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Abstract 

Aging models are important input into wind farm maintenance and financial viability models. 

Aging of wind turbines depends on many factors, including both ambient and usage conditions. 

This paper presents a virtual age based maintenance model for wind turbines considering the 

effect of wind speed and ambient air temperature on turbine aging. Two maintenance 

thresholds (i.e., corrective threshold and preventive threshold) and three repair actions (i.e., 

unscheduled corrective, scheduled corrective and preventive actions) are integrated into the 

maintenance model. The objective is to determine the optimal thresholds values that 

minimize the expected total maintenance costs. A discreet time simulation model is 

developed to produce 20 years of weather and usage scenarios for a single onshore wind 

turbine. The optimization model is formulated as a mixed-integer nonlinear problem and 

solved using the Nelder–Mead method. A numerical example is presented to highlight the 

benefits of the proposed approach. Compared with traditional age-based maintenance, the 

proposed approach can achieve improvement in both availability and costs. The results show 
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up to 50% reduction in maintenance cost as well as the significance of the effects of wind 

speed and ambient air temperature in maintenance planning.  

Keywords  

Preventive maintenance; condition-based maintenance; wind turbine; equivalent age; 

imperfect maintenance; weather conditions; renewable energy 

 

1. Introduction 

Wind power is rapidly emerging as one of most important renewable energy sources in the world. 

There is a significant growth in both size and number of wind turbines globally. This rapid growth 

accounts for 8.4% of the total electricity generation capacity in the United States in 2020 [1]. 

Modern wind turbine is one of the largest machinery with very sophisticated system of components 

and a long service life of 20 years. Hundreds of turbines are often installed together in wind farms 

that are connected to the grid. The significant investment increase in generation capacity comes 

with a key challenge to manage wind farms to achieve the lowest operation and maintenance cost. 

According to the International Renewable Energy Agency (IRENA), maintenance costs account for 

up to 30% of the total levelized cost of energy [2]. A common goal of maintenance is to reduce the 

overall maintenance cost and improve the availability of the systems. Therefore, more effective 

maintenance strategies are needed for successful future growth in wind power industry.  

Maintenance policies are crucial to ensure power availability, turbines reliability and operation 

safety. Despite recent technological advances in condition sensing, Time Based Maintenance (TBM) 

strategy is still widely used in many industries [3]. Condition Based Maintenance (CBM) on the other 

hand, is quickly gaining interest within the wind power industry as more sophisticated sensors and 

complex systems are incorporated into wind turbines. It is critical to operational costs and 

availability to utilize more precise information about remaining turbine useful life to avoid 

catastrophic failures and reduce cost of maintenance. 

The central idea of CBM is to maintain systems or components at exactly the right time, by 

utilizing information about their actual condition to maintain high reliability while reducing 

operating costs. In this context, a trade-off is made between the risk of failure during operation 

(resulting in costly system downtime) and the cost of premature maintenance. Unlike TBM, CBM 

depends less on the failure history and focuses more on inspections and real time data monitoring 

of equipment to predict remaining useful life (RUL) and failure rate. The goal for any maintenance 

policy is to restore the system to a functional state and avoid downtime losses while keeping 

maintenance cost minimized within technical and financial constraints. Hence, decision support 

systems are very critical for CBM policies to be successful. Preventive maintenance (PM) planning is 

a key optimization task in power systems to determine the optimal repair schedules that minimize 

the total cost of operation. 

Traditional PM models are usually formulated as a mixed-integer linear program (MILP) subject 

to reliability constraints [4]. However, typical PM schedules contain little information on the 

degradation evolution of individual turbines. Maintenance optimization models have been 

intensively studied in the literature mostly focusing on two optimality criteria; cost and availability 
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[5-7]. Several multi-objective and multi-component time-based maintenance models for short term 

planning horizon have been proposed to mitigate the risk associated with the traditional TBM such 

as assuming constant operating conditions and depending on historical data [8-10]. Due to the 

complex nature of aging in complex systems, several studies have developed probabilistic 

optimization models with imperfect maintenance [11, 12], failure dependencies [13, 14] or 

economic dependency among components [15, 16]. These maintenance strategies consider the 

economic dependencies between different wind turbines and/or their turbine components. 

The implementation of CBM in wind farms has been studied extensively in the last decade, 

utilizing the deterioration state information to determine the maintenance plan and reduce O&M 

cost [17-19]. Recently, Zhang et al. [20] proposed an opportunistic imperfect maintenance policy for 

wind turbines. The authors proposed a two-threshold policy, where maintenance actions are 

triggered by the first wind turbine to reach the failure threshold. A lower failure threshold is then 

applied to the remaining turbines in an effort to group maintenance actions. Besnard and Bertling 

[21] proposed a CBM strategy using Markov chain to represent the deterioration states of turbine 

blades. They classified the deterioration state based on the severity of the damage. Shafiee et al. 

[22] investigated the impact of environmental shocks on blade cracking. They considered crack 

length threshold to find the optimal CBM policy for a wind farm under harsh marine environments. 

Mazidi et al. [23] proposed a proportional hazard based maintenance model for wind turbines using 

SCADA data to determine the stress conditions of wind turbines. However, they did not consider 

weather conditions or other external factors in their model. Haddad et al. [24] studied the 

advantages of delaying maintenance actions after a prognostic indication to find the optimal 

remaining useful life. Their maintenance approach utilizes health condition prediction information 

to minimize lead time for wind farms. Although these studies propose CBM policies with some 

weather restrictions, they do not necessarily consider the complex weather conditions as a factor 

in reliability models. 

These maintenance models do not account for the impact of the actual weather conditions on 

aging. In absence of observable degradation signals, CBM has better performance when it develops 

a targeted maintenance plan for each wind turbine under variable weather and load conditions. Li 

et al. [25] presented a multi-component age-based opportunistic maintenance model for wind 

farms with environmental shocks. The impacts of the shocks are modeled as a random non-

homogeneous Poisson process. Specific weather conditions as well as age reduction and imperfect 

repairs were not considered in this study. Nielsen et al. [26] developed a degradation model for 

wind turbine blades using a discrete Markov model. The authors proposed a three-threshold 

configuration for failure, inspection and repair. This study however does not consider the 

accessibility limitations due to weather conditions. Byon et al. [27] investigated the weather 

conditions impact on CBM decisions. They proposed a partially observed Markov decision process 

model to obtain a closed-form solution. However, they only considered the impact of weather 

conditions on the accessibility of the farm. The primary objectives of condition monitoring systems 

are to accurately represent the stochastic behaviour of the aging process, assess the system 

reliability and make a maintenance decision. Operating and environmental conditions in many 

scenarios, are easy to identify. Since diagnostic covariates cannot reflect precisely the degradation 

state of the system, decision rules rely on the estimated degradation level reconstructed from these 

noisy covariates [28]. However, in many cases system degradation is hidden, and system failure is 

non-self-announcing [29]. This means the system reveals only its degradation state and its failure 
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through a monitoring procedure. However, some factors that cause the degradation turbine 

components are uncertain and difficult to predict [30]. 

