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Abstract 

Flows in multi-branch piping systems are modeled for linear Newtonian and nonlinear Power 

Law, Bingham Plastic and Herschel-Bulkley fluids. The nonlinear models are often used to 

describe multiphase fluids consisting of liquid and solid phases, including cement slurries 

and drilling muds in petroleum engineering. Rheological and heterogeneous multiphase 

effects are important to blood flows in single and bifurcated arteries, capillaries and veins – 

biological applications are also emphasized to highlight their increasing importance in 

medical research. Unfortunately, conventional engineering approaches, many oversimplified, 

employ idealized assumptions for total energy conservation. Others are unrealistic and 

based on empirical “head loss” coefficients related to fittings, roughness, bend and 

expansion effects. In our approach, mass conservation is assumed, leading to momentum 

and energy reductions and a credible predictive algorithm is devised. Bifurcation results are 

given for several fluid rheologies, either in closed analytical form or using numerical 

algorithms based on closed form solutions. When the entry flow rate and all outlet pressures 

are given, along with needed geometric details, solutions give pressure drop versus flow rate 

relations useful in pumping and power calculations. Also calculated are pressure levels that 

ensure safe, burst-free operations and wall viscous shear stress values that support cleaning 

and remediation operations. Analytical formulas are derived for circular flow cross-sections 

while numerical extensions are summarized for general clogged flows (applications in piping 
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conduits of arbitrary cross-sectional geometry). Example calculations are given 

demonstrating the usefulness and versatility of the new methods.  

Keywords  

Bifurcated flow; biological fluid mechanics; blood flow; cementing; clogged pipe; drilling 

mud; flow losses; non-Newtonian flow; rheology; viscous shear stress 

 

1. Introduction to Bifurcated Flows 

Engineers have long recognized the important roles played by rheology, pressure, viscous stress 

and geometry in design. Solutions to bifurcated flows are well known in engineering. For example, 

in two-branch systems where all three inlet and outlet paths are nearly parallel, as in tuning forks, 

losses at junctions are small – an elementary solution, offered at the tutorial website 

www.chegg.com, assumes ideal fluids where total energy is conserved [1]. In process applications, 

piping networks follow energy laws with empirical “head loss” factors for fittings, roughness and 

bends. Sometimes velocity profiles (from simpler fluid models) are used to evaluate integrals that 

estimate total losses. Again, ideal “total energy conservation” and empirical “head loss coefficient” 

models cannot always be meaningfully used – key issues cannot be understood without analytical 

tools based on accepted rheological models. For example, interpretation should depend explicitly 

on measurable parameters related to Newtonian, Power Law, Bingham Plastic or Herschel-Bulkley 

inputs. More sophisticated three-dimensional finite element methods write algebraic equations to 

large numbers of nodal points that are then solved. Despite the apparent generality, their time-

consuming solutions do depend on meshing details – and while predictive capabilities are possible, 

they will require careful calibration and specific empirical inputs. In all of these methods, physical 

dependencies on fluid and geometric parameters can be hidden or lost, thus limiting their use as 

diagnostic or design tools. Simple questions related to the roles of radius, “n” and “k” have not 

been be straightforwardly answered. 

Bifurcation applications are broad and not restricted to engineering design. Medical research, 

increasingly sophisticated, has challenged physicists and rheologists in recent years. Importantly, 

medical researchers and practitioners study health problems using the same parameters – the 

rheological models cited earlier are able to describe a broad range of multiphase effects inherent 

in heterogeneous blood flows. For instance, it is now recognized that the main arteries host largely 

Newtonian flows, while complicated non-Newtonian effects are relegated to important secondary 

systems with smaller diameters. At the finest capillary level, nonlinear effects are even more 

pronounced. These massive bifurcated systems often defy analysis and do not allow detailed 

description. Fortunately, the principal flows branching from the main aorta that control overall 

bodily functions can be modeled – these branched configurations also form the focus of this 

investigation. 

Models that yield physical relationships between volume flow rate, pressure, viscous stress and 

geometric parameters would promote more optimized pipe flows as well as an improved 

understanding of degenerative health conditions. In this paper, we provide simple yet new and 

useful solutions to important practical bifurcation problems appearing in both engineering 
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practice and medical research. The analytical models and numerical implementation, as well as 

their extensions to handle clogged flows with arbitrary cross-sectional geometries, are described 

in detail with Fortran source code offered where possible. The role of viscous shear stress in 

dislodging clogs and in preventing their formation cannot be de-emphasized. Hopefully, the 

approach to the overall problem presented here will prove immediately useful to practitioners in 

the field. Additionally, simple interactive software screens that host the new models are shown 

that support ease-of-use and rapid analyses. We refer the reader to Chhabra and Richardson [2] 

and Schlichting [3] for basic fluid dynamic models, and to Hussain, Kar and Puniyani [4], Lee, Xue, 

Nam, Lim and Shin [5], Sochi [6] and Yamamoto et al. [7] for biological applications. 

1.1 Bifurcation Model and Analytical Approach  

Consider a system with a single pipe (supporting an inlet flow with given flow rate) that 

“bifurcates” or branches into N-1 multiple conduits (hosting N-1 outlet flows with prescribed exit 

pressures). It is physically clear, provided each piping element is longer than the dimensions of the 

junction, that secondary and turbulent flow effects will be localized at the intersection. Thus, the 

analytical flow rate formula for each constituent pipe flow would take a form identical to that of 

the “single pipe alone” problem for that particular pipe.  

Only the inlet and outlet pressures for each of the N conduits need to be specified. All of these 

pressures would be available if the junction pressure can be determined. We obtain this value by 

assuming total mass conservation – this implies that total energy and momentum are not 

conserved, which is anticipated in real world applications (junction losses, assumed to be small, 

are excluded here). Hence, relationships connecting flow rate, axial velocity, pressure, apparent 

viscosity, shear stress and shear rate are easily calculated from the underlying rheological solution. 

By contrast, methods taught in elementary fluid mechanics encompass a broad range of 

approximations. The simplest ideal flow models assume unrealistic total energy conservation – 

this unfortunately suggests that power is not required to maintain the flow [1]. On the other hand, 

the empirical “head loss” methods used in the piping industry only utilize measured friction data 

dependent on surface roughness, inlet conditions, fittings details, local bends and so on. Rheology 

is often not considered. These methods are unlikely to produce useful predictive results in more 

general flow problems.  

Our use of local “single pipe solutions” for constituent pipes in steady bifurcated systems is 

somewhat analogous to the WKB methods developed in transient wave propagation [8]. There, 

large space-time solutions for complicated propagation fields are assumed in a form 

“a sin (kx –  ωt)” similar to exact elementary solutions, except that amplitude, wavenumber and 

frequency are now slowly varying functions of space and time. It is important to understand that 

our use of single pipe solutions is not restricted to those having circular cross-sections. Our 

general approach applies to square, triangular, highly clogged or even mixed combinations of 

these (for any host rheology) provided an analytical representation for each of the constituent 

piping elements is available. Moreover, the method is applicable to more complicated situations 

where body forces, such as gravitational and electrical, are found. 
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1.2 Different Rheological Applications 

Our method applies to different types of liquid stress-strain constitutive relations. In the work 

presented here, we illustrate four popular models, namely Newtonian, Power Law, Bingham 

Plastic and Herschel-Bulkley fluids. The four “single pipe alone” circular tube solutions used to host 

bifurcation models in each case are listed below where the constants are defined separately in this 

write-up. These models, in the order listed, are shown to require added numerical support as 

physical complexity increases. 

• Newtonian, Q = πR4∆p/(8μL) 
• Power Law, Q/(πR3) = [R∆p/(2kL)]1/nn/(3n + 1)  

• Bingham Plastic, Q/(πR3) = [τw/(4μ)][1– 4/3(τ0/τw) + 1/3(τ0/τw)
4] 

• Herschel-Bulkley, Q/(πR3) = k−1/n(R∆p/2L)−3(R∆p/2L − τ0)
(n+1)/n × 

[(RΔp/2L − τ0)
2n/(3n + 1) + 2τ0(RΔp/2L − τ0)n/(2n + 1) + τ0

2n/(n + 1)] 

These choices are directed at highlighting custom techniques specific to different fluid models. 

In the simplest linear Newtonian case, it is possible to obtain closed form, analytical solutions 

because of algebraic simplicities. For Power Law flows, the nonlinearity disallows elegant solutions, 

and a “half-step” iteration is instead required to solve for junction pressure. For Bingham Plastics 

and Herschel-Bulkley fluids with yield stress, further complications arise because expressions for 

the inlet pressure cannot be obtained. For these two problems, two successive half-step iteration 

procedures are needed to fulfill our solution objectives. Other possible rheologies not considered 

here, for example, include 

• Ellis, τ = −du/dr/(A + Bτα−1) 

Q/πR3 = Aτw/4 + B τw
α/(α + 3) 

= A(R∆p/2L)/4 + B (R∆p/2L)α/(α + 3) 

• Casson, with constants τO, μO and a dimensionless ξ = τO/{
(PO−PL)R

2L
}, 

Q = πR4(PO − PL){1– (16/7)ξ
½ + (4/3)ξ– (1/21)ξ4}/(8μOL) 

• Eyring, with constants τO, λO and τR = (PO − PL)R/2L 

Q = 2πR3 (
τO

τR
) 3[{½(τR/τO)

2 + 1} cosh (τR/τO)– (τR/τO) sinh (τR/τO)– 1]/λO  

1.3 Validation Procedures  

Detailed discussions for the above formulas and for other rheologies are available in excellent 

references, for example, Bird, Armstrong and Hassager [9], Bird, Stewart and Lightfoot [10], Ferry 

[11] and other classic rheology books. We will not rederive (except use) the final results. We do 

emphasize several editorial decisions made in presenting our bifurcation models.  

