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Abstract 

A robust mathematical method for the characterization of damage in carbon nanotubes is 

presented the presentation here is limited to elasticity. In this regard, the second and third 

order elastic stiffnesses are employed. All this is based on damage mechanics. The hypotheses 

of elastic strain equivalence and elastic energy equivalence are utilized. A new damage 

variable is proposed that is defined in terms of the surface area. This is in contrast to the 

classical damage variable which is defined in terms of the cross-sectional area. In the 

presentation, both the one-dimensional case (scalars) and the three-dimensional case 

(tensors) are illustrated. 
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1. Introduction 

Carbon nanotubes have been used recently in worldwide applications. Their research is taking 

off at exponential speeds [1-5]. Recent work has been done also on grapheme [6-10]. The aim of 

this presentation is to provide a way to characterize damage inc carbon nanotubes. The authors in 

this respect utilize the principles of continuum damage mechanics. The topic of continuous damage 

mechanics was first proposed by Kachanov [11] and further developed by Lee et al. [12], Voyaadjis 

and Kattan [13-16], Sidoroff [17], Krajcinovic [18], and others; and Kattan and Voyadjis [19-21]. 

In 1958, Kachanov [11] first proposed the concept of effective stress and introduced the theme 

of continuous damage mechanics. Rabotnov[22] and later others [14-16, 20, 21, 23, 24] followed 

closely behind. In this framework, a damage variable is introduced that is defined in terms of the 

cross-sectional area. This damage variable has a zero value for the virgin undamaged material and 

a value of 1 for the case of complete rupture (total damage). 

Research in damage mechanics has progressed very quickly in the past 50 years [12, 13, 17, 19, 

25-35]. In addition, there are also some noteworthy researches on the corresponding topics of 

healing mechanics [24, 36-39]. Some recent research work is considered to be a combined 

damage/repair model for different types of materials. Basaran has introduced a new way to define 

damage based on entropy generation [40, 41]. This work consists of two main parts, which deal with 

the complete theoretical characteristics of carbon nanotube damage within the framework of 

continuous damage mechanisms. More recent work has been done on damage mechanics 

especially for rocks [42-48]. 

One-dimenstional damage in carbon nanotubes is presented in Section 1 in terms of scalars. To 

illustrate this method, both the hypothesis of elastic strain equivalence and the hypothesis of elastic 

energy equivalence have been utilized. Especially for nanomaterials like carbon nanotubes, a new 

damage variable is introduced that is defined based on the surface area as the surface area plays a 

major role in these types of materials. 

Three-dimenstional damage in carbon nanotubes is illustrated in Section 2 in terms of tensor. For 

this purpose, the two hypotheses of elastic strain equivalence and elastic energy equivalence are 

utilized. Furthermore, the damage tensor is defined in terms of the surface area. This damage tensor 

is a generalization of the new damage variable that was introduced in Section1 previously. 

2. One-Dimensional Formulation (Scalars) 

The elastic stress-strain formula for carbon nanotubes is given by the following formula for the 

one-dimensional case using scalars (uniaxial tension) [4]: 

𝜎 = 𝛦𝜀 + 𝐷𝜀2 (1) 

where σ and ε are the stress and strain, respectively, while E and D are the second-order elastic 

stiffness and third-order elastic stiffness, respectively. The purpose of this work is to show the 

damage process and the transition of the damage process within the framework of continuous 

damage mechanics. 

In Continuum Damage Mechanics, the effective stress 𝜎 is given by: 

𝜎 =
𝜎

1 − 𝜙
(2) 
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where φ is the classical damage variable. This damage variable is defined in terms of the loss of 

cross-sectional area due to damage. The effective stress is defined as acting in the virtual 

undamaged structure, while the actual stress acts in the damaged structure of the material. The 

value of the damage variable ranges from 0 (undamaged material state) to 1 (completely broken). 