Despite many studies on wind turbine maintenance optimization, including studies that involve 

weather conditions with accessibility constraints, the challenges posed by harsh weather conditions 

in wind farms have not been adequately addressed in the literature. In particular, there are gaps 

related to addressing the degradation of wind turbines and taking into account usage and 

maintenance patterns. To address the above deficiencies, this paper proposes a virtual age model 

for maintenance optimization of a wind turbine under variable weather conditions. The model 

considers different age reduction levels under different maintenance actions and weather 

conditions and investigates the associated economic and technical effects. This paper makes the 

following contributions: 

• Development of comprehensive modeling for wind turbine aging due to ambient air 

temperature and wind speed and the computation of the associated effects. This is typically 

neglected in maintenance optimization studies leading to inaccurate cost models. 

• Incorporation of two-level threshold maintenance simulation with imperfect repairs in the 

optimization problem. Wind turbine maintenance models are often have predetermined thresholds 

values. 

The proposed model utilizes real-time weather information to evaluate system health, with a set 

of maintenance thresholds. The novelty of this model is its ability to (1) simulate operation 

conditions and estimate the equivalent age of the turbine at any given day, (2) leverage location-

specific information in terms of availability and accessibility restrictions, and (3) determine the 

optimal maintenance threshold values event timeline Using field data, mainly from the literature 

and real wind measurements, the case study demonstrates that the proposed method addresses 

practical O&M planning issues and reduces the O&M costs by planning preventive maintenance in 

low wind conditions to avoid failure during harsh weather seasons. 

The rest of the paper is organized as follows: the mathematical formulation of the proposed aging 

model is presented in Section 2; Section 3 presents the solution approach including both the 

simulation and optimization algorithms; Section 4 presents numerical results of different scenarios 

of a wind turbine with the proposed traditional maintenance approach. Three locations for each 

maintenance method are studied in this section. The total cost of maintenance, turbine availability 

and daily costs of operation are analyzed; Section 5 concludes the paper and proposes some 

directions for future work. 

2. Proposed Model 

Consider a wind turbine with repairable components, each subjected to deterioration. Let 𝐿: Ω →

𝑅 be a random variable that represents the lifetime of a wind turbine in a probability space (Ω, 𝐹, 𝑃). 

During their lifetime, we assume turbines deteriorate contentiously until they experience a fault. 

Let 𝐹𝜏(𝑡) be the lifetime distribution function which describes the failure probability before a given 

time  𝑃(𝜏 ≤  𝑡) . In this paper, we assume that the turbine lifetime distribution follows a two-

parameter Weibull distribution 𝐹(𝑡), where 𝑡 denotes current time, with scale parameter 𝜂 and 

shape parameter 𝛽: 

𝐹(𝑡) = 1 − 𝑒𝑥𝑝 [−(
𝑡

𝜂
)
𝛽

] (1) 
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is important to study the effect of weather conditions on wind turbine aging because it has a 

significant impact on the wind turbine performance and the degradation wind infrastructure [31]. 

Neshat et al. [32] proposed a deep learning-based prediction model for short term power output 

forecasting. The authors studied SCADA measurements to analyze the performance of wind turbines. 

In particular, they investigated the impact of wind speed and wind direction on the power output. 

It has been reported [33] that wind turbines located at higher elevations with high wind speed 

conditions, experience higher failure rates. Reder and Melero [34] studied the correlation between 

air temperature and the reliability of wind turbines and concluded that higher ambient air 

temperatures cause higher failure rates. Tavner et al [35] has shown that high humidity can reduce 

the reliability of the drivetrain components. According to Slimacek and Lindqvist [36], external 

weather factors such as ambient temperature, icing and high winds can increase the failure rate of 

wind turbines by a factor of 1.7. 

The traditional approach to preventive maintenance estimates the Weibull parameters using 

historical failure data, then schedule maintenance activities based on mean time to failure (MTTF). 

This approach assumes time independent covariates and linear proportionality with the hazard rate, 

which is in most cases unrealistic. Data-driven techniques, on the other hand, utilize monitored 

operational data related to system health. They can be beneficial when the understanding of the 

system operation is not straightforward or when the system is so complex that developing an 

accurate model is prohibitively expensive. 

Henry and Nachlas [37], developed a virtual age model that overcomes those limitations and 

represents equipment aging in a more accurate model called Equivalent Age. The model reflects the 

continuous degradation in equipment life (which usually differs from calendar time) based on 

operation conditions 𝑋𝑖(𝑡) and usage intensity 𝑌𝑖(𝑡) which are both time dependent. In this paper, 

we adopt this concept to model the equivalent age of a wind turbine subjected to variable wind 

speed and air temperature conditions. While other weather conditions may have impact on wind 

turbine reliability, in this paper we will only consider wind speed and air temperature because they 

have higher impact on wind turbine failures [38] than humidity and icing and they are applicable to 

both onshore and offshore farms as oppose to wave height. 

2.1 Equivalent Age Model 

Consider a wind turbine system with wind speed measures 𝑉(𝑡),  and ambient temperature 

measures 𝑇(𝑡), then the equivalent age 𝛼(𝑡) at any time 𝑡 is: 

𝛼(𝑡) = ∫(𝛼0)
𝑞(𝑘)𝑑𝑘

𝑡

0

(2) 

where 𝛼0 is a nominal aging factor and 𝑞(𝑡) a linear additive function of two time series: wind speed 

(𝑉(𝑡)) and ambient temperature (𝑇(𝑡)): 

𝑞(𝑡) =  𝛿(𝑉(𝑡)) +  𝛾(𝑇(𝑡)) (3) 

This model combined with the Weibull distribution can represent a wide range of applications 

under various assumptions. The equivalent age 𝛼(𝑡)  (described in equation 2) will replace the 

calendar time 𝑡 in (equation 1). If we assume constant wind speed and temperature conditions, this 
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model is identical to proportional hazards models and age is the same as calendar time. Flexibility 

of the model is crucial and provides the means for robust decision making within the CBM field. 