• We are not providing exhaustive parameter studies for particular models, since these would 

dilute the impact of our focus on methodology. For example, even in the simple Power Law 

limit, variations in the parameter ranges of (n, k) are broad and depend on the industry and 

application (as such, n < 1 suffices in fulfilling our objectives and n > 1 is unnecessary). 

• It has been suggested that experimental validation is required. This is not so, since extraneous 

effects related to inlet conditions, surface roughness, junction loss and more will not be 
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consistent with the model assumptions applied. Assessments for different models must be 

obtained using methods that rely solely on the math assumptions taken, as explained next. 

• Our validations are comprehensive. (1) We start with our analytical Newtonian bifurcation 

solution, verify expected physical dependencies related to pressure drop and viscosity, and 

ensure that flow symmetries are obtained for symmetrical bifurcation placements. (2) For the 

Power Law solution, we operate the iterative algorithm for values of the dimensionless n that 

are very close to unity with k =  μ (the Newtonian viscosity) to ensure agreement with the 

Newtonian solution in (1). (3) For Bingham Plastics with n = 1 and nonzero yield stress, the “two 

half-step” iteration is operated with almost vanishing yield stress to verify that results agree 

with the “single half-step” approach for Power Law fluids. (4) Finally, for Herschel-Bulkley fluids, 

the yield stress code is operated to ensure that results are consistent with the Bingham Plastic 

model in (3) with n = 1.  

• In summary, the objective of the work presented here focuses on the mechanics of the solution 

strategy and its implementation for different rheologies. Thus, tables of numerical results are 

not offered as they will be very limited in usefulness. Instead, the algorithms and user 

interfaces themselves are described in detail. We emphasize that our work relates to both 

piping and arterial networks in living tissue as both applications are important in seemingly 

different but actually related disciplines.  

2. Newtonian Fluids in General Circular and Clogged Conduits 

2.1 Newtonian Flow in Simple Bifurcations  

We will present some useful analytical models for piping systems and blood vessel systems that 

support Newtonian flows. We first consider fluid flowing through a main conduit that bifurcates 

into two different branches. Physical assumptions and their mathematical expression are 

explained at each step of the derivations. These require no more than elementary algebra, but the 

problem and results do not appear to have been given previously. Practical applications are 

emphasized in the discussions. Then in subsequent sections, more complicated flow networks are 

considered, now requiring much less explanation. In many cases, user-friendly software is 

available to perform calculations rapidly. Extensions to conduits with arbitrary non-circular cross-

sections will also be considered – this methodology is relevant to flows in irregular clogged pipes. 

For instance, calculated viscous stresses at complicated debris-fluid interfaces may support 

cleaning and remediation efforts. 

We start with the Hagen-Poiseuille formula for the volume flow rate “Q = πR4(Pi–Po)/(8μL).” 

Its assumptions are numerous and well known: (a) a rigid circular cross-section of radius R, (b) a 

straight conduit with length L satisfying L >> R, (c) a constant fluid viscosity of μ, (d) end conditions 

with Pi and Po respectively being inlet and outlet pressures, (e) steady-state laminar liquid flow, (f) 

smooth walls and (g) a location away from inlets. Our convention assumes that the volume flow 

rate is Q > 0 if Pi > Po. Fluid density does not appear in Hagen-Poiseuille’s law because steady-state 

conditions are assumed – density, however, is important in transient applications. The two-branch 

bifurcation shown in Figure 1 applies to both engineering and medical applications. 
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Figure 1 Two-branch bifurcation (top), multi-branch geometry (bottom). 

It is possible to develop extended applications of the classic Hagen-Poiseuille rule. Consider the 

uneven bifurcation in Figure 1, where the main flow rate Q1 in “1” feeds into branches “2” and “3” 

as shown at the top of Figure 1. For a constant density flow, mass conservation requires that Q1 = 

Q2 + Q3. (Here mass considerations disallow momentum and energy conservation, both of which 

are not possible in the presence of irreversible viscous wall losses). Applying the rule to each flow 

segment directly yields Q1 = πR2
4(P𝑎–P𝑜,2)/(8μL2) + πR3

4(P𝑎–Po,3)/(8μL3). Here, Po,2 and Po,3 

are branch “2” and “3”’s outlet pressures, while at the junction “a,” we determine the pressure as 

P𝑎 = {8μQ1/π + (R2
4Po,2/L2  + R3

4Po,3/L3 )}/{R2
4/L2  + R3

4/L3 } (2.1) 

This can be substituted into the formulas 

Q2 = πR2
4(P𝑎–Po,2)/(8μL2) (2.2) 

Q3 = πR3
4(P𝑎–Po,3)/(8μL3 ) (2.3) 

to produce the volume flow rates Q2 and Q3 into branches “2” and “3” respectively. 

We could also have expressed “Q1 = Q2 + Q3” in the form R1
4 (Pi – Pa) /L1 = R2

4 (Pa – Po,2) /L2 + R3
4 

(P𝑎 – Po,3) /L3 to show Pα = (R1
4 Pi/L1 + R2

4 Po,2 /L2 + R3
4 Po,3 /L3)/(R1

4 /L1 + R2
4 /L2 + R3

4 /L3). If we 

substitute this into Q1  =  πR1
4(Pi–P𝑎)/(8μL1), we obtain 

Q1 = {π
R1

4

8μL1
}

[
 
 
 

Pi–

{
 

 R1
4Pi
L1

+
R2

4Po,2
L2

+
R3

4Po,3
L3

R1
4

L1
+
R2

4

L2
+
R3

4

L3 }
 

 

]
 
 
 

(2.4) 

which can be inverted to yield  
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Pi =

Q1 + {π
R1

4

8μL1
}

{
 

 
R2

4Po,2
L2

+
R3

4Po,3
L3

R1
4

L1
+
R2

4

L2
+
R3

4

L3 }
 

 

{π
R1

4

8μL1
} –

{π
R1

8

8μL1
2}

R1
4

L1
+
R2

4

L2
+
R3

4

L3

(2.5) 

Finally, the viscous shear stresses τ acting at the walls of branches “1,” “2” and “3” are given by 

τ1 = (Pi–P𝑎)
R1
2L1

(2.6) 

τ2 = (P𝑎– Po,2)
R2
2L2

(2.7) 

τ3 = (P𝑎– Po,3)
R3
2L3

(2.8) 

which follow from global momentum balances. These equations all solve different flow problems.  

2.1.1 Case 1 Flow Rate Q1 Prescribed 

If the main flow rate Q1 is given, together with the outlet pressures Po,2 and Po,3, and if all 

lengths, radii, and viscosity are specified, then the volume flow rates in bifurcations “2” and “3” 

are determined by Equations 2.2 and 2.3 where the junction pressure Pa is defined by Equation 2.1. 

The inlet pressure where the main flow enters is calculated from Equation 2.5. This formulation 

addresses the following problems. If the pumping is achieved, say with a mechanical device, will 

the inlet pressure Pi exceed a pre-defined “burst pressure” and lead to wall breakage? Will the 

rates Q2 and Q3 be rapid enough to deliver needed oxygen and nutrients in the case of blood flow? 

Will viscous shears be so excessive so as to induce long-term wear and tear? How might R and L be 

altered to achieve safety targets? In health care, options may include increases in R (through clog 

removal and stent usage), decreases in L (as in a shortening of varicose veins), and reductions in 

viscosity using blood thinners. 

2.1.2 Case 2 Inlet Pressure Pi Prescribed 

If the inlet pressure is given, together with the outlet pressures Po,2 and Po,3, and if all lengths, 

radii and viscosity are specified, then the main flow rate Q1 is known from Equation 2.4. This can 

be substituted in Equation 2.1 to give the junction pressure Pa, which is in turn used in Equations 

2.2 and 2.3 to provide Q2 and Q3. We might similarly ask, “Is Q1 rapid enough to deliver needed 

oxygen and nutrients?” For the geometries assumed, will Q2 and Q3 meet flow requirements? How 

can the junction pressure Pa be increased to improve these volume flow rates? Can we alter R2 

and L2 to effect changes in branch “3,” if this branch itself is not easily accessible?  
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2.1.3 Case 3 Identical Outlet Pressures Po,2 and Po,3 Given 

In this case, we write Po,2 = Po,3 = Po. Here, the geometries for branches “2” and “3” may differ. 