The purpose of this work is to show the material constants E and D conversion methods in the 

damage process, that is, to show the two relations of the following form 𝐸̅ = 𝐸 𝑓(𝜙) and 𝐷̅ =

𝐷 𝑔(𝜙), where 𝑓 and 𝑔are unspecified functions. The authors will show the explicit expressions of 

the scalar functions where 𝐸̅ and 𝐷̅ are the second-order effective lossless elastic stiffness and the 

third-order effective lossless elastic stiffness, respectively. For this purpose, two classical 

assumptions of elastic strain equivalent and elastic energy equivalent will be used. 

2.1 Scalar Formula Using Elastic Strain Equivalence Assumption 

The first one starts with the assumption of elastic strain equivalence. In this assumption, it is 

assumed that the elastic strain is the same in the deformed/damaged configuration and the 

virtual/undamaged configuration. This assumption can be written as: 

𝜀̅ = 𝜀 (3) 

Write the formula (1) in the effective/undamaged configuration for the barred quantities, as 

shown below: 

𝜎 = 𝐸̅ 𝜀̅ + 𝐷̅ 𝜀̅2 (4) 

Then substitute the strain in equation (3) into equation (4), and substitute the stress in equation 

(2) into equation (4) to get: 

𝜎

1 − 𝜙
= 𝐸̅ 𝜀 + 𝐷̅ 𝜀2 (5) 

Comparing equations (1) and (5), the following conversion equations for the two elastic 

stiffnesses of carbon nanotubes can be immediately obtained: 

𝐸 = 𝐸̅ (1 − 𝜙) (6) 

𝐷 = 𝐷̅ (1 − 𝜙) (7) 

It should be noted from equations (6) and (7) that the two elastic stiffness conversions involve 

the same damage variable. For more elaborate models, two different and independent damage 

variables should be used-one for each elastic stiffness. This avenue of research will be discussed in 

Section 1.3. 

2.2 Scalar Formula Using Elastic Energy Equivalence Assumption 

The sequel discusses how the two elastic stiffnesses can be converted under the assumption of 

elastic energy equivalent. In this assumption, it is assumed that the elastic energy is the same 
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between the deformed/damaged configuration and the virtual/undamaged configuration. The 

mathematical formula of this hypothesis is as follows: 

𝑈̅ = 𝑈 (8) 

where 𝑈 is the elastic energy in the deformed/damaged configuration and 𝑈̅ is the elastic energy in 

the fictitious/undamaged configuration. 

Using equation (1), in the deformed/damaged configuration, the strain energy of carbon 

nanotubes is obtained as follows: 

𝑈 = ∫ 𝜎 𝑑𝜀 = ∫ (𝐸 𝜀 + 𝐷 𝜀2) 𝑑𝜀 =
1

2
𝐸 𝜀2 +

1

3
𝐷 𝜀3 + 𝑐1 (9) 

where 𝑐1is a constant of integration to be determined. Similarly one can show that the elastic energy 

for carbon nanotubes can be written as follows in the fictitious/undamaged configuration: 

𝑈̅ =
1

2
𝐸̅ 𝜀̅2 +

1

3
𝐷̅ 𝜀̅3 + 𝑐2 (10) 

where 𝑐2 is a constant of integration to be determined. Substituting equations (9) and (10) into 

equation (8), and utilizing the fact that 𝑐1 = 0 and 𝑐2 = 0 based on the initial conditions in each 

configuration, one obtains: 

1

2
𝐸̅ 𝜀̅2 +

1

3
𝐷̅ 𝜀̅3 =

1

2
𝐸 𝜀2 +

1

3
𝐷 𝜀3 (11) 

In the next formula, one rewrites equation (4) in the following form: 

𝐸̅ =
𝜎

𝜀̅
− 𝐷̅ 𝜀̅ (12) 

Similarly equation (1) is re-written as follows: 

𝐸 =
𝜎

𝜀
− 𝐷 𝜀 (13) 

Substituting equations (12) and (13) into equation (11) and simplifying, we can obtain: 

1

2
𝜎 𝜀̅ −

1

6
𝐷̅ 𝜀̅3 =

1

2
𝜎 𝜀 −

1

6
𝐷 𝜀3 (14) 

If the simplified assumptions expressed in the following two equations are not made based on 

the above equation (14), it cannot be further proceeded: 