2.1.1 Wind Speed Effect Function 

One of the most important parameters in determining electric power obtained from wind-based 

resources is wind speed. The general equation relating wind power 𝑃𝑤 to swept area (𝐴), wind 

speed (𝑣), density of air (𝜌) , wind turbine power coefficient (𝐶𝑜) and rated power 𝑃𝑤𝑟𝑎𝑡𝑒𝑑  is [39]: 

𝑃𝑤(𝑣) =

{
 
 

 
 

0, 𝑣 < 𝑣𝑖𝑛
1

2
𝜌𝐶𝑜𝐴𝑣

3, 𝑣𝑖𝑛 ≤ 𝑣 < 𝑣𝑟𝑎𝑡𝑒𝑑

𝑃𝑤𝑟𝑎𝑡𝑒𝑑, 𝑣𝑟𝑎𝑡𝑒𝑑 ≤ 𝑣 ≤ 𝑣𝑜𝑢𝑡
0, 𝑣 > 𝑣𝑜𝑢𝑡

(4) 

Assume the turbine experiences nominal degradation rate at the rated wind speed 𝑣𝑟𝑎𝑡𝑒𝑑, and 

negligible degradation below the cut-in wind speed 𝑣𝑖𝑛  and above the cut-out wind speed 𝑣𝑜𝑢𝑡, then 

the effect of the intensity wind speed on the equivalent age model can be defined as follow: 

𝛿(𝑉(𝑡)) = {

𝑣(𝑡)3 − 𝑣𝑟𝑎𝑡𝑒𝑑
3

𝑣𝑟𝑎𝑡𝑒𝑑
3 , if 𝑣𝑖𝑛 ≤ 𝑣(𝑡) ≤ 𝑣𝑜𝑢𝑡

𝛿0, otherwise

(5) 

𝛿0 is a negative number to reflect the slow-down of aging when the wind speed is not within 

operating conditions and the turbine is idle. 

2.1.2 Ambient Temperature Effect Function 

Fiber Bragg Grating (FBG) sensors have been widely used in the literature to study failure modes 

and fatigue related issues of wind turbine blades [40-42]. These studies primarily focus on the 

application of FBG sensors for condition monitoring of thermal strain as a function of temperature. 

The change in ambient temperature causes thermal expansion and thermo-optic effect. The shift 

difference of the Bragg wavelength (𝜆𝐵) (In case of a pure thermal strain) is defined as follow: 

Δ𝜆𝐵
𝜆𝐵

= (𝜖𝑠 + 𝜖𝑒)Δ𝑇 (6) 

where 𝜖𝑠 and 𝜖𝑒 and Δ𝑇 are the thermal expansion coefficient, the refraction index, and the change 

in temperature, respectively. Experimental evidence shows this linear dependence between 

temperature and wavelength shift is valid for fairly large strain and temperature variations [43]. In 

the equivalent age model, let the following equation represents the effect of ambient air 

temperature as a linear function of temperature difference: 

𝛾(𝑇(𝑡)) = {

|Δ𝑇| − Δ𝑇𝑛
Δ𝑇𝑛

, if Δ𝑇 ≠ 0

𝛾0, if Δ𝑇 = 0

(7) 
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𝛾0 is a negative number to reflect the slow-down of aging when the change in ambient temperature 

is zero. Let the equivalent age of a turbine be denoted by 𝜃. Then the Weibull lifetime distribution 

is given as follows: 

𝐹(𝜃) = 1 − 𝑒𝑥𝑝 [−(
𝜃

𝜂
)
𝛽

] (8) 

Equation 8 together with the equivalent age model allows inclusion of wind speed and ambient 

temperature information from the monitored system. 

2.2 Maintenance Model 

Modern wind turbines are equipped with automated alarm systems within the condition 

monitoring equipment so that when a sensor signal exceeds a certain threshold, an alarm is sent to 

a wind farm operator [44]. Several threshold-type maintenance policies have been presented in the 

literature by either maximizing the availability or minimizing total costs. In these policies, a 

component is assigned for maintenance when the conditional probability of failure exceeds a certain 

level threshold value. The conditional probability of failure in the next day 𝑃𝑟(1), can then be 

written as: 

𝑃𝑟(1) =
𝐹(1 + 𝜃) − 𝐹(𝜃)

1 − 𝐹(𝜃)
(9) 

In our proposed maintenance model, two thresholds (preventive threshold 𝑝𝑝𝑚  and corrective 

threshold 𝑝𝑐𝑚) and three types of maintenance actions are considered: 

• Preventive maintenance; a minimal repair with associated cost of 𝐶𝑝  , triggered when the 

probability of failure exceeds the preventive threshold (𝑃𝑟(1)  ≥ 𝑝𝑝𝑚), 

• Scheduled corrective maintenance; a major repair with associated cost of 𝐶𝑅 , triggered 

when the probability of failure reaches the corrective threshold (𝑃𝑟(1)  ≥ 𝑝𝑐𝑚), 

• Unscheduled corrective maintenance; a major repair after an unexpected failure with 

associated cost of failure 𝐶𝐹. 

For simplicity, we also assume that these activities are instantaneous (as shown in Figure 1), i.e., 

the time required to maintain the turbine is negligible relative to its age and thus all maintenance 

activities are assumed to be carried and completed during the same day. However, different costs 

associated with each maintenance type are imposed. 

 

Figure 1 Two-level threshold condition-based maintenance policy. 
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Maintenance actions reduces the equivalent age of the system at the start of the next period by 

a certain proportion 𝑀(𝑡) of the equivalent age at the time of maintenance or failure. We assume 

that weather conditions are monitored continuously over the entire period with inspection interval 

of one day. At the end of each interval, the system is either maintained or no action is taken. We 

assume that maintenance activities at any time are imperfect and thus reduce the equivalent age 

of the system but do not bring the system back to the original state (as good as new). The objective 

of our maintenance model is to find the optimal threshold values such that expected total cost is 

minimized. 