For instance, one conduit may be longer than the other, with both having different radii – 

however, we assume that their outlets are sufficiently close in proximity that their exit pressures 

will also be close. In other applications, the two may be geometrically identical but situated far 

apart – an obvious human body example is found in the left and right iliac arteries that transport 

blood through the pelvis and legs. Then, Equation 2.1 simplifies considerably and substitution into 

Equations 2.2 and 2.3 shows that 

P𝑎 = Po +
(8μ

Q1
π )

R2
4

L2
+
R3

4

L3

(2.9) 

Q2 =

Q1R2
4

L2
R2

4

L2
+
R3

4

L3

(2.10) 

Q3 =

Q1R3
4

L3
R2

4

L2
+
R3

4

L3

(2.11) 

These results are interesting. First, Q2 and Q1 are related only by a simple geometric factor 

(R2
4/L2)/(R2

4/L2 + R3
4 /L3) that is independent of viscosity and pressure – this similarly applies to Q3 

and Q1. Second, the quantity “Q2 + Q3” can be evaluated from Equations 2.10 and 2.11 to show 

that Q2 + Q3 = Q1, which states that mass is conserved as assumed. 

And third, a simple “energy like” law follows from Equations 2.10 and 2.11. Squaring these 

leads to Q2
2 = (Q1

2R2
8/L2

2)/(R2
4 /L2 + R3

4 /L3)2 and Q3
2 = (Q1

2R3
8/L3

2)/(R2
4 /L2 + R3

4 /L3)2. Now, adding 

the two gives 

Q2
2 + Q3

2 = Q1
2

R2
8

L2
2 +

R3
8

L3
2

(
R2

4

L2
+
R3

4

L3
)
2 = Q1

2

{
 
 

 
 R2

8

L2
2 +

R3
8

L3
2

R2
8

L2
2 + 2R2

4 R3
4

L2L3
+
R3

8

L3
2
}
 
 

 
 

(2.12a) 

One can think of this as an equation for energy that is dissipated in the bifurcation process, 

with { } representing the exact loss factor. And since { } is a fraction less than unity, with its 

denominator exceeding the value of its numerator, we clearly have the inequality 

Q2
2 + Q3

2 < Q1
2 (2.12b) 

Thus, while the mass conservation in Q2 + Q3 = Q1 holds, the sum of the squares in volume flow 

rates, a quantity related to kinetic energy, is not conserved. Instead, it must follow Equation 2.12b 

for the Newtonian model assumed. As given, the above relations are useful for quick “back of the 
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envelope” estimates. In closing, we emphasize that the matching condition Q2 + Q3 = Q1 used 

allows an abrupt lossy transition from a single conduit to a doubly-bifurcated system. In reality, 

fluid-dynamical motions can be very complicated at such junctions, but these will require lengthy 

and detailed three-dimensional finite element simulations.  

2.2 Software – CODE-1 for Two Uneven Bifurcated Arteries with Q1 Specified 

The results derived above are easily programmed on spreadsheet utilities, but they are more 

conveniently accessed in the CODE-1 utility of Figure 2. A symmetric artery system is shown, e.g., 

as for the left and right iliac arteries mentioned earlier, but we emphasize that our model also 

applies to systems without symmetry (this “app” is also applicable to engineering flows).  

 

Figure 2 Forward model with Q1 given (Reference, CODE-1). 

2.2.1 A Sample Calculation 

To validate our bifurcated flow program, we assume that branches “1,” “2” and “3” are 

geometrically identical. In Figure 2, white text boxes are reserved for data inputs, while gray boxes 

are intended for displays of non-editable calculated results. Clicking “Find” in Figure 3 

automatically computes all of the flow attributes derived above. The program correctly shows that 

the assumed flow rate of “100 cc/s” splits into two identical flows of 50 cc/s each. The pressure 

drops in branches “2” and “3” are 2.00373 – 2 = 0.00373 psi, while that in “1” is 2.01119 – 2.00373 

= 0.00746 psi. This is exactly twice “0.00373 psi” and is consistent with a flow rate ratio of two, 

obtained on comparing 100 to 50 cc/s. This linear dependence of volume flow rate on pressure 

drop is a property of Newtonian fluids. Again, the Newtonian assumption is only applicable to 

larger diameter blood vessels. The identical results obtained for branches “2” and “3” validate the 

complicated programming logic and units conversion code. 
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Figure 3 Calculated results appear in gray boxes (symmetrical bifurcation data are used 

to validate computed results for required symmetric solutions). 

2.2.2 A Second Calculation 

Now we consider for purposes of validation the calculation in Figure 4. Here, the branches in “2” 

and “3” are again identical, but longer and narrower than that in “1.” The pressure drop in “1” is 

now 2.12684 – 2.11938 = 0.00746 psi, while that in “2” and “3” is 2.11938 – 2 = 0.11938 psi. Even 

though the flow rate in “1” is twice that of “2” or “3,” the pressure drop is much smaller, because 

the radius in “1” is twice as large. The total pressure drop from inlet to outlet is 2.12684 – 2 = 

0.12684 psi. Another Newtonian flow property is worth mentioning. If the viscosity is halved to 5 

cp, the total pressure drop becomes 2.06342 – 2 = 0.06342 psi, which is half of 0.12684 psi 

(software screen not shown). In other words, a decrease in viscosity leads to a proportional 

decrease in pressure drop. The “scalability” properties demonstrated above do not apply to non-

Newtonian fluids. While different rheology models may also be required as suggested by empirical 

data, in general for such fluids, computational methods are required when geometric rate or 

pressure data is altered.  

 

Figure 4 Branch “1” different from “2” and “3,” which are identical. 

2.3 Theory – Two Uneven Bifurcated Arteries with Pi Specified 

The above applies when Q1 is the main input. We showed earlier how if Pi, Po,2 and Po,3 are 

known, the junction pressure follows from Pa = (R1
4 Pi /L1 + R2

4 Po,2 /L2 + R3
4 Po,3 /L3)/(R1

4 /L1 + R2
4 /L2 
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+ R3
4 /L3). Then, the inlet flow rate follows from Q1 = πR2

4(P𝑎–P𝑜,2)/(8μL2) + πR3
4(P𝑎–P𝑜,3)/

(8μL3). With these quantities available, an analysis similar to the above is straightforward. 

2.4 Software – CODE-2 for Two Uneven Bifurcated Arteries with Pi Specified 

We now discuss the software implementation where Pi is given, referred to as “CODE-2.” 

Obviously, CODE-1 and CODE-2 are complementary. They were developed separately to keep the 

programming logic simple. Figure 5 shows both side-by-side while they are creating consistent 

numerical outputs to the fourth decimal place.  

 

Figure 5 Complementary CODE-1 and CODE-2 implementations. 

2.5 Theory – Complicated Network Flows with Chained Bifurcations  

Here we consider a more complicated network with additional bifurcations, as shown in Figure 

6. It is obviously not the most general, nor was it intended to be. Our objective is to demonstrate 

the algebraic manipulations needed to handle networks of greater complexity, so readers can 

develop custom models as needed. For clarity, we will drop all “outlet” subscripts, e.g., Po,2 

becomes P2.  

 

Figure 6 More complicated flow network. 
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As before, we start with the Hagen-Poiseuille law, as given in Equations 2.13 and 2.14. The 

parameter “A” is introduced for simplicity, to eliminate an error-prone “π/(8μ).” Whereas we 

invoked “Q1 = Q2 + Q3” before, we now perform the analogous operation twice, as in Equations 

2.15 and 2.16 – that is, once for each network, focusing on the junctions a and b.  

Q = π
R4(Pi–Po)

8μL
(2.13) 

Q =
AR4(Pi–Po)

L
where A =

π

8μ
(2.14) 

Q1𝑎 = Q𝑎2 + Q𝑎3 + Q𝑎𝑏 (2.15) 

Q𝑎𝑏 = Q𝑏4 + Q𝑏5 + Q𝑏6 + Q𝑏7 (2.16) 

We next substitute Equation 2.14 into the right side of Equation 2.15, and Equation 2.14 into all 

terms in Equation 2.16. This leads to  

Q1𝑎 =
AR𝑎2

4(P𝑎–P2)

L𝑎2
+
AR𝑎3

4(P𝑎–P3)

L𝑎3
+ AR𝑎𝑏

4 P𝑎– P𝑏
L𝑎𝑏

(2.17) 

R𝑎𝑏
4(P𝑎–P𝑏)

L𝑎𝑏
=
R𝑏4

4(P𝑏–P4)

L𝑏4
+
R𝑏5

4(P𝑏– P5)

L𝑏5
+
R𝑏6

4(P𝑏–P6)

L𝑏6
+
R𝑏7

4(P𝑏–P7)

L𝑏7
(2.18) 

Interestingly, the above can be rewritten as “two equations for two unknowns” in the 

elementary algebra sense. The unknowns are the junction pressures Pa and Pb, as shown in 

Equations 2.19 and 2.20, with coefficients B, C, D, E, F and G as in Equations 2.24 – 2.26. The 

solutions are given in Equations 2.27 and 2.28.  