1

2
𝜎 𝜀̅ =

1

2
𝜎 𝜀 (15) 

1

6
𝐷̅ 𝜀̅3 =

1

6
𝐷 𝜀3 (16) 
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People immediately recognized the expression in equation (15) as a hypothesis of the elastic 

energy equivalence of linear elastic materials. Next, it is performed by substituting equation (2) into 

equation (15). After simplifying the obtained equation, the following elastic strain conversion 

equation is obtained: 

𝜀̅ = 𝜀 (1 − 𝜙) (17) 

The next equation substitutes equation (17) into equation (16). After simplifying the obtained 

equation, the following third-order elastic stiffness conversion equation can be obtained: 

𝐷 = 𝐷̅ (1 − 𝜙)3 (18) 

Next, substitute equations (17) and (18) into equation (11). After simplifying the obtained 

equation, the conversion equation of elastic stiffness can be obtained, as shown below: 

𝐸 = 𝐸̅(1 − 𝜙)2 (19) 

Therefore, it can be seen from the two conversion equations (18) and (19) that the two elastic 

stiffnesses of carbon nanotubes are converted in two completely different ways. However, the same 

single damage variable is still used in both cases. The sequel explores the possibility of using two 

different and independent damage variables for the two elastic stiffnesses of carbon nanotubes. 

2.3 Elastic Stiffness Degradation Damage Variables and Surface Area Damage Variables 

In addition, two other scalar damage variables will be studied. The first is the damage variable 

defined by the degradation of elastic stiffness, and the second is the damage variable defined by 

the third-order degradation of elastic stiffness [32, 49, 50]. These two damage variables will be 

compared with the classical damage variables. 

One attempts to define two new distinct and independent damage variables ℓ and 𝑚 defined as 

follows in terms of elastic stiffness reduction: 

ℓ =
𝐸̅ − 𝐸

𝐸
(20) 

𝑚 =
𝐷̅ − 𝐷

𝐷
(21) 

From the above two equations, you can immediately get: 

𝐸̅ = 𝐸 (1 + ℓ) (22) 

𝐷̅ = 𝐷 (1 + 𝑚) (23) 

From equations (20) and (21) it appears that the maximum values of the two damage variables 

ℓ and m are infinity. This is because that the values of E and D tend to zero. However, in practical 

applications, the stiffness does not reduce that much. In addition, if one looks at equation (2) for 

the effective stress, one notices that when the value of the damage variable Ⴔ is 1, the value of the 

effective stress explodes to infinity. Thus the damage variable will approach 1 as its maximum value. 
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Again, it is seen from equation (2) that any value of the damage variable that is beyond 1 is 

meaningless. The maximum value of Ⴔ is 1. By analogy, the authors limit the maximum values of ℓ 

and m to 1 also. 

First, use the elastic strain equivalent assumption proposed in the transformation equation (6). 

One substitutes equation (22) into equation (6). After simplifying the obtained equation, we can 

obtain: 

(1 − 𝜙) (1 + ℓ) = 1 (24) 

The next equation (23) is substituted into equation (7). After simplifying the obtained equation, 

we can obtain: 

(1 − 𝜙) (1 + 𝑚) = 1 (25) 

Comparing equations (24) and (25), one can immediately conclude that for the special case of 

the elastic strain equivalence assumption, the two independent damage variables are the same. The 

conclusion is as follows: 

ℓ = 𝑚 (26) 

The next step is to explore the nature of the relationship between the two independent damage 

variables when using the elastic energy equivalent assumption, as shown in the transformation 

equations (18) and (19). This is a repeat of the previous derivation but for the hypothesis of elastic 

energy equivalence. For this purpose, equation (22) is substituted into equation (19). After 

simplifying the obtained equation, we can obtain: 

(1 − 𝜙)2 (1 + ℓ) = 1 (27) 

Similarly, substituting equation (23) into equation (18) and simplifying the resulting expression, 

we can obtain: 

(1 − 𝜙)3 (1 + 𝑚) = 1 (28) 

Comparing the two expressions in equations (27) and (28), some simple algebraic operations can 

be performed to obtain the following relationship between the two independent damage variables: 