First, we define 𝑥𝑖  and 𝑦𝑖  , as binary variables, to represent the preventive and corrective 

maintenance actions in day 𝑖 as: 

𝑥𝑖 = {
1, if the system is in PM

0, otherwise
(10) 

𝑦𝑖 = {
1, if the system is in CM

0, otherwise
(11) 

The following objective function computes the total cost 𝐶(𝑡)) as a summation of the costs in 

each day 𝑖 based on the cost of; preventive maintenance𝐶𝑃 , corrective maintenance𝐶𝑅 , system 

failure 𝐶𝐹  and loss of production 𝐶(𝑖)𝐿): 

(t)) =∑

{(𝐶𝑃 + 𝐶(𝑖)𝐿)(𝑥𝑖) + (𝐶
𝑅 + 𝐶(𝑖)𝐿)(𝑦𝑖)

+(1 − 𝑥𝑖)(1 − 𝑦𝑖)[𝐹(𝜃(𝑖))(𝐶
𝐹 + 𝐶(𝑖)𝐿)

−(1 − 𝐹(𝜃(𝑖)))𝐶(𝑖)𝐿)]}

𝑁

𝑖=1

(12) 

Any downtime due to delay of corrective maintenance causes loss of production 𝐶(𝑖)𝐿). This 

delay cost is defined as follows: 

𝐶(𝑖)𝐿 = 𝑃𝑤(𝑣(𝑖)) ×𝑊𝑝𝑟𝑖𝑐𝑒 (13) 

where 𝑊𝑝𝑟𝑖𝑐𝑒  is the energy price per 𝑘𝑊ℎ. To account for the imperfect maintenance and its impact 

on the equivalent age, let 𝑀(𝑖) be a maintenance function that acts as an age reduction after a 

maintenance activity in day 𝑖. This definition affects aging behaviour directly after maintenance and 

restores equipment age to a younger state but not to a perfect condition. While the turbine might 

experience some performance degradation after maintenance actions, in this paper we assume that 

the turbine will operate in full power after each maintenance. However, the equivalent age of the 

turbine must be updated to reflect any age reduction due to maintenance. Let 𝑀𝑃(𝑖) and 𝑀𝑅(𝑖) be 

the age reduction for 𝑃𝑀 and 𝐶𝑀 actions respectively: 

𝑀(𝑖) = {

0, if the system is functioning

𝑀𝑃 = 𝑒−
2𝑖
𝐿 , if the system is in PM

𝑀𝑅 = 𝑅, the system is in CM

(14) 

where L is the planned lifetime of the turbine and 𝑅 is a constant proportion of the equivalent age 

at the time of the corrective maintenance. Then the equivalent age 𝜃(𝑖) at any given day 𝑖 is: 
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𝜃(𝑖) = ∑(𝛼0
𝑞(𝑘) −𝑀(𝑘))

𝑖

𝑘=1

(15) 

After each maintenance action, the nominal aging rate 𝛼0 increases by a small increment 𝜆 to 

describe the aging evolution of the system with a faster deterioration rate after each imperfect 

maintenance. Assuming constant weather conditions, this problem can be solved as a simple age-

based maintenance policy. The probabilistic behaviour of aging under different weather conditions 

is often neglected in the condition-based maintenance literature. Another major weather-related 

consideration in wind farm maintenance is the accessibility of a turbine. To ensure safe access to a 

wind farm, weather conditions must be suitable to perform required maintenance. 

To perform maintenance, we assume weather conditions should be within allowed limits during 

the day of maintenance. In this paper, we assume a turbine is only accessible if wind speed is below 

a safe threshold 𝑣𝑠  and the ambient temperature is within the range of (𝑇𝑙  to 𝑇𝑢). Therefore, we can 

rewrite the binary maintenance variables 𝑥𝑖  and 𝑦𝑖  as: 

𝑥𝑖 =

{
 

 
1, if {

(𝑝𝑝𝑚 ≤ Pr(1) < 𝑝𝑐𝑚),
(𝑣(𝑖) < 𝑣𝑠),

(𝑇𝑙 < 𝑇(𝑖) < 𝑇𝑢)

0, otherwise

(16) 

𝑦𝑖 =

{
 

 
1, if {

(𝑃𝑟(1) ≥ 𝑝𝑐𝑚),
(𝑣(𝑖) < 𝑣𝑠),

(𝑇𝑙 < 𝑇(𝑖) < 𝑇𝑢)

0, otherwise

(17) 

Assuming current and near future weather conditions are known, any triggered maintenance 

action is delayed until weather conditions become favorable. When weather conditions are 

unfavorable upon reaching the first maintenance threshold, 𝑃𝑀 work is delayed and the turbine 

continues to operate until the weather becomes favorable. If the turbine fails or the 𝐶𝑀 threshold 

is reached, any delay due to harsh weather incurs 𝐶(𝑖)𝐿  production losses per day because the 

turbine cannot operate until 𝐶𝑀 is completed. 

Determining the next maintenance decision, daily, can only indicate whether maintenance 

actions should be taken in that particular day and may result in lower or higher cost per maintenance 

action. Due to the probabilistic nature of this maintenance model with varying wind speed and 

temperature, it is very difficult to be modeled using analytical models only, as the parameters 

involved are time variant and their values cannot be captured analytically. However, simulation 

models are very helpful to address dynamic conditions in the study of condition-based maintenance. 

3. Solution Approach 

To evaluate the performance of the proposed maintenance model over the 20 years’ service life 

of a wind turbine, weather conditions are required for the entire period. Due to the complexity of 

weather forecasting, we use historical weather data to generate hourly wind speed and 

temperature measurements. To illustrate the stochastic nature of weather conditions, we first fit 

the historical data to a statistical distribution, then use Markov Chain Monte Carlo (MCMC) method 
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to generate N samples of wind speed and temperature profiles. MCMC has been widely used in 

literature to generate synthetic wind speed and wind power time series due to its ability to 

accurately replicate the statistical properties of hourly wind speeds compared to other approaches 

like autoregression and wavelet-based models [45-47]. 

Suppose failure distribution of a wind turbine is known, and the equivalent age values at each 

instant can be computed. The simulation model of the proposed maintenance model can then 

calculate the average cost for each weather profile. Algorithm 1 summarizes the simulation 

procedure. The detailed simulation steps are: 

Step 1: Define model inputs for a specific wind turbine and a specific location. Specify 

Weibull parameters, maintenance costs, age reduction values of each maintenance action, nominal 

wind and temperature effect values, power curve parameters and wind turbine specifications. 