𝐁P𝑎 + 𝐂P𝑏 = 𝐃 (2.19) 

𝐄P𝑎 + 𝐅P𝑏 = 𝐆 (2.20) 

𝐁 = A(
R𝑎2

4

L𝑎2
+
R𝑎3

4

L𝑎3
+
R𝑎𝑏

4

L𝑎𝑏
) (2.21) 

𝐂 =–A
R𝑎𝑏

4

L𝑎𝑏
(2.22) 

𝐃 = Q1𝑎 +
AR𝑎2

4P2
L𝑎2

+
AR𝑎3

4P3
L𝑎3

(2.23) 

𝐄 =
R𝑎𝑏

4

L𝑎𝑏
(2.24) 

𝐅 =–(
R𝑎𝑏

4

L𝑎𝑏
+
R𝑏4

4

L𝑏4
+
R𝑏5

4

L𝑏5
+
R𝑏6

4

L𝑏6
+
R𝑏7

4

L𝑏7
) (2.25) 
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𝐆 =–(
R𝑏4

4P4
L𝑏4

+
R𝑏5

4P5
L𝑏5

+
R𝑏6

4P6
L𝑏6

+
R𝑏7

4P7
L𝑏7

) (2.26) 

P𝑎 =
(𝐃𝐅–𝐂𝐆)

𝐁𝐅–𝐂𝐄
(2.27) 

P𝑏 =
(𝐁𝐆–𝐃𝐄)

𝐁𝐅–𝐂𝐄
(2.28) 

The final steps involve post-processing for inlet pressure, volume flow rates and shear stresses. 

First, from Equation 2.14, the relationship “Q = AR4(Pi – Po)/L” suggests that Q1 = AR1
4(Pi – Pa)/L1. 

Since Q1 is prescribed and Pa is known from above, this yields 

Pi = P𝑎 +
Q1L1

AR1
4 (2.29) 

It suffices to consider a typical branch from each of junctions “a” and “b.” For example, from 

“a,” we have 

Q2 = AR2
4 P𝑎–P2

L2
(2.30) 

τ2 =
(P𝑎–P2)R2

2L2
(2.31) 

while from “b,” we have 

Q6 = AR6
4 P𝑏–P6
L6

(2.32) 

τ6 =
(P𝑏–P6)R6

2L6
(2.33) 

Software is straightforwardly developed from the above for Figure 6 and similar networks. We 

leave this to the interested reader. 

2.6 Network with Arbitrary Number of Bifurcations 

Here we consider an earlier problem where Q1 is given, and the junction pressure Pa and inlet 

pressure Pi are required, but now an arbitrary number of bifurcations (having different radii and 

lengths) with n = 2, 3, 4 . . . N is allowed. Volume flow rates and shear stresses in all sub-branches 

will be derived. More than likely, the most popular application will be the earlier two-branch 

model whose solution was worked out in detail. However, the present generalization will be useful 

for predictions in more complicated networks. 

We begin by expressing mass conservation Q1 = Q2 + Q3 + . . . + QN in summation notation, 

where the sum ∑ is taken over n = 2, 3, 4 . . . N, that is, 

Q1 = {
π

8μ
}∑Rn

4 (P𝑎–Pn)

Ln
(2.34) 
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The constant Pa can be factored out and solved as 

P𝑎 =
(8μ

Q1
π + ∑

Rn
4Pn
Ln

)

∑ (
Rn

4

Ln
)

(2.35) 

If we now re-express Equation 2.34 in the expanded form R1
4(Pi – Pa)/L1 = ∑ Rn

4 (Pa – Pn) /Ln, we 

find the inlet pressure as 

Pi = P𝑎 [1 + (
L1

R1
4)∑

Rn
4

Ln
] – (

L1

R1
4)∑

Rn
4Pn
Ln

(2.36) 

where the Pa on the right side is known from Equation 2.35. Then, the flow rates and viscous shear 

stresses below are obtained.  

Qn = πRn
4 (P𝑎–Pn)

8μLn
(2.37) 

τ1 =
(Pi–P𝑎)R1
2L1

(2.38) 

τn =
(P𝑎–Pn)Rn

2Ln
(2.39) 

Extensions to networks more complicated than that of Figure 6 are straightforward. The 

“summation strategy” above would apply to a sequence “a, b, c, d . . .” of junction point problems, 

and coupled linear algebraic equations for Pa, Pb, Pc, Pd and so on, would be solved. Then, inlet 

pressure is derived, followed by results for all branch volume flow rates and viscous shear stresses. 

2.7 Bifurcated Newtonian Flow in Noncircular Clogged Blood Vessels 

We have so far considered bifurcation models where the flow cross-sections are perfectly 

circular. This applies to clean circular pipes and blood vessels. However, these may clog, resulting 

in arbitrarily formed duct geometries. Typical examples are given in Figure 7a and Figure 7b. The 

general clog analysis model of Chin [12] first maps irregular domains into simple rectangular 

spaces associated with boundary-conforming curvilinear grids. The transformed equations are 

then solved in this domain. Figure 7c displays time-lapse results obtained for a blood clotting 

simulation where plaque buildup is limited by transient viscous shear stress and dynamic erosive 

actions (the pseudo-transient analysis ignores fluid density). The reader is referred to the cited 

reference, which deals primarily with single conduit flows, for details. For the purposes of this 

paper, it suffices to note that in the case of clogged Newtonian flows, the classical Hagen-

Poiseuille formula is modified by a multiplicative correction factor and an effective radius can be 

defined. Then, the results obtained above immediately apply.  
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Figure 7 a) Irregular clog distributions and debris buildup in pipelines and conduits. b) 

Bifurcated artery with multiple clogged flow branches. c) Time-lapse, pseudo-transient 

clog formation in non-Newtonian fluid.  

It is important to understand that relationships like “flow rate versus pressure drop” and shear 

stress details depend more on the details of the fluid and clog interface, and to a much lesser 

extent, on “clogged versus unclogged area ratios.” The required clog modifications are simple. 

Suppose, for given numerical values dp/dz* and μ ∗ we fix the clog geometry and calculate the 

corresponding flow rate Q* using the gridding method of Chin [13]. As shown in that reference, Q* 

= - GF* (dp/dz*/μ*) applies to Newtonian flows where GF* is a geometric factor representative of 

the cross-section. We calculate the value GF* = - Q*/(dp/dz*/μ*). For a Hagen-Poiseuille flow, we 
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know that the flow rate Q = - {𝜋R4 /8}{dp/dz/μ}. Thus, we can introduce an effective radius Reff = (8 

GF*/𝜋)1/4 (assuming like values of "dp/dz/μ") for each clogged flow element in the analytical 

bifurcation results above. Note that shear stress formulas like Equations 2.6-2.8, which assume 

axisymmetry, do not apply. However, as seen from Figure 7c, non-uniform viscous stresses are 

available everywhere in the flow domain. 

3. Non-Newtonian Flow in Circular Conduits and Networks 

In this section, we consider non-Newtonian flows in circular conduits and networks formed 

from such sections. Because nonlinear relations connect flow rates to pressure differentials, 

simple analytical solutions are not possible and recourse is made to numerical methods. We first 

illustrate our approach for the simplest “Power Law” model. Then, corresponding models are 

developed for Bingham Plastic and Herschel-Bulkley and detailed explanations are offered.  

3.1 Power Law Fluids  

In the simplest case, the viscous shear stress τ and the axial velocity profile U(r) are related by 

𝜏(𝑟) = k {dU/dr}n where r is the radial coordinate, “n” is a dimensionless exponent and "k" is the 

“consistency index.” This leads to the volume flow rate 

Q = {nπ
R3

3n + 1
} [
R(Pi–Po)

2kL
]

1 n⁄

(3.1) 

The Newtonian Hagen-Poiseuille formula is obtained by setting n = 1 and the consistency factor 

to k = μ, where μ  is the constant viscosity. This leads to the Q = πR4(Pi–Po)/(8μL). The 

assumptions for the Power Law model are similar. They are: (a) a rigid circular cross-section of 

radius R, (b) a straight conduit with length L satisfying L >> R, (c) constant values of k and n, (d) end 

conditions with Pi and Po respectively being inlet and outlet pressures, and (e) steady-state flow. 

Our convention assumes that the volume flow rate Q > 0 if Pi > Po. Note that fluid density does not 

appear because steady-state, laminar (non-turbulent) conditions are assumed – density, however, 

will appear in transient and compressible flow applications. 

We consider the two-branch bifurcation shown in Figure 8. Conservation of mass requires that 

Q1 = Q2 + Q3 where Q1 is specified so that we may write 

Q1 = {nπ
R2

3

3n + 1
} [
R2(P𝑎–Po,2)

2kL2
]

1 n⁄

+ {nπ
R3

3

3n + 1
} [
R3(P𝑎–Po,3)

2kL3
]

1 n⁄

(3.2) 

 

Figure 8 Simple two-branch bifurcation. 



JEPT 2022; 4(2), doi:10.21926/jept.2202018 
 

Page 17/33 

3.1.1 Iterative “Half-step” Solution for Pa and Pi 

Earlier, we solved for the junction pressure Pa initially, and using it, derived expressions for Q2 

and Q3. The algebra was simple and lengthy manipulations were performed. Here, the exponent 

“n” is general, possibly taking on integer and fractional values, so that an expression for Pa could 

not be obtained. In fact, Equation 3.2 is nonlinear. One might attempt to use Newton-Raphson 

schemes popular in solving high-order polynomial equations, but these are slowly convergent and 

rely on the availability of an initially close solution. Any method we devise must be robust and 

yield solutions with minimal user interaction while furthermore applying to other rheological 

models used for our problems. 