(1 + ℓ)
1
2 = (1 + 𝑚)

1
3 (29) 

Solving equation (29) for ℓ in terms of 𝑚, one obtains: 

ℓ = (1 + 𝑚)
2
3 − 1 (30) 

It is immediately seen from equation (30) that both damage variables ℓ and 𝑚 vanish for the 

virgin/undamaged material. However, when the value of m  reaches 1, then the value of ℓ reaches 

the value 0.587. This means that the maximum damage to the elastic stiffness 𝐸 is only about half 

of the maximum damage to the third-order elastic stiffness 𝐷. The relationship between these two 
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damage variables of elastic stiffness degradation is illustrated further by plotting the expression of 

equation (30) as shown in Figure 1. 

 

Figure 1 Relationship between the two Damage Variables l and m. 

One can get further insight into the relationship between the two damage variables ℓ and 𝑚 by 

writing an approximation to equation (30) that is applicable to small values of damage. This can be 

accomplished easily by writing the Taylor series expansion of the power expression in parenthesis 

of equation (30). The following Taylor series expansion will be utilized:  

 (1 + 𝑚)
2
3 ≈ 1 +

2

3
𝑚 −

1

9
𝑚2 + ⋯ … . (31) 

Only substituting the first two terms on the right side of equation (31) into equation (30), we can 

get: 

ℓ ≈
2

3
𝑚 (32) 

Thus it is seen from equation (32) that for small values of damage, the reduction in the elastic 

stiffness 𝐸 is about two-thirds of the reduction in the third-order elastic stiffness 𝐷. It is also noted 

from Figure 1 that for higher values of damage (approaching 1), the reduction in the elastic stiffness 

𝐸 reduces to about one-half of the reduction in the third-order stiffness 𝐷. This fact can also be 

noted from Figure 1 in the relevant applicable range of values. 

In nanomaterials, surface area is critical. Therefore, it is important to introduce a new damage 

variable, which is defined in terms of surface area reduction. To this end, the new damage variable 

(called the surface area damage variable) is defined as follows: 

𝜙𝑠 =
𝑆 − 𝑆̅

𝑆
(33) 
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where 𝑆 is the surface area in the deformed/damage configuration while 𝑆̅ is the corresponding 

surface area in the fictitious/undamaged configuration. 

If one looks at equation (2) for the effective stress, one deduces immediately that the value of 

the cross-sectional area cannot be 1 or more. The effective stress explodes to infinity when Ⴔ is 

equal to 1. Thus, its maximum value is limited to unity. The same argument holds for the surface 

area damage variable. Although the equation for the effective stress in terms of the surface area 

damage variable is not shown in the manuscript, the effective stress also explodes to infinity when 

the surface area damage variable approaches 1. Thus, its value is limited to unity also. 

Next one writes the following geometric relationships that are applicable for Euclidean 

shapes/solids [51]: 

𝑆 = 𝑃 ⋅ 𝑡 (34) 

𝐴 = 𝛼 ⋅ 𝑃2 (35) 

where 𝐴 is the cross-sectional area, 𝑆 is the surface area, 𝑃 is the perimeter, 𝑡 is the thickness, and 

𝛼 is a shape constant (e.g. 𝛼 =
1

16
 for a square and 𝛼 =

1

4𝜋
 for a circle). 

Starting with the definition of the classical cross-sectional area damage variable as follows: 

𝜙 =
𝐴 − 𝐴̅

𝐴
(36) 

one substitutes for 𝐴 from equation (35) into equation (36), and for 𝐴̅ a similar expression but 

using barred quantities to obtain: 

𝜙 =
𝛼 𝑃2 − 𝛼 𝑃̅2

𝛼 𝑃2
(37) 

Note from equation (37) that it is assumed that the shape constant is not damaged. This is a 

reasonable assumption and can simplify the equation well. Formula (37) is simplified as follows: 

𝜙 = 1 − (
𝑃̅

𝑃
)

2

(38) 

Equivalently the above equation is re-written as follows: 

𝑃̅

𝑃
= √1 − 𝜙 (39) 