Step 2: Obtain weather data from land weather stations near the selected site. Extract hourly 

wind speed and temperature measurements into monthly time series to capture the seasonal 

variations and trends in weather conditions. Wind speed measurements are typically taken from 

land stations at low height ℎ1. Therefore, all wind speed 𝑣1  values at height ℎ1  are extrapolated 

using the power law to estimating wind speed 𝑣2  values at the hub height ℎ2: 

𝑣2 = 𝑣1 (
ℎ2
ℎ1
)
𝜅

(18) 

where 𝜅 is the power exponent for different types of terrain and atmospheric stability conditions. 

Fit data to their corresponding statistical distributions. Hourly air temperature measurements are 

fit to normal distribution with mean µ and standard deviation 𝜎 [48]. Weibull distribution is widely 

used to model wind speed 𝑣 [49-51]. The probability density function is given by: 

𝑓(𝑣; 𝑐, 𝑘) =
𝑘

𝑐
(
𝑣

c
)
𝜅−1

𝑒𝑥𝑝−(
𝑣
𝑐
)
𝑘

, 𝑣 ≥ 0 (19) 

where 𝑘 and 𝑐 are the shape and scale parameters respectively. This procedure is applied month by 

month to preserve seasonality in wind speed and air temperature. Statistical parameters can be 

different from month to month, meaning each month has an associated Normal and Weibull 

parameters defining hourly air temperature and wind speed distributions from that month. 

Algorithm 1 Proposed simulation procedure 

Input: Global parameters (𝑡𝑚𝑎𝑥 , 𝜂, 𝛽, 𝛼0, 𝛿0, 𝛾0, 𝐶
𝐹 , 𝐶𝑃, 𝐶𝑅 , 𝑀𝑃, 𝑀𝑅 , 𝑝𝑝𝑚, 𝑝𝑐𝑚)  

1: 𝑡 ← zero  

2: 𝜃 ← zero  

3: 𝑡𝑓 ← generate a random failure time. {using Weibull distribution (𝜂, 𝛽)} 

4: for 𝑗 = 1 to 𝑖𝑡𝑒𝑟 do:  

5:    for 𝑖 = 1 to 𝑡𝑚𝑎𝑥  do:   

6:  𝑞(𝑖) ← 𝛿(𝑣(𝑖)) + 𝛾(𝑇(𝑖)) {compute the weather effects} 

7:  θ(i) ← α0
q(i)

+ θ(i − 1)  {compute the equivalent age} 

8:  𝑃𝑤(𝑣(𝑖))  ← using equation (4)  {compute the wind power} 
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9:  𝑃𝑟(1)  ← using equation (9)  {compute the conditional failure 

probability} 

10: if 𝜃(𝑖)  ≥  𝑡𝑓 then  

11: if ((𝑣(𝑖) < 𝑣𝑠) & (𝑇𝑙 < 𝑇(𝑖) < 𝑇𝑢)) then {check weather conditions} 

12:  𝐶(𝑖) ←  𝐶𝑅 + 𝐶𝐹 {maintenance cost due to failure} 

13:  𝑀(𝑖) ← 𝑀𝑅 {age reduction due to corrective 

maintenance} 

14:  𝜃(𝑖) ← 𝜃(𝑖) − 𝑀(𝑖)  {update the equivalent age} 

15:  𝑡𝑓 ← 𝜃(𝑖) + random.weibull(𝜂, 𝛽)  {generate a new failure time}  

16:  𝛼0 ← 𝛼0 + 𝜆  {update the nominal aging rate} 

17:  else  

18:  𝐶(𝑖) ←  𝐶(𝑖)𝐿 {compute delay cost using equation (13)} 

19:  𝜃(𝑖)  ←  𝜃(𝑖 − 1)  {failure age} 

20: end if  

21: else if 𝑃𝑟(1)  ≥  𝑝𝑐𝑚 then  {check corrective maintenance threshold} 

22: if ((𝑣(𝑖) < 𝑣𝑠) & (𝑇𝑙 < 𝑇(𝑖) < 𝑇𝑢)) then {check weather conditions} 

23:  𝐶(𝑖)  ←  𝐶𝑅   {corrective maintenance cost} 

24:  𝑀(𝑖)  ←  𝑀𝑅  {age reduction due to corrective 

maintenance} 

25:  𝜃(𝑖)  ←  𝜃(𝑖)  −  𝑀(𝑖)  {update the equivalent age} 

26:  𝑡𝑓 ←  𝜃(𝑖)+ random.weibull(𝜂, 𝛽)  {generate a new random failure time} 

27:  𝛼0 ← 𝛼0 + 𝜆  {update the nominal aging rate} 

28:   else  

29:  𝐶(𝑖) ←  𝐶(𝑖)𝐿  {compute delay cost using equation (13)} 

30:  𝜃(𝑖)  ←  𝜃(𝑖 − 1)  {turbine is down} 

31: end if  

32: else if 𝑃𝑟(1)  ≥  𝑝𝑝𝑚 then {check preventive maintenance threshold} 

33: if ((𝑣(𝑖) < 𝑣𝑠) & (𝑇𝑙 < 𝑇(𝑖) < 𝑇𝑢)) then {check weather conditions} 

34:  𝐶(𝑖) ← 𝐶𝑃  {preventive maintenance cost} 

35:  𝑀(𝑖) ← 𝑀𝑃  {age reduction due to preventive 

maintenance} 

36:  𝜃(𝑖) ←  𝜃(𝑖) − 𝑀(𝑖)  {update the equivalent age} 

37:  𝑡𝑓 ← 𝜃(𝑖) + random.weibull(𝜂, 𝛽)  {generate a new failure time}  

38:  𝛼0 ← 𝛼0 + 𝜆  {update the nominal aging rate} 

39:   end if  

40:  end if  

41:  end for  

42:   TC(j) ← ∑ C(i)
𝑡𝑚𝑎𝑥

i=1
 {compute total cost for each iteration} 

43: end for  

44: return ← 𝐸(𝑇𝐶)  {compute the expected total cost} 

Step 3: Using MCMC, generate 𝑍  time series of size (𝑚 × 𝑛) of hourly wind speeds 

((v1(⋅), v2(⋅), v3(⋅). . . , vz(⋅)) and ambient air temperatures ((T1(⋅), T2(⋅), T3(⋅). . . , Tz(⋅)) using 

their corresponding distributions previously obtained in Step 2. 𝑇𝑧(𝑖, 𝑗) and 𝑣𝑧(𝑖, 𝑗) represent the 
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values in the weather profile 𝑧  of the ambient temperature and wind speed during hour 𝑖  and 

month 𝑗 . Where 𝑛 the number of months and 𝑚 is represents the number of hours in a month. 