When Q1, Po,2 and Po,3 are given, we would expect Q1 to increase as Pa increases. This 

monotonic behavior can be put to use in deriving the needed solution. We simply start with a 

guess, the best being the greater of Po,2 and Po,3, to ensure that the quantities in the square 

brackets of Equation 3.2 are both positive. Then, as Pa is successively increased by given ∆P 

increments, the right hand side “RHS” of Equation 3.2 will increase until the ratio “RHS/Q1,prescribed” 

exceeds unity. This means that we have over-predicted both Pa and Q1. To compensate for this, we 

return to our “previous Pa” and guess using a reduced ∆P/2 instead. If we still over-predict, the 

iterative process is repeated, with this recursive “half step” operation continued until a user-

specified error bound is satisfied. 

Once we have obtained Pa, we turn to Equation 3.1 to infer the form for volume flow rate 

expressions in “1” and the two downstream branches “2” and “3,” that is  

Q1 = {nπ
R1

3

3n + 1
} [R1

(Pi–P𝑎)

2kL1
]

1 n⁄

(3.3) 

Q2 = {nπ
R2

3

3n + 1
} [R2

P𝑎–Po,2
2kL2

]

1 n⁄

(3.4) 

Q3 = {nπ
R3

3

3n + 1
} [R3

P𝑎–Po,3
2kL3

]

1 n⁄

(3.5) 

Equation 3.3 can be solved to produce the inlet pressure Pi for branch “1,” with the result that  

Pi = P𝑎 + (
2kL1
R1

) [
(3n + 1)Q1

nπR1
3 ]

n

(3.6) 

3.1.2 Shear Stress 

For Power Law pipe flows, well known results for laminar viscous shear stress can be used. In 

our convention used, 𝜏 = k (– dU/dr) n where the velocity profile satisfies the equation U(r) = ((Pi – 

Pa)/(2kL1)) 1/n [n/(n+1)] (R1 (n+1)/n – r (n+1)/n). This leads to the derivative relation (– dU/dr)n = ((Pi – 

Pa)/(2kL1)) r, which in turn yields the formula 𝜏 = k(– dU/dr)n = (Pi – Pa) R1/(2L1) > 0 at r = R1. Similar 

results are obtained at R2 and R3, so that, 
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τ1 = (Pi–P𝑎)
R1
2L1

(3.7) 

τ2 = (P𝑎– Po,2)
R2
2L2

(3.8) 

τ3 = (P𝑎– Po,3)
R3
2L3

(3.9) 

These results are identical to those for Newtonian fluids. In fact, they follow elegantly from 

global considerations balancing pressure force and wall shear effects. However, for complicated 

geometries containing general clogs, the details of the clog and fluid interface enter and the above 

formulas do not apply. These problems are considered in Chin [12] and Chin and Chin [13]. 

3.1.3 Typical Parameters 

The solution process for Pa outlined earlier can be written in Fortran, as shown in Figure 9, 

which can be translated into other computer languages or spreadsheet formats. Five “canned” 

examples are provided, which are described in the following pages. We note that the basic 

physical units LBF, IN and SEC for pound force, inch and second are used in our analyses. Pressure, 

for example, is then represented by PSI or LBF/IN2. For water at room temperature and pressure, 

the Newtonian rheology parameters are n = 1 and about k = μ = 0.0000001465 psi sec. This flow is 

always used in our basic validations. Examples related to a blood flow application are described in 

Chin and Chin [13]. We will follow the assumptions in that example – an average consistency index 

of k = 17.0 mPa sec n that has been determined by medical investigators for healthy control 

subjects. In our units, this is 17 (0.0000001450 psi sec n) or 0.000002465 psi sec n – a bit less than 

17 cp, if n were equal to unity. They also found n values slightly greater than 0.7, supporting their 

observation that blood mixtures are Power Law in nature. Others have assumed viscosities in the 

10-15 cp range, with similar findings for n. To assess the robustness of our algorithms, we 

considered high and low sides of n and k values. Note that Power Law models neglect yield 

stresses, which may be important in flow blockage and clotting. When these are important, the 

Power Law model becomes a Herschel-Bulkley fluid, which will be considered later. We next turn 

to the algorithm BIFURC-4 for junction pressure Pa, shown in its entirety in Figure 9. 
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Figure 9 Power Law solution for junction pressure.  
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In the above code, the Power Law solution for junction pressure Pa (psi) is provided where Q1 

(cc/s) is given, with iterations defined by simple “DO 100” loop. We now describe the iterative 

“half-step” solutions obtained for Pa. In Newtonian flow Example 1 immediately below, the 

assumed computational parameters are identical to those used in the exact solution underlying 

Figure 3. The final solution, highlighted in bold font, yields = 2.00373 psi, which also appears in 

Figure 3 for our assumed Q1 = 100 cc/s (note how the “test Q” almost matches the given 100 cc/s). 

In the examples below, “N” is a Fortran “counter” which records the “guess number” for Pa, whose 

value appears immediately to its right. As N increases, the ratio monotonically increases, with the 

calculations terminating once the RATIO reaches unity to within a user-prescribed error bound. 

The computational histories are robust and stable. Despite the large N values used for Examples 4 

and 5, the desk time involved for a Windows i5 computer is much less than one second. 

C:\bifurc-4 <Return> 

 

Example 1-5?  Enter:  1 

 

        N        PA          QTEST       QCCPS      RATIO 

       369  0.200370E+01  0.9905E+02  0.1000E+03  0.9904621 

       370  0.200371E+01  0.9931E+02  0.1000E+03  0.9931462 

       371  0.200372E+01  0.9958E+02  0.1000E+03  0.9958304 

       372  0.200373E+01  0.9985E+02  0.1000E+03  0.9985145 

Stop - Program terminated. 

 

Example 1-5?  Enter:  2 

 

        N        PA          QTEST       QCCPS      RATIO 

      . 

      1146  0.201148E+01  0.9942E+02  0.1000E+03  0.9941543 

      1147  0.201149E+01  0.9954E+02  0.1000E+03  0.9953938 

      1148  0.201150E+01  0.9966E+02  0.1000E+03  0.9966338 

      1149  0.201151E+01  0.9979E+02  0.1000E+03  0.9978743 

      1150  0.201152E+01  0.9991E+02  0.1000E+03  0.9991152 

Stop - Program terminated. 

 

Example 1-5?  Enter:  3 
 

        N        PA          QTEST       QCCPS      RATIO 

     . 

     12008  0.201145E+01  0.9912E+02  0.1000E+03  0.9912050 

     12009  0.201145E+01  0.9913E+02  0.1000E+03  0.9913229 

     12010  0.201145E+01  0.9914E+02  0.1000E+03  0.9914407 

     . 

     . 

     12060  0.201150E+01  0.9973E+02  0.1000E+03  0.9973426 

     12070  0.201151E+01  0.9985E+02  0.1000E+03  0.9985242 

     12080  0.201152E+01  0.9997E+02  0.1000E+03  0.9997062 

     12081  0.201152E+01  0.9998E+02  0.1000E+03  0.9998245 

     12082  0.201152E+01  0.9999E+02  0.1000E+03  0.9999428 

Stop - Program terminated. 

 

     Example 1-5?  Enter:  4 
 

        N        PA          QTEST       QCCPS      RATIO 

     19227  0.219253E+01  0.9901E+02  0.1000E+03  0.9900671 

     19228  0.219254E+01  0.9901E+02  0.1000E+03  0.9901407 

     19229  0.219255E+01  0.9902E+02  0.1000E+03  0.9902143 

     19230  0.219256E+01  0.9903E+02  0.1000E+03  0.9902877 

     . 

     19330  0.219356E+01  0.9977E+02  0.1000E+03  0.9976528 

     19340  0.219366E+01  0.9984E+02  0.1000E+03  0.9983900 

     19350  0.219376E+01  0.9991E+02  0.1000E+03  0.9991276 

     19360  0.219386E+01  0.9999E+02  0.1000E+03  0.9998654 

     19361  0.219387E+01  0.9999E+02  0.1000E+03  0.9999391 

Stop - Program terminated. 

 

Example 1-5?  Enter:  5 

 

        N        PA          QTEST       QCCPS      RATIO 

      . 

      8780  0.208792E+01  0.9991E+02  0.1000E+03  0.9991337 
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      8781  0.208793E+01  0.9994E+02  0.1000E+03  0.9993613 

      8782  0.208794E+01  0.9996E+02  0.1000E+03  0.9995889 

      8783  0.208795E+01  0.9998E+02  0.1000E+03  0.9998167 

Stop - Program terminated. 

Having successfully determined the junction pressure Pa, we now evaluate Equations 3.3 – 3.9 

for inlet pressure, branch volume flow rates and wall viscous shear stresses. In our BIFURC-5 code 

(not shown), we added the Fortran logic below and re-compiled the source code.  

105  PPSI1 = PA + (2.*K*L1/R1)* 

     1       ((3.*EN+1.)*QIN3PS/(EN*PI*R1**3.))**EN 

      Q1 = QCCPS 

      Q2 = 16.38706*(EN*PI*R2**3./(3.*EN+1.))* 

     1     (R2*(PA-P2)/(2.*K*L2))**EXPON 

      Q3 = 16.38706*(EN*PI*R3**3./(3.*EN+1.))* 

     1     (R3*(PA-P3)/(2.*K*L3))**EXPON 

      TAU1 = (PPSI1 - PA)*R1/(2.*L1) 

      TAU2 = (PA - P2)*R2/(2.*L2) 

      TAU3 = (PA - P3)*R3/(2.*L3) 

We now re-run the prior Examples 1-5. In Example 1 immediately below, we had considered a 

purely Newtonian flow, with a 10 cp viscosity, previously given in Figure 3. 