Next one substitutes equation (34) for 𝑆 into equation (33), and similar equation for 𝑆̅ but with 

barred quantities to obtain: 

𝜙𝑠 =
𝑃 ⋅ 𝑡 − 𝑃̅ ⋅ 𝑡

𝑃 ⋅ 𝑡
(40) 
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It is assumed that no damage occurs along the thickness 𝑡. In order to draw conclusions and 

simplify the equation, this is a reasonable and necessary assumption. Therefore, equation (40) is 

simplified as follows: 

𝑃̅

𝑃
= 1 − 𝜙𝑠 (41) 

Finally, compare equations (39) and (41) to arrive at the desired relationship: 

1 − 𝜙𝑠 = √1 − 𝜙 (42) 

The above expression is the relationship between the cross-sectional area damage variable 𝜙 

and the surface area damage variable 𝜙𝑠. This relationship is re-written in its final form as follows 

based on equation (42): 

𝜙𝑠 = 1 − √1 − 𝜙 (43) 

It can be seen from equation (43) that for the original/undamaged material, both the cross-

sectional damage variable and the surface area damage variable disappear. Similarly, both variables 

reach the maximum value of 1 at the same time. This can be seen by plotting the relationship of 

equation (43), as shown in Figure 2. 

 

Figure 2 Relationship between the Cross-Sectional Area Damage Variable and the 

Surface Area Damage Variable. 

Indeed, the presentation is mainly theoretical but rigorous. These are two of the main features 

of this work. The figures are indicative of this issue. 

3. Three-Dimensional Formulation (Tensors) 
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Finally, the whole process is extended to (using tensors) the three-dimensional deformation and 

damage state of carbon nanotubes. Classic indicial symbols will be used to represent tensors. For 

this, the following generalization of equation (1) will be used [4]. 

𝜎𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 +
1

2
𝐷𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑘𝑙 𝜀𝑚𝑛 (44) 

where σij and εkl are the components of the second-rank stress and second-rank strain tensors, 

respectively. In equation (44), Eijkl and Dijklmn are the fourth-rank second-order elasticity tensor and 

the sixth-rank third-order elasticity tensor, respectively. Tensorial generalizations of the 

transformation equations (6), (7), (18), and (19) will be formulated. Note that by comparing the 

tensorial equation (44) with the scalar equation (1), one notes that 𝐸 ≡ 𝐸1111 and 𝐷 = 𝐷1111/2. 

Based on equation (44) and using the following derivative derived from the foundation of solid 

mechanics: 

𝜎𝑖𝑗 =
𝑑𝑈

𝑑𝜀𝑖𝑗

(45) 

where 𝑈 is the strain energy in the deformed/damaged configuration, one obtains the stresses. 

Substituting equation (45) into equation (44) and solving for 𝑈  (by integrating the relevant 

expression), one obtains: 

𝑈 =
1

2
𝐸𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 +

1

6
𝐷𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑖𝑗𝜀𝑘𝑙𝜀𝑚𝑛 (46) 

Next one derives the transformation equations for the fourth-rank second-order elasticity tensor 

𝐸𝑖𝑗𝑘𝑙 and the sixth-rank third-order elasticity tensor 𝐷𝑖𝑗𝑘𝑙𝑚𝑛 twice – one time using the hypothesis 

of elastic strain equivalence and another time using the hypothesis of elastic energy equivalence. 

3.1 Tensor Formula Using Elastic Strain Equivalence Assumption 

Start with the assumption of elastic strain equivalence. The strain tensor is represented in the 

following form: 

𝜀𝑖̅𝑗 = 𝜀𝑖𝑗 (47) 

The generalization of the effective stress conversion equation (equation (2)) is usually written in 

the following form within the framework of continuous damage mechanics [14, 15, 17]. 

𝜎𝑖𝑗 = 𝑀𝑖𝑗𝑘𝑙𝜎𝑘𝑙 (48) 

where 𝜎̅𝑖𝑗 is the effective stress tensor (defined in the fictitious/undamaged configuration) and 𝑀𝑖𝑗𝑘𝑙 

is the fourth-rank damage effect tensor. 