Step 4: Set initial age and time to zero, total simulation time to 𝑡𝑚𝑎𝑥  (hours), the maximum 

number of iterations to  𝑖𝑡𝑒𝑟 . Define initial aging rate 𝛼0  and initial maintenance thresholds 

𝑝𝑝𝑚 and 𝑝𝑐𝑚. Generate the first random failure time 𝑡𝑓 from the Weibull distribution defined in 

step 1. 

Step 5: Start the simulation model for weather profile 𝑧 with discrete time steps in 1-hour 

intervals 𝑖. Calculate hourly weather effects 𝑞(𝑖), cumulative equivalent age 𝜃(𝑖) and output power 

𝑃𝑤(𝑣𝑖) using the IEC 61400-12-1 standard [52]. 

Step 6: Every 24 hours, check 𝜃(𝑖)  against  𝑡𝑓 . If  𝜃(𝑖) < 𝑡𝑓 , then check the conditional 

probability of failure within a day 𝑃𝑟(1) against 𝐶𝑀 threshold 𝑝𝑐𝑚. If (𝜃(𝑖) < 𝑡𝑓  and 𝑃𝑟(1) <  𝑝𝑐𝑚), 

then check 𝑃𝑟(1) against 𝑃𝑀 threshold 𝑝𝑝𝑚. Otherwise, if (𝜃(𝑖) < 𝑡𝑓 and 𝑃𝑟(1) < 𝑝𝑝𝑚) then no 

action is required. Skip steps 7-8. 

Step 7: If 𝜃(𝑖) ≥ 𝑡𝑓  or 𝑃𝑟(1) ≥  𝑝𝑐𝑚  and weather conditions are favorable then perform 

corrective maintenance. Set 𝑦𝑖 to one, 𝑥𝑖  to zero and 𝑀(𝑖) to 𝑀𝑅. Update current equivalent age 

𝜃(𝑖), aging rate 𝛼0, failure time 𝑡𝑓  and maintenance cost 𝐶. If weather conditions are not favorable, 

wind turbine is assumed down for the next 24 hours and production loss cost 𝐶(𝑖)𝐿 is accumulated 

for each 24 hours until weather conditions become favorable. 

Step 8: If (𝜃(𝑖) < 𝑡𝑓) and (𝑝𝑝𝑚 ≤ 𝑃𝑟(1) < 𝑝𝑐𝑚) and weather conditions are favorable then 

perform preventive maintenance. Set 𝑥𝑖  to one, 𝑦𝑖  to zero and (𝑖) 𝑡𝑜 𝑀𝑃  . Update current 

equivalent age 𝜃(𝑖), aging rate 𝛼0, failure time  𝑡𝑓  and maintenance cost 𝐶(𝑖). If weather conditions 

are not favorable, 𝑃𝑀 is delayed until weather conditions become favorable and wind turbine is 

assumed operating until the next inspection. 

Step 9: If 𝑖 < 𝑡𝑚𝑎𝑥 , return to step 5. If 𝑖 ≥ 𝑡𝑚𝑎𝑥  and 𝑗 < 𝑁, calculate total cost 𝑇𝐶(𝑗) and 

return to step 4. If 𝑖 ≥  𝑡𝑚𝑎𝑥  and 𝑗 ≥ 𝑁, terminate simulation and calculate the expected total cost 

𝐸(𝑇𝐶): 

𝐸(𝑇𝐶) =∑
𝑇𝐶(𝑗)

𝑁

𝑁

𝑗=1

(20) 

Step 10: Finally, a minimum search algorithm (Nelder-Mead) is applied to update the initial 

threshold values in step 4 and determine the optimal threshold values 𝑝𝑝𝑚 and 𝑝𝑐𝑚  that minimize 

the expected total maintenance cost 𝐸(𝑇𝐶).  

We follow the procedure of the Nelder-Mead method described in [53] for constrained 

optimization problems. Nelder-Mead method (Algorithm 2) is a gradient free heuristic that uses 

geometric patterns to minimize the objective function in n dimensions space. The procedure 

involves ordering the vertices of the simplex and replacing the worst point with a point reflected 

through the centroid of the remaining vertices. The simplex then can expand away from the worst 

point, contract away from the worst point in one direction, or shrink towards the best point. The 

algorithm terminates when the maximum number of iterations is reached or the difference between 

the best and worst objective function values of the current simplex is smaller than a positive scalar 𝜖. 

Nelder-Mead is suitable to solve our mixed-integer nonlinear problem. It is easy to implement 

and needs on average two function evaluations per iteration. However, it is very sensitive to the 
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initial starting point witch is not desirable to find global minimum. To avoid this issue, we repeat the 

algorithm with randomly generated starting points between the upper bound 𝑥𝑖
𝑈and the lower 

bound 𝑥𝑖
𝐿. The algorithm is implemented in MATLAB using the suggested control parameters in the 

literature [54] as shown in Table 1. 

Table 1 Optimization control parameters. 

Parameter Description Value 

𝑖𝑡𝑒𝑟 Iterations number 1000 

𝑥0 starting point vector 1 

𝑟 reflection coefficient 1 

𝑒 expansion coefficient 2 

𝑐 contraction coefficient 0.5 

𝑠 shrinkage coefficient 0.5 

𝜖 solution change tolerance 10−6 

Algorithm 2 Nelder-Mead Method. 

Input:  

call the simulation algorithm (algorithm 1).  

randomly generate an initial solution 𝑥0(𝑝
𝑝𝑚, 𝑝𝑐𝑚). 