C:\>BIFURC-5 <Return> 

Example 1-5?  Enter:  1 

        N        PA          QTEST       QCCPS      RATIO 

       370  0.200371E+01  0.9931E+02  0.1000E+03  0.9931462 

       371  0.200372E+01  0.9958E+02  0.1000E+03  0.9958304 

       372  0.200373E+01  0.9985E+02  0.1000E+03  0.9985145 

       P1 = 2.0111911 (PSI) 

       Q1 = 100.00, Q2 =  49.99, Q3 =  49.99 (CC/S) 

       TAU1 = 0.00018653,TAU2 = 0.00009325, TAU3 = 0.00009325 (PSI) 

 

Stop - Program terminated. 

The results are excellent. Earlier results were based on exact, closed form, analytical solutions 

using the Newtonian model, while here, they follow from a “half-step” iterative numerical scheme 

for Power Law fluids. The exact inlet pressure was earlier seen to be 2.01119 psi, and the iterated 

value obtained here is also 2.01119 psi. Also, the main flow is correctly divided into two branches 

having equal 49.99 cc/s (as compared to 50 cc/s) rates. Finally, the equal shear stresses in 

branches “2” and “3” agree with exact solutions to the fourth decimal place. Computed results for 

Examples 2-5 are given below. 

Example 1-5?  Enter:  2 

 

        N        PA          QTEST       QCCPS      RATIO 

      . 

      . 

      1148  0.201150E+01  0.9966E+02  0.1000E+03  0.9966338 

      1149  0.201151E+01  0.9979E+02  0.1000E+03  0.9978743 

      1150  0.201152E+01  0.9991E+02  0.1000E+03  0.9991152 

 

       P1 = 2.0302393 (PSI) 

       Q1 = 100.00, Q2 =  49.99, Q3 =  49.99 (CC/S) 

       TAU1 = 0.00046797, TAU2 = 0.00028802, TAU3 = 0.00028802(PSI) 

Stop - Program terminated. 

 

Example 1-5?  Enter:  3 

 

        N        PA          QTEST       QCCPS      RATIO 

     . 
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     . 

     . 

     12079  0.201152E+01  0.9996E+02  0.1000E+03  0.9995880 

     12080  0.201152E+01  0.9997E+02  0.1000E+03  0.9997062 

     12081  0.201152E+01  0.9998E+02  0.1000E+03  0.9998245 

     12082  0.201152E+01  0.9999E+02  0.1000E+03  0.9999428 

 

       P1 = 2.0302415 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00046797, TAU2 = 0.00028807, TAU3 = 0.00028807(PSI) 

 

Stop - Program terminated. 

 

Example 1-5?  Enter:  4 

        N        PA          QTEST       QCCPS      RATIO 

     . 

     19358  0.219384E+01  0.9997E+02  0.1000E+03  0.9997178 

     19359  0.219385E+01  0.9998E+02  0.1000E+03  0.9997916 

     19360  0.219386E+01  0.9999E+02  0.1000E+03  0.9998654 

     19361  0.219387E+01  0.9999E+02  0.1000E+03  0.9999391 

 

       P1 = 2.5088389 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00787402, TAU2 = 0.00484695, TAU3 = 0.00484695(PSI) 

 

Stop - Program terminated. 

Example 1-5?  Enter:  5 

        N        PA          QTEST       QCCPS      RATIO 

      . 

      . 

      8779  0.208791E+01  0.9989E+02  0.1000E+03  0.9989061 

      8780  0.208792E+01  0.9991E+02  0.1000E+03  0.9991337 

      8781  0.208793E+01  0.9994E+02  0.1000E+03  0.9993613 

      8782  0.208794E+01  0.9996E+02  0.1000E+03  0.9995889 

      8783  0.208795E+01  0.9998E+02  0.1000E+03  0.9998167 

 

       P1 = 2.2123446 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00310976, TAU2 = 0.00219886, TAU3 = 0.00219886(PSI) 

 

Stop - Program terminated. 

Although there are no Power Law solutions with which to benchmark the above results, the 

calculated inlet pressures and shear stresses appear to be correct in order-of-magnitude as 

suggested by our Newtonian results. We note that the iterations are rapidly convergent and 

require less than a second on Windows computers. 

3.2 Herschel-Bulkley Fluids  

In developing math models and numerical solutions, it is important to “start simple” and work 

towards more complicated problems incrementally. Validation is key at every step of the process. 

For example, we had started with simple Newtonian flow, first considering a two-branch 

bifurcation with Q1 specified initially, and then strategies for additional branches and Power Law 

fluids were considered. 

3.2.1 Analytical and Numerical Approach  

We had first dealt with nonlinear Power Law fluids. Because exact, closed form, analytical 

solutions similar to those found in Newtonian flow are not possible and Newton-Raphson root 

finder methods are not ideal, we devised a straightforward “half-step” solution that takes 

advantage of the monotonic relation between pressure gradient and flow rate. This method was 

validated against exact analytical results using a Newtonian example – such fluids, again, represent 

one limit of the more general Power Law model. We now consider Herschel-Bulkley fluids, which 
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extend Power Law descriptions to include yield stress. The mathematics are more involved, so we 

will similarly validate new results against earlier Newtonian and Power Law calculations. 

Yield Stress Modeling. The classical Herschel-Bulkley pipe flow model combines Power Law with 

yield stress (τy) characteristics, with the result that 

τ = τy + k (−
dU

dr
)
n

(3.10) 

U(r) = k−1 n⁄ (
∆P

2L
)
−1

{
n

n + 1
}

 [(R
∆P

2L
− τy)

(n+1) n⁄

− (r
∆P

2L
− τy)

(n+1) n⁄

] , RprR (3.11)
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Here, the “plug radius” Rp defines the outer extent of the cylinder that moves as a solid body, 

residing at the center of the pipe. Because flows with less than and greater than this radius are 

different, two solutions for the axial velocity U(r) appear above. Our usual starting point, namely, 

mass conservation assuming “Q1 = Q2 + Q3,” requires first a volume integration of U(r) to produce 

Q(r), and second, the explicit representation 

Q1 = πR2
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For Power Law flows, the relation corresponding to Equation 3.15, namely Equation 3.2, was 

solved by a “half-step” method to produce a numerical solution for the junction pressure Pa. Then, 

Equation 3.1 for general Q = {nπR3/(3n + 1)} [R(Pi – Po)/(2kL)]1/n was written for branch “1” in the 
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form  “Q1 = {nR1
3/(3n + 1)} [R1 (Pi – Pa)/(2kL1)]1/n ” and analytically solved to give the inlet 

pressure in Equation 3.6.  

For Herschel-Bulkley fluids, the basic expression for flow rate is not so simple. Equation 3.15 is 

still solved as before in the Power Law case for the junction pressure Pa, but an analytical inlet 

pressure solution such as that in Equation 3.6 is not possible because of pressure nonlinearities. 

However, a numerical solution can be obtained if we write Equation 3.14 for branch “1,” that is,  

Q1
πR3

= k−1 n⁄ (
R1(Pi–P𝑎)

2L1
)

−3

(
R1(Pi–P𝑎)

2L1
− τy)

(n+1) n⁄

 [(
R1(Pi–P𝑎)

2L1
− τy)

2
n

3n + 1
+ 2τy (

R1(Pi–P𝑎)

2L1
− τy)

n

2n + 1
+ τy

2
n

n + 1
] (3.16)

 

and solve for Pi also using a half-step approach. In summary, Q1 is prescribed, while Q2 and Q3 are 

given by the first-two and second-two lines, respectively, on the right side of Equation 3.15. As 

before, the shear stresses are 

τ1 = (Pi–P𝑎)
R1
2L1

(3.17) 

τ2 = (P𝑎– Po,2)
R2
2L2

(3.18) 

τ3 = (P𝑎– Po,3)
R3
2L3

(3.19) 

These follow from the global force balance “πR2ΔP = τw(2πRL),” noting that τy yield stress 

effects have already been considered in the calculations for pressure in Equations 3.15 and 3.16.  

As before, we proceed with validations and re-run Examples 1-5 from our Power Law results, 

first for the zero yield stress case. Because the Power Law and Herschel-Bulkley equations and 

algorithms are completely different and solved by independently written programs, agreement 

with prior results, and with earlier Newtonian results, guarantees correctness. BIFURC-6 (not 

shown) provides the full suite of solutions for Pa, Pi, volume flow rate and viscous shear stress with 

yield effects (this solver also applies to Bingham Plastics for all k and τy values if we set n = 1). 

