TY - JOUR AU - Ndukwe, Cherechi AU - Iqbal, Tariq AU - Khan, Jahangir AU - Jamil, Mohsin PY - 2022 DA - 2022/06/26 TI - Analysis of LoRa Transmission Delay on Dynamic Performance of Standalone DC Microgrids JO - Journal of Energy and Power Technology SP - 022 VL - 04 IS - 02 AB - One important aspect toward proper and stable functioning of a communication-based controlled microgrid is data transmission. Consequently, an analysis of the effect of data transmission delay is of significance for any chosen communication protocol. This paper focuses on the effect of employing LoRa for data transfer at the secondary control level of a standalone DC microgrid. It analyses the effect of LoRa transmission delay on the dynamic performance of DC microgrids. This paper simulates a community DC microgrid that operates in three modes: PV mode, battery mode and generator mode. This microgrid operates as a centralized communication-based controlled microgrid, with the secondary control level operating as an event-driven level. The system incorporates a hierarchical system where data is transferred between the various distributed energy resources (DERs) local controllers and the microgrid central controller (MGCC). Simulations for three scenarios are presented. In the first scenario, the microgrid is designed and simulated without a communication delay to observe the system behavior. Then LoRa transmission delay is calculated for the various signals transferred between the MGCC and the local controllers. This delay is introduced into the simulation as transport delays and the system exhibits a level of stability degradation. Subsequently, a time delay compensation system is incorporated into the system for more robust operation. The delay compensation is applied in two simulation scenarios. In the first scenario, the system inductor (L) and capacitor (C) components are re-calculated, and the system is re-simulated to get a stable system even with the applied communication delay. In the second scenario, the proportional integrator (PI) controller in the microgrid central controller is re-designed to a more robust form to compensate for the delay caused by the LoRa transmission. The results obtained from the two modified simulations realize a stable DC microgrid. This system modification allows for system stability again, similar to the simulation when the microgrid operated without any communication delay. This, therefore, demonstrates that with proper system design and implementation, low bandwidth communication systems such as LoRa can be effectively employed for data transfer in event-driven communication-based controlled DC microgrids. SN - 2690-1692 UR - https://doi.org/10.21926/jept.2202022 DO - 10.21926/jept.2202022 ID - Ndukwe2022 ER -