1: repeat  

2: order the vertices of the simplex such that: 𝐸(𝑇𝐶(𝑥0)) ≥ 𝐸(𝑇𝐶(𝑥1)) ≥

𝐸(𝑇𝐶(𝑥2))…… ≥ 𝐸(𝑇𝐶(𝑥𝑛)) 

3: compute the centroid 𝑥𝑔 of all the points: 𝑥𝑔 =
1

𝑛
 ∑ 𝑥𝑖

𝑛
𝑖=1  

4: compute the reflection of 𝑥𝑛  in respect to the centroid: 𝑥𝑟 = 𝑥𝑔 + 𝑟(𝑥𝑔  −  𝑥𝑛)  

5: if 𝐸(𝑇𝐶(𝑥𝑟)) > 𝐸(𝑇𝐶(𝑥𝑛−1)) then 

6: compute the expansion point: 𝑥𝑒 = 𝑥𝑔 + 𝑒(𝑥𝑔  −  𝑥𝑛) 

7:  if 𝐸(𝑇𝐶(𝑥𝑒)) > 𝐸(𝑇𝐶(𝑥𝑟))then 

8:  replace 𝑥𝑛  with 𝑥𝑒 

9: E else 

10:  replace 𝑥𝑛  with 𝑥𝑟 

11: E end if 

12: else 

13:compute the contraction point: 𝑥𝑐 = 𝑥𝑔 + 𝑐(𝑥𝑔  −  𝑥𝑛) 

14:if 𝐸(𝑇𝐶(𝑥𝑐)) ≥ 𝐸(𝑇𝐶(𝑥𝑛)) then 

15: replace 𝑥𝑛  with 𝑥𝑐 

16: else 

17: shrink the simplex 

18: for all 𝑥𝑖  do 

19: replace 𝑥𝑖 with: 𝑥𝑖 = 𝑥𝑔 + 𝑠(𝑥𝑖  −  𝑥𝑔) 

20:  end for 
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21:   end if 

22:  end if 

23: until convergence 

4. Numerical Results 

In this section, we present a numerical example illustrating the proposed maintenance policy. 

We assume that the wind farm maintenance decisions are made on daily basis. Appropriate 

parameter values are selected based on the published data or discussions with our industry partners. 

We present four simulation scenarios to highlight the performance of the proposed model at 

different geographical locations and compare it to traditional age-based models. First, we select a 

specific wind turbine (Enercon E-126 [55] with wind curve parameters as shown in Table 2. We also 

identify three different regions and obtain their historical weather data from the National Oceanic 

and Atmospheric Administration (NOAA) [56]. Hourly data measurements were collected from 15 

land-based weather stations in three states (Texas, California, and Illinois) for the period from 2015 

to 2018. The raw data are then extrapolated from the land station height (ℎ1 = 3m) to hub height 

(ℎ2 = 135) using Equation 18. After fitting the historical wind speed and temperature data with their 

corresponding distributions, MCMC was used to generate 5 stochastic hourly weather condition 

time series for each state for the entire service life of 20 years. Table 3 shows summary statistics for 

the raw historical data. To compare each scenario, we conduct simulations using the same 

parameter values explained in Table 4. We simulate the turbine equivalent age and weather 

conditions for each instance with 100 replications, performed over 7300 days (20 years). Then, we 

obtain the average maintenance cost per day and the failure and maintenance frequencies per year. 

Table 2 Enercon E-126 wind turbine information. 

Parameter Description Value 

𝑃𝑤𝑟𝑎𝑡𝑒𝑑 Rated power (kW) 7580 

𝑣𝑟𝑎𝑡𝑒𝑑 Rated wind speed (m/s) 17 

𝑣𝑖𝑛 Cut-in wind speed (m/s) 2.5 

𝑣𝑜𝑢𝑡 Cut-out wind speed m/s 25 

𝐿 Service life(years) 20 

𝐶0 Maximum power coefficient 0.48 

𝑑𝑟 Rotor diameter (m) 127 

ℎ2 Hub height (m) 135 

Table 3 Summary statistics of raw hourly weather data. 

 Wind Speed (m/s) Air Temperature (°C) 

 max μ σ max min μ σ 

Texas 50 6.5 4 41 -11 20 8.2 

California 43 4.2 3.5 42 -6 15.5 6.9 
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Illinois 36 3.2 2 38 -30 10 11 

Table 4 Reliability and maintenance parameters. 

Parameter Description Value 

𝛽 Weibull Shape 3 

𝜂 Weibull Scale (days) 2400 

𝐶𝑃 PM Cost (1000 $) 38 

𝐶𝑅 CM Cost (1000 $) 63 

𝐶𝐹 Failure Cost (1000 $) 150 

𝑤𝑝𝑟𝑖𝑐𝑒 Wind Price ($/kWh) 0.05 

𝑀𝑃 PM age reduction factor 0.3 

𝑀𝑅 CM age reduction factor 0.6 

𝛼0
 Nominal aging rate 1.3 

𝛿0 Effect of ambient temperature -5 

𝛾0 Effect of idle wind turbine -10 

Table 5 and Table 6 summarize the simulation results of each maintenance scenario under both 

traditional and proposed age models, respectively. The optimal maintenance policy obtained by our 

proposed approach shows remarkable reductions in both failure frequency and maintenance costs 

compared with the traditional age-based approach. The daily maintenance costs are decreased by 

50%, 39.3% and 23.7% for California, Illinois and Texas respectively, demonstrating the cost 

reduction that can be achieved by adopting the proposed strategy. 

Table 5 Optimal maintenance thresholds and costs using the traditional model. 

 Texas California Illinois 

PM Threshold (%) 0.069 0.054 0.109 

CM Threshold (%) 0.105 0.059 0.118 

PM Rate (per year) 0.45 0.6 0.35 

CM Rate (per year) 0.025 0.055 0.007 

Failure Rate (per year) 0.032 0.01 0.035 

Downtime (days/year) 24.8 7.75 10.25 

Maintenance Cost ($/day) 83.0 62.9 69.5 

Table 6 Optimal maintenance thresholds and costs using the proposed model. 

 Texas California Illinois 

PM Threshold (%) 0.081 0.038 0.093 
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CM Threshold (%) 0.127 0.046 0.108 

PM Rate (per year) 0.405 0.29 0.31 

CM Rate (per year) 0.045 0.005 0.007 

Failure Rate (per year) 0.025 0.0165 0.005 

Downtime (days/year) 15.85 3.8 4.35 

Maintenance Cost ($/day) 63.3 31.42 42.2 

We can compare our policy that uses weather information gained from historical data, with 

traditional age-based policies that do not include weather conditions. We compare these policies 

under the same weather accessibility constraints recommended in the literature [57, 58]. We 

assume maintenance can only be carried out if wind speed is below 10 m/s and ambient 

temperature is within the range of −15◦ to 25◦. We use a Weibull-based reliability model, widely used 

in the literature [20, 59] with Weibull parameters and maintenance costs as given in Table 4. 