3.2.2 BIFURC-6 Runs Assuming 𝜏𝑦 = 0 psi (Power Law limit) 

C:\>bifurc-6 <Return>  

Example 1-5?  Enter:  1 

 

      Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

       369  0.200370E+01  0.9905E+02  0.1000E+03  0.9904621 

       370  0.200371E+01  0.9931E+02  0.1000E+03  0.9931461 

       371  0.200372E+01  0.9958E+02  0.1000E+03  0.9958305 

       372  0.200373E+01  0.9985E+02  0.1000E+03  0.9985147 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

      1477  0.201112E+01  0.9906E+02  0.1000E+03  0.9905897 

      1478  0.201113E+01  0.9913E+02  0.1000E+03  0.9912611 

      1479  0.201113E+01  0.9919E+02  0.1000E+03  0.9919319 
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      . 

      . 

      1480  0.201114E+01  0.9926E+02  0.1000E+03  0.9926032 

      1490  0.201119E+01  0.9993E+02  0.1000E+03  0.9993138 

      1491  0.201119E+01  0.1000E+03  0.1000E+03  0.9999846 

 

       Additional calculated quantities ... 

 

       P1 = 2.0111935 (PSI) 

       Q1 = 100.00, Q2 =  50.06, Q3 =  50.06 (CC/S) 

       TAU1 = 0.00018659, TAU2 = 0.00009325, TAU3 = 0.00009325(PSI) 

 

Stop - Program terminated. 

The above results agree to the fourth decimal place with those in Figure 3 obtained using the 

exact Newtonian model and with those in Section 3.1 using the Power Law model. The results of 

Examples 2–5 here also agree with those in Section 3.1 to about four decimal places. This validates 

the “zero yield stress” limit of our solutions. 

Example 1-5?  Enter:  2 
 

      Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

      . 

      1148  0.201150E+01  0.9966E+02  0.1000E+03  0.9966335 

      1149  0.201151E+01  0.9979E+02  0.1000E+03  0.9978742 

      1150  0.201152E+01  0.9991E+02  0.1000E+03  0.9991152 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

      3714  0.203011E+01  0.9903E+02  0.1000E+03  0.9902756 

      3715  0.203012E+01  0.9907E+02  0.1000E+03  0.9906565 

      . 

      . 

      3736  0.203022E+01  0.9987E+02  0.1000E+03  0.9986679 

      3737  0.203023E+01  0.9990E+02  0.1000E+03  0.9990498 

      3738  0.203023E+01  0.9994E+02  0.1000E+03  0.9994319 

      3739  0.203024E+01  0.9998E+02  0.1000E+03  0.9998142 

 

        Additional calculated quantities ... 

 

       P1 = 2.0302393 (PSI) 

       Q1 = 100.00, Q2 =  50.02, Q3 =  50.02 (CC/S) 

       TAU1 = 0.00046797, TAU2 = 0.00028802, TAU3 = 0.00028802(PSI) 

 

       Stop - Program terminated. 

 

       Example 1-5?  Enter:  3 

 

       Solving for junction pressure PA ... 

 

 

 

        N        PA          QTEST       QCCPS      RATIO 

     .    

     12080  0.201152E+01  0.9997E+02  0.1000E+03  0.9997062 

     12081  0.201152E+01  0.9998E+02  0.1000E+03  0.9998245 

     12082  0.201152E+01  0.9999E+02  0.1000E+03  0.9999426 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

     .  

     39252  0.203024E+01  0.9999E+02  0.1000E+03  0.9998869 

     39253  0.203024E+01  0.9999E+02  0.1000E+03  0.9999232 

     39254  0.203024E+01  0.1000E+03  0.1000E+03  0.9999595 

     39255  0.203024E+01  0.1000E+03  0.1000E+03  0.9999962 

 

        Additional calculated quantities ... 

 

       P1 = 2.0302417 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 
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       TAU1 = 0.00046797, TAU2 = 0.00028807, TAU3 = 0.00028807(PSI) 

 

       Stop - Program terminated. 

       Example 1-5?  Enter:  4 

 

       Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

     . 

     19350  0.219376E+01  0.9991E+02  0.1000E+03  0.9991276 

     19360  0.219386E+01  0.9999E+02  0.1000E+03  0.9998652 

     19361  0.219387E+01  0.9999E+02  0.1000E+03  0.9999392 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

     . 

     62900  0.250880E+01  0.9998E+02  0.1000E+03  0.9998283 

     62905  0.250883E+01  0.9999E+02  0.1000E+03  0.9999418 

     62906  0.250883E+01  0.1000E+03  0.1000E+03  0.9999645 

     62907  0.250884E+01  0.1000E+03  0.1000E+03  0.9999871 

 

        Additional calculated quantities ... 

 

       P1 = 2.5088384 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00787401, TAU2 = 0.00484695, TAU3 = 0.00484695(PSI) 

 

       Stop - Program terminated. 

 

       Example 1-5?  Enter:  5 

 

       Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

      . 

      8781  0.208793E+01  0.9994E+02  0.1000E+03  0.9993613 

      8782  0.208794E+01  0.9996E+02  0.1000E+03  0.9995888 

      8783  0.208795E+01  0.9998E+02  0.1000E+03  0.9998168 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

     . 

     24842  0.221233E+01  0.9997E+02  0.1000E+03  0.9997455 

     24843  0.221233E+01  0.9998E+02  0.1000E+03  0.9998258 

     24844  0.221234E+01  0.9999E+02  0.1000E+03  0.9999064 

     24845  0.221234E+01  0.1000E+03  0.1000E+03  0.9999870 

 

        Additional calculated quantities ... 

 

       P1 = 2.2123463 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00310980, TAU2 = 0.00219886, TAU3 = 0.00219886(PSI) 

 

     Stop - Program terminated. 

3.2.3 BIFURC-6 Runs Assuming 𝜏𝑦 = 0.00001 psi 

Having validated our zero yield stress results, we turn to simulations with non-zero yield stress. 

We will re-run Examples 1-5 with a yield of 0.00001 psi, which is consistent with certain medical 

diagnostic examples, for example, Lee, Xue, Nam, Lim and Shin [5]. This larger value is not too 

much more than the values observed clinically but was chosen for numerical study purposes. 

  C:\>bifurc-6-yield-stress <Return> 

 

   Example 1-5?  Enter:  1 

 

         Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

       . 
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       383  0.200424E+01  0.9923E+02  0.1000E+03  0.9923480 

       384  0.200425E+01  0.9950E+02  0.1000E+03  0.9950320 

       385  0.200426E+01  0.9977E+02  0.1000E+03  0.9977157 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

      . 

      1514  0.201224E+01  0.9976E+02  0.1000E+03  0.9975594 

      1515  0.201224E+01  0.9982E+02  0.1000E+03  0.9982303 

      1516  0.201225E+01  0.9989E+02  0.1000E+03  0.9989014 

      1517  0.201225E+01  0.9996E+02  0.1000E+03  0.9995728 

 

        Additional calculated quantities ... 

 

       P1 = 2.0122540 (PSI) 

       Q1 = 100.00, Q2 =  50.02, Q3 =  50.02 (CC/S) 

       TAU1 = 0.00019984, TAU2 = 0.00010651, TAU3 = 0.00010651(PSI) 

 

   Stop - Program terminated. 

 

   Example 1-5?  Enter:  2 

 

         Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

      . 

      1160  0.201202E+01  0.9971E+02  0.1000E+03  0.9971333 

      1161  0.201203E+01  0.9984E+02  0.1000E+03  0.9983738 

      1162  0.201204E+01  0.9996E+02  0.1000E+03  0.9996150 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

      . 

      3759  0.203126E+01  0.9986E+02  0.1000E+03  0.9985799 

      3760  0.203126E+01  0.9990E+02  0.1000E+03  0.9989616 

      3761  0.203127E+01  0.9993E+02  0.1000E+03  0.9993436 

      3762  0.203127E+01  0.9997E+02  0.1000E+03  0.9997258 

 

        Additional calculated quantities ... 

 

       P1 = 2.0312748 (PSI) 

       Q1 = 100.00, Q2 =  50.04, Q3 =  50.04 (CC/S) 

       TAU1 = 0.00048085, TAU2 = 0.00030102, TAU3 = 0.00030102(PSI) 

 

   Stop - Program terminated. 

 

   Example 1-5?  Enter:  3 

 

         Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

     . 

     12202  0.201204E+01  0.9997E+02  0.1000E+03  0.9997334 

     12203  0.201204E+01  0.9999E+02  0.1000E+03  0.9998513 

     12204  0.201204E+01  0.1000E+03  0.1000E+03  0.9999695 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

     . 

     39496  0.203127E+01  0.9999E+02  0.1000E+03  0.9998897 

     39497  0.203127E+01  0.9999E+02  0.1000E+03  0.9999259 

     39498  0.203127E+01  0.1000E+03  0.1000E+03  0.9999623 

     39499  0.203127E+01  0.1000E+03  0.1000E+03  0.9999988 

 

        Additional calculated quantities ... 

 

       P1 = 2.0312746 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00048088, TAU2 = 0.00030098, TAU3 = 0.00030098(PSI) 

 

   Stop - Program terminated. 

It is interesting to compare Example 1 (where the yield stress is zero) with Example 1 here 

(where the yield is 0.00001 psi). In the former case, Pa and Pi are 2.00373 and 2.01119 psi, while 
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here, they are 2.00426 and 2.01225 psi. It is more meaningful to subtract the background “2 psi,” 

to compare 0.00373 with 0.00426 and 0.01119 with 0.01225. The percent increases are 14% and 9% 

respectively, which are large considering that τy = 0.00001 psi.  

