uncertainty in the system, which in turn increased the operational cost. As 

this budget increased, the system produced a more robust solution because more budget was 

allowed for immunization against uncertainty. These observations are consistent with the literature 

[28, 38, 39]. 

The computation times of all four models are presented in Table 2; for each row, we solved 

problems three times and reported the average times. The linear model [39] exhibited the lowest 

computation time because it linearizes all nonlinear equations and provides a simplified version of 

the OPF problem. The LINDOGLOBAL approach required the maximum computational time. The 

proposed ERSOCP model exhibited a slightly higher computational time compared to the SOCP 

model [31] because, in the proposed model, a linear problem must be solved first (29), and by 

obtaining the values of maximum wind power admissibility, the ERSCOP model can be established. 

However, the additional time required by the proposed model over the SOCP model is not significant. 

For instance, in the IEEE 118 test system, for Γ𝑡 =  3, the computational time of the proposed model 

was only 9% higher than that of the SOCP model [31].  

Table 2 Comparison of the average computation CPU time (in seconds). 

System Budget 
Linear Model 

[39] 

SOCP Model 

[49] 

Proposed 

ERSOCP Model 
LINDOGLOBAL 

IEEE 14 
Γ

𝑡
=  0.5 0.078 0.113 0.199 2.42 

Γ
𝑡

=  1.0 0.081 0.122 0.212 2.48 

IEEE 118 
Γ

𝑡
=  0.0 0.091 1.721 1.931 29.78 

Γ
𝑡

=  1.0 0.090 1.680 1.768 30.21 
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Γ
𝑡

=  2.0 0.089 1.634 1.762 30.72 

Γ
𝑡

=  3.0 0.091 1.611 1.771 30.89 

RTS 96 

Γ
𝑡

=  0.0 0.104 1.801 1.912 42.13 

Γ
𝑡

=  1.5 0.997 1.825 1.891 45.72 

Γ
𝑡

=  3.5 0.104 1.801 1.912 42.41 

Γ
𝑡

=  5.0 0.993 1.604 1.939 41.02 

A comparison of solution accuracy and computational time for different models can be made in 

Tables 1 and 2. Such comparison allows users to select the most appropriate model based on their 

requirements for accuracy and computational time. As can be seen from Tables 1 and 2, the 

proposed model is highly efficient in terms of accuracy and computational time, thus, providing a 

promising choice for use in real-world problems. 

The proposed model is beneficial for large systems with high amounts of wind power integration. 

In particular, for high uncertainty and large power systems, the challenges associated with handling 

wind power uncertainty make commercial solvers such as LINDOGLOBAL computationally 

impractical (Table 2). In contrast, the proposed model is highly efficient and practical even for large 

power systems because it is tractable and scalable. From the managerial point of view, the proposed 

model aids in identifying the exact trade-off between robustness and cost to tackle wind power 

uncertainty within a budget. 

6. Conclusions 

To overcome the limitations of traditional methods, in this study, we proposed a robust OPF 

model considering wind power uncertainty. We considered the wind power uncertainties by 

adopting the recent advancements in uncertainty theory, that is, the effective budget of uncertainty 

method and the nonlinearities of power flow equations were considered using a tight SOCR. We 

demonstrated that the proposed ERSOCP model could accurately consider the effects of voltage on 

the power flow and effectively model uncertainties given the physical limits of the system. The 

numerical results demonstrated the merits of the ERSOCP model. The ERSOCP model can obtain a 

more accurate solution in a reasonably short computational time. 

In future research, the proposed model can be employed for different problems, such as the unit 

commitment problem. Furthermore, the possibility of a new conic relaxation for nonlinear AC power 

flow equations can be explored using exponential conic programming models, power conic 

programming models, or a combination of both. 
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