We repeat this simulation procedure 100 times for each weather profile with different initial 

random failure time and calculate the optimal threshold values that minimize the average daily cost 

of maintenance over the entire period for each scenario. We also track average daily operational 

revenue, average number of unexpected failures and preventive and corrective maintenance, for 

better comparison. To verify that our results from the proposed simulation model and the Nelder-

Mead algorithm are indeed optimal or near optimal, we run our model several times with different 

randomly generated initial feasible solutions. The algorithm is implemented in MATLAB 2018b and 

all experiments are run with an Intel Core i7-4790K 4.0 GHz CPU on Windows 10 machine with 24 

GB RAM. Each simulation run takes 20 seconds on average while the average time till convergence 

is 8.1 minutes. The stopping criteria used to terminate the optimization procedure is an error of 10−6 

of the function values. Figure 2 shows an example of the number of iterations until convergence 

required by the Nelder-Mead algorithm for each weather scenario. 

 

Figure 2 Number of iterations for convergence of the proposed model to the optimal 

solution. 

First, we run the simulation model under traditional age-based preventive maintenance using 

only the Weibull distribution function described in Table 4. In the case of California, the optimal 

preventive maintenance threshold is 0.054 with an average maintenance cost of ($62.9 per day), 

which is twice the average maintenance cost obtained by the proposed model as shown in Table 5. 
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The expected number of failures, PM, CM and downtime days per year are all higher as well. In this 

example, California represent the least harsh environment and thus, under our model the turbine 

will have slower aging and lower failure rate. However, the traditional approach does not take that 

into account, resulting in over maintaining the system over the entire service life.  

Figure 3 shows the best and worst case results for each state from the simulation study with 100 

iterations, where each iteration consists of 5 weather profiles. Moreover, Figure 3 illustrates the 

effect of imperfect maintenance, weather constraints and weather profiles on overall aging of the 

system. 

 

Figure 3 Best and worst case simulation results for each state. 

The lifetime distribution function in traditional models is independent of weather conditions and 

thus the optimal solution may underestimate or overestimate the component lifetimes under 

different usage and weather conditions. In the case of Texas and Illinois, the proposed model shows 

significant improvement in availability over the traditional approach, reducing the average 

downtime from 24.8 days/year to 15.85 days/year in Texas. Texas has harsh weather with a wide 

range of temperatures and high wind speeds, causing higher downtime and revenue losses. The 

failure rate in the Illinois case is also significantly lower under our model (0.005 failure per year) 

compared to (0.035 failure per year) using the traditional approach. 

All scenarios presented in this section are used to illustrate the effect of weather conditions at 

different locations over the same type of wind turbine. The equivalent age is obtained by simulating 
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the proposed model using the optimal threshold values and various weather profiles for all three 

states. The optimal threshold values with the lowest average daily maintenance cost were obtained 

using the Nelder-Mead method. Texas has the highest expected maintenance cost of ($63.3 per day) 

with thresholds values of pcm = 0.081% and ppm = 0.127%. Texas weather profiles have higher wind 

speeds and temperatures on average as presented in Table 2 which results in faster aging process 

and more inaccessible days due to weather constraints. California on the other hand, has the lowest 

expected maintenance cost of ($31.42 per day) with thresholds values of pcm = 0.038% and ppm = 

0.046%. 

As shown in the results, the threshold values are higher under harsh environment reflecting the 

faster aging of the turbine and thus, reaching the thresholds faster. The width of the preventive 

maintenance window (the difference between the two thresholds) is also higher under harsh 

weather as we can see in the case of Texas and Illinois compared to California. This is to allow 

operators more time because of the limited accessibility to the farm due to unfavorable weather 

conditions. The results presented in Table 6 demonstrates the advantage of the proposed model 

over the traditional age-based policy in Table 5 in providing more scenario specific results. 

5. Conclusions 

In this paper we construct a weather-based equivalent age model for choosing the most cost-

effective maintenance actions under specific weather scenarios. We develop a two-threshold 

maintenance simulation model for wind turbines to respond to the time-varying weather conditions. 

We examine the impact of wind speeds and air temperatures on wind turbine maintenance with 

imperfect repairs, accessibility constraints and revenue losses. The proposed simulation model uses 

historical weather data to generate 20-year-long weather measurements for given locations, and 

use equivalent age model with Weibull distribution to estimate wind turbine aging under different 

weather profiles. We show the advantage of our approach to generate scenario-based results that 

are less dependent on generic lifetime distributions. The economic impact of multiple wind and 

temperature profiles with two maintenance levels are evaluated with and without the proposed age 

model. The results show that in all cases, the implementation of age model both reduces the 

average daily cost of maintenance by more than 23% and the average downtime by more than 49% 

when compared to the traditional age-based approach. The proposed model has successfully 

maintained lower number of failures per year and therefore minimized revenue losses. At the 

highest level of wind speed and temperature variations, the results show that our model is capable 

of significantly reducing the total cost by 50% compared to traditional models. Age reduction due 

to imperfect maintenance can be observed in all cases which results in reduction of time between 

maintenance actions. Maintenance frequencies can be significantly reduced when the proposed 

model is applied instead traditional age models.  

There are several aspects in our modeling that warrant further investigation. In this paper, we 

assume that aging can be calculated precisely via monitoring. However, in many cases, aging is a 

stochastic process with more than two conditions involved, requiring to more data intensive models. 

Extending the model to account for other operating and environment conditions would allow for 

more accurate condition-based maintenance policy using the adaptive strength of this model. We 

also assume the entire turbine is one component with known Weibull parameters. We used this 

simplified model to allow for an intuitive and clear demonstration of our proposed approach. In 
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practice, wind turbines should be modeled as a system of components with their own parameters. 

Future work could extend the model to incorporate multiple wind turbines. In this study we assume 

maintenance is instantaneous. However, when a turbine fails, maintenance activities may not start 

immediately and repairing activities may take up to several days. 
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