Example 1-5?  Enter:  4 

Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

     . 

     19371  0.219437E+01  0.9998E+02  0.1000E+03  0.9998180 

     19372  0.219438E+01  0.9999E+02  0.1000E+03  0.9998918 

     19373  0.219439E+01  0.1000E+03  0.1000E+03  0.9999657 

 

       Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

     . 

     62927  0.250986E+01  0.9999E+02  0.1000E+03  0.9999125 

     62928  0.250986E+01  0.9999E+02  0.1000E+03  0.9999353 

     62929  0.250987E+01  0.1000E+03  0.1000E+03  0.9999578 

     62930  0.250987E+01  0.1000E+03  0.1000E+03  0.9999806 

 

        Additional calculated quantities ... 

 

       P1 = 2.5098739 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00788689, TAU2 = 0.00485995, TAU3 = 0.00485995(PSI) 

 

Stop - Program terminated. 

 

Example 1-5?  Enter:  5 

 

       Solving for junction pressure PA ... 

 

        N        PA          QTEST       QCCPS      RATIO 

      .  

      8791  0.208843E+01  0.9994E+02  0.1000E+03  0.9993680 

      8792  0.208844E+01  0.9996E+02  0.1000E+03  0.9995956 

      8793  0.208845E+01  0.9998E+02  0.1000E+03  0.9998235 

 

        Solving for Q1 inlet pressure P1 ... 

 

        N      PINLET        QTEST       QCCPS      RATIO 

     . 

     24862  0.221333E+01  0.9997E+02  0.1000E+03  0.9997498 

     24863  0.221333E+01  0.9998E+02  0.1000E+03  0.9998301 

     24864  0.221334E+01  0.9999E+02  0.1000E+03  0.9999106 

     24865  0.221334E+01  0.1000E+03  0.1000E+03  0.9999914 

 

        Additional calculated quantities ... 

 

       P1 = 2.2133467 (PSI) 

       Q1 = 100.00, Q2 =  50.00, Q3 =  50.00 (CC/S) 

       TAU1 = 0.00312231, TAU2 = 0.00221136, TAU3 = 0.00221136(PSI) 

 

Stop - Program terminated. 

In closing, we note that the number of evaluations “N” has exceeded 60,000 in some runs. In 

others not reported here, they approach 200,000. This large number arises because we chose 

extremely small ∆P increments to obtain high accuracy solutions. Nonetheless, all cases required 

less than one second on Windows i5 machines. In our work, it was important to evaluate stability 

in the half-step approach, plus robustness and the ability to capture four decimal place accuracy in 

pressures and viscous stresses. 
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3.3 Newtonian and Herschel-Bulkley Examples 

Blood flows in the aorta and larger arteries satisfy Newtonian models for which the viscosity μ 

is constant. The same viscosity value applies regardless of flow rate, vessel radius, position within 

the artery, or even changes in cross-sectional shape. This quantity is easily measured and its role is 

clearly understood. For instance, the Hagen-Poiseuille formula Q = πR4 (Pi – Po) /(8μL) illustrates 

how doubling μ will reduce the flow rate Q by half or how doubling the pressure gradient will 

double Q. These benefits, however, are lost in non-Newtonian flows. Three examples are 

considered. 

For Example 1 for Newtonian flow, we show in Table 1 how our exact solutions provide clinical 

insights useful in studying flow blockage. We assume μ = 10 cp, Q1 = 100 cc/s, R1 = 1.52 cm, L1 = 40 

cm, R2 = R3 = 0.89 cm, L2 = L3 = 20 cm, and P2 = P3 = 2 psi. We have tabulated P1, Pa, 𝜏1 and 𝜏2 (= 𝜏3) 

for simple clogs with decreasing flow areas (found straightforwardly by reducing radii successively 

by 10%) to model worsening blockages (other parameters are also easily considered). The results 

in Runs 8-10 show how severe consequences are expected at the higher blockage levels. (Of 

course, irregular blockages would be more realistic than concentric ones, but our purpose is to 

highlight the severity associated with large obstacles.) 

Table 1 Example 1 – Newtonian results for aorta and iliac arteries. 

Run Area Open P1 (psi) Pa (psi) τ1 (psi) τ2, τ3 (psi) 

1 100% 2.0086 2.0057 0.000055 0.00013 

2 81% 2.013 2.0086 0.000076 0.00018 

3 64% 2.021 2.014 0.00011 0.00025 

4 49% 2.036 2.024 0.00016 0.00037 

5 36% 2.067 2.044 0.00026 0.00059 

6 25% 2.14 2.091 0.00044 0.0010 

7 16% 2.34 2.22 0.00086 0.0020 

8 9% 3.07 2.70 0.0020 0.0047 

9 4% 7.39 5.55 0.0069 0.016 

10 1% 88.3 58.9 0.55 0.13 

As blood vessel diameters decrease, non-Newtonian effects become important. The behavior of 

the “apparent viscosity η,” or the proportionality factor between viscous shear stress and shear 

rate in “τ = ηdγ/dt,” is less clear. Unlike its Newtonian counterpart, η depends on flow rate, 

pressure drop, conduit size and shape, and so on. This means that blood viscosity will vary with 

local radius, pressure gradient, flow rate, geometric deformations and position in the cross-section. 

Thus, the η obtained from a specific lab viscometer shear rate may not be directly relevant to a 

diagnosis, so that the use of apparent viscosity for comparative assessments can be ambiguous.  

However, the use of “n and k,” and “n, k and τy” for Power Law and Herschel-Bulkley fluids is 

unambiguous, because these constants represent true properties of the fluid. Together with Q1, P2, 

P3 and the input geometry, parameters that will vary from case to case, the quantities P1, Pa, τ1, τ2 

and τ3 particular to each scenario can be derived. In clinical work, it is more meaningful to study 

properties with dynamical importance rather than ill-defined viscosities with limited application. 
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Preferred properties include pressure levels that affect bursting, pressure gradients related to flow 

efficiency, wall shear stresses that influence long-term wear and tear, and possibly ratios like 

Q2/Q3 that may affect overall body functions.  

In Example 2 for Power Law fluids, we focus less on viscosity and more on dynamical properties 

as they depend on n and k. We assume Q1 = 100 cc/s, R1 = 1.52 cm, L1 = 40 cm, R2 = R3 = 0.89 cm, 

L2 = L3 = 20 cm, P2 = P3 = 2 psi and τy = 0 psi. Typical results, based on published n and k data, are 

presented in Figure 10 (in the pressure plots, the background 2 psi is removed to highlight only 

dynamic effects). The plotting index L = 1 to 5 corresponds to n = 0.6 to 1.0, while that for M = 1 to 

4 corresponds to k = 0.0000007325 to 0.000002930 (note that L = 5, M = 1 corresponds to a 

reference 5 cp Newtonian fluid). Herschel-Bulkley solutions for τy = 0.000001 psi showed very 

slight pressure and stress increases, so the corresponding figures are not plotted.  

 

Figure 10 Example 2 – Power Law results for P1, Pa, τ1 and τ2 (= τ3). 

Non-Newtonian effects, including yield stresses, are more pronounced in narrower blood 

vessels. In Example 3 for Herschel-Bulkley fluids, instead of repeating Example 2 with a nonzero τy 

value, we consider a system with smaller radii, both with and without yield stress. Comparative 

results for τy = 0 and a large value of τy = 0.00001 psi given in Figure 11 show relative numbers. 

The calculated wall shear stresses in all cases are within the ranges cited in published clinical data.  
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Figure 11 Example 3 – Herschel-Bulkley yield stress effects (tabulated results are given 

because plotted differences are visually imperceptible). 

Power Law model limitations are well known in the literature. Note that the physical 

dimensions of “k” depend on the assumption for “n” – thus, for graphs like those in Figure 10, k 

values must not be compared when n values differ. In our work, the plots suggested another 

deficiency in the Power Law model. The formula Q = {nπR3/(3n + 1)} [R(Pi – Po)/(2kL)]1/n, reducing 

to Hagen-Poiseuille’s law with k = μ when n = 1, is well accepted in Newtonian flow. But suppose 

that Q is fixed, as is the case in blood flow studies. As n → 0, use of L’Hospital’s Rule leads to a 

questionable pressure gradient with (Pi – Po)/L = 2k/R that is unrealistically independent of Q1. This 

can be validated by direct calculations. Thus, caution is suggested in rate-constrained problems 

with small values of n – fortunately, n will typically exceed 0.7 in blood flow analyses. However, 

the same may not be true of some engineering calculations. 

4. Discussion and Conclusions 

While the subject of this paper, relating to non-Newtonian flows in bifurcated networks, 

appears to be one of fundamental importance, a detailed search through the civil, mechanical and 

process engineering literature found few analytically rigorous studies that were not empirically 

motivated. Our methods are based on sound mathematical and physical concepts. Because flows 

with nonlinear rheologies are each associated with their own special complicated details, we 

importantly described all the steps used in algebraic derivations and numerical methods. These 

were validated using exact solutions and cross-checks to guarantee that accurate solutions were 

produced. The authors hope that the body of formulas and procedures developed here will find 

good practical application in both engineering and biological sciences. 
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