Next, use the barred quantity to write the nonlinear elastic constitutive equation of carbon 

nanotubes in virtual/lossless configuration (44): 

𝜎𝑖𝑗 = 𝐸̅𝑖𝑗𝑘𝑙 𝜀𝑘̅𝑙 +
1

2
𝐷̅𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑘̅𝑙 𝜀𝑚̅𝑛 (49) 
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Substituting for the effective stress tensor 𝜎̅𝑖𝑗 from equation (48) into equation (49), one obtains: 

𝑀𝑖𝑗𝑘𝑙𝜎𝑘𝑙 = 𝐸̅𝑖𝑗𝑘𝑙 𝜀𝑘̅𝑙 +
1

2
𝐷̅𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑘̅𝑙 𝜀𝑚̅𝑛 (50) 

Pre-multiplying equation (50) by 𝑀𝑝𝑞𝑖𝑗
−1 , carrying out the relevant multiplications, contractions, 

and simplifications, one arrives at the following equation: 

𝜎𝑝𝑞 = 𝑀𝑝𝑞𝑖𝑗
−1 𝐸̅𝑖𝑗𝑘𝑙𝜀𝑘̅𝑙 +

1

2
𝑀𝑝𝑞𝑖𝑗

−1 𝐷̅𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑘̅𝑙𝜀𝑚̅𝑛 (51) 

Substituting equation (47) into equation (51) (this means replacing the barred strain tensor 

components with unbarred strain tensor components), one obtains: 

𝜎𝑝𝑞 = 𝑀𝑝𝑞𝑖𝑗
−1 𝐸̅𝑖𝑗𝑘𝑙𝜀𝑘𝑙 +

1

2
𝑀𝑝𝑞𝑖𝑗

−1 𝐷̅𝑖𝑗𝑘𝑙𝑚𝑛𝜀𝑘𝑙𝜀𝑚𝑛 (52) 

Finally, the stress tensor equations (44) and (52) are compared, and two conversion equations 

for the fourth and sixth order elastic tensors are obtained: 

𝐸𝑝𝑞𝑘𝑙 = 𝑀𝑝𝑞𝑖𝑗
−1 𝐸̅𝑖𝑗𝑘𝑙 (53) 

𝐷𝑝𝑞𝑘𝑙𝑚𝑛 = 𝑀𝑝𝑞𝑖𝑗
−1 𝐷𝑖𝑗𝑘𝑙𝑚𝑛 (54) 

The above two expressions represent the conversion equations of the fourth and sixth order 

elastic tensors of carbon nanotubes under the assumption that the elastic strains are equivalent. It 

can be seen from the above two equations that both elastic tensors are transformed in exactly the 
same way using the same transformation tensor 𝑀𝑝𝑞𝑖𝑗

−1  in the two expressions. This is not the case 

when using more complex assumptions of elastic energy equivalence, as shown below. 

3.2 Tensor Formula Using Elastic Energy Equivalence Assumption 

Next, using the assumption of elastic energy equivalence, the conversion equations of the fourth 

and sixth order elastic tensors of carbon nanotubes are derived. The mathematical formulation of 

this hypothesis is as follows: 

𝑈̅ = ∫ 𝜎𝑖𝑗  𝑑𝜀𝑖̅𝑗 = ∫ 𝜎𝑖𝑗  𝑑𝜀𝑖𝑗 = 𝑈 (55) 

where 𝑈 is the elastic energy in the deformed/damaged configuration and 𝑈̅ is the elastic energy in 

the fictitious/undamaged configuration.  

Using equation (44), in the deformed/damaged configuration, the strain energy of carbon 

nanotubes is obtained as follows: 

𝑈 = ∫ 𝜎𝑖𝑗  𝑑𝜀𝑖𝑗 = ∫ (𝐸𝑖𝑗𝑘𝑙  𝜀𝑘𝑙 +
1

2
𝐷𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑘𝑙 𝜀𝑚𝑛 ) 𝑑𝜀𝑖𝑗 (56) 

Carrying out the above tensorial integration, and using the relations 𝑑 (𝜀𝑖𝑗 𝜀𝑘𝑙) = 2𝜀𝑘𝑙 𝑑𝜀𝑖𝑗 and 

𝑑 (𝜀𝑖𝑗 𝜀𝑘𝑙 𝜀𝑚𝑛) = 3𝜀𝑘𝑙  𝜀𝑚𝑛𝑑𝜀𝑖𝑗, one obtains: 



JEPT 2021; 3(2), doi:10.21926/jept.2102021 
 

Page 12/17 

𝑈 =
1

2
𝐸𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 𝜀𝑘𝑙 +

1

6
𝐷𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑖𝑗 𝜀𝑘𝑙 𝜀𝑚𝑛 (57) 

Set the integral constant to zero according to the initial conditions. Similarly, we can prove that 

the elastic energy of carbon nanotubes can be written as follows in a virtual/undamaged 

configuration (using the same form of equation (57), but with a barred quantity): 

𝑈̅ =
1

2
𝐸̅𝑖𝑗𝑘𝑙 𝜀𝑖̅𝑗 𝜀𝑘̅𝑙 +

1

6
𝐷̅𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑖̅𝑗 𝜀𝑘̅𝑙 𝜀𝑚̅𝑛 (58) 

The next one starts with the expression of the effective stress tensor of equation (49) and 

rewrites it in the following form: 

𝐸̅𝑖𝑗𝑘𝑙  𝜀𝑘̅𝑙 = 𝜎𝑖𝑗 −
1

2
𝐷̅𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑘̅𝑙 𝜀𝑚̅𝑛 (59) 

Post-multiplying equation (59) by 𝜀𝑙̅𝑝
−1 and carrying out the needed algebraic manipulations, one 

arrives at: 

𝐸̅𝑖𝑗𝑝𝑙 =
1

2
𝐷̅𝑖𝑗𝑟𝑠𝑚𝑛 𝜀𝑟̅𝑠 𝜀𝑚̅𝑛 𝜀𝑙̅𝑝

−1 − 𝜎𝑖𝑗 𝜀𝑙̅𝑝
−1 (60) 

Equation (60) can be written in the deformed/damaged configuration using unbarred quantities 

as follows: 

𝐸𝑖𝑗𝑝𝑙 =
1

2
𝐷𝑖𝑗𝑟𝑠𝑚𝑛 𝜀𝑟𝑠 𝜀𝑚𝑛 𝜀𝑙𝑝

−1 − 𝜎𝑖𝑗  𝜀𝑙𝑝
−1 (61) 

Substituting equations (60) and (61) together with equations (57) and (58) into the elastic energy 

equivalence hypothesis (550), and performing the required algebraic operations, we can get: 

1

4
𝐷̅𝑖𝑗𝑟𝑠𝑚𝑛  𝜀𝑟̅𝑠 𝜀𝑚̅𝑛 𝜀𝑖̅𝑗 𝐼𝑙𝑙 −

1

2
𝜎𝑖𝑗 𝜀𝑖̅𝑗𝐼𝑙𝑙 +

1

6
𝐷̅𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑖̅𝑗  𝜀𝑘̅𝑙  𝜀𝑚̅𝑛

=
1

4
𝐷𝑖𝑗𝑟𝑠𝑚𝑛 𝜀𝑟𝑠 𝜀𝑚𝑛 𝜀𝑖𝑗  𝐼𝑙𝑙 −

1

2
𝜎𝑖𝑗  𝜀𝑖𝑗𝐼𝑙𝑙 +

1

6
𝐷𝑖𝑗𝑘𝑙𝑚𝑛 𝜀𝑖𝑗 𝜀𝑘𝑙 𝜀𝑚𝑛

(62) 

where 𝐼𝑙𝑙 is related to the second-rank identity tensor 𝐼𝑖𝑗 ≡ 𝛿𝑖𝑗. 

In order to proceed further and simplify the equation, it is necessary to assume that equation 

(62) can be decomposed into the following two equivalent equations: 

1

2
𝜎𝑖𝑗  𝜀𝑖̅𝑗 𝐼𝑙𝑙 =

1

2
𝜎𝑖𝑗  𝜀𝑖𝑗  𝐼𝑙𝑙 (63) 

5

12
𝐷̅𝑖𝑗𝑟𝑠𝑚𝑛 𝜀𝑟̅𝑠𝜀𝑚̅𝑛𝜀𝑖̅𝑗 =

5

12
𝐷𝑖𝑗𝑟𝑠𝑚𝑛 𝜀𝑟𝑠𝜀𝑚𝑛𝜀𝑖𝑗 (64) 

where 𝐼𝑙𝑙 = 3 is used to obtain equation (64) above. 
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The expression represented by equation (63) is immediately regarded as the form of the elastic 

energy equivalence hypothesis for linear elastic materials. Substituting formula (48) into formula 

(63), we can obtain: 

𝑀𝑖𝑗𝑘𝑙  𝜎𝑘𝑙  𝜀𝑖̅𝑗 = 𝜎𝑖𝑗  𝜀𝑖𝑗 (65) 

Pre-multiplying equation (65) by 𝜎𝑝𝑞
−1 and simplifying, one obtains: 

𝑀𝑖𝑗𝑝𝑞  𝜀𝑖̅𝑗 = 𝜀𝑝𝑞 (66) 

Solving the effective strain tensor equation (66), the transformation equation of the strain tensor 

can be obtained, as shown below: 

𝜀𝑖̅𝑗 = 𝑀𝑖𝑗𝑝𝑞
−1  𝜀𝑝𝑞 (67) 

Next, continue to derive the transformation equations of the two elastic tensors. Substituting 

the effective elastic strain tensor of equation (67) into equation (64), we can obtain: 

𝐷̅𝑖𝑗𝑟𝑠𝑚𝑛  𝑀𝑟𝑠𝑝𝑞
−1  𝜀𝑝𝑞  𝑀𝑚𝑛𝑘𝑙

−1  𝜀𝑘𝑙 𝑀𝑖𝑗𝑎𝑏
−1  𝜀𝑎𝑏 = 𝐷𝑖𝑗𝑟𝑠𝑚𝑛 𝜀𝑟𝑠 𝜀𝑚𝑛 𝜀𝑖𝑗 (68) 

By performing the required tensor manipulation and contraction to solve equation (68), the 

conversion equation of the sixth-level third-order elastic tensor will be obtained: 

𝐷𝑎𝑏𝑝𝑞𝑘𝑙 = 𝐷̅𝑖𝑗𝑟𝑠𝑚𝑛  𝑀𝑟𝑠𝑝𝑞
−1  𝑀𝑚𝑛𝑘𝑙

−1  𝑀𝑖𝑗𝑎𝑏
−1 (69) 

All that remains now is to find the transformation equation for the fourth-level elasticity tensor. 

To this end, formula (48) can be rewritten as: 

𝑀𝑖𝑗𝑚𝑛
−1  𝜎𝑖𝑗 = 𝜎𝑚𝑛 (70) 

Next, substituting equations (69) and (70) into equation (44), we get: 

𝑀𝑐𝑑𝑗𝑖
−1  𝜎̅𝑐𝑑 = 𝐸𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 +

1

2
𝐷̅𝑎𝑏𝑝𝑞𝑟𝑠 𝑀𝑎𝑏𝑖𝑗

−1  𝑀𝑝𝑞𝑘𝑙
−1  𝑀𝑟𝑠𝑚𝑛

−1  𝜀𝑘𝑙 𝜀𝑚𝑛 (71) 

Pre-multiplying equation (71) by 𝑀𝑒𝑓𝑖𝑗 and solving for the effective stress tensor, one obtains: 

𝜎𝑒𝑓 = 𝑀𝑒𝑓𝑖𝑗 𝐸𝑖𝑗𝑘𝑙  𝜀𝑘𝑙 +
1

2
𝐷̅𝑎𝑏𝑝𝑞𝑟𝑠 𝐼𝑒𝑓𝑎𝑏  𝑀𝑝𝑞𝑘𝑙

−1  𝑀𝑟𝑠𝑚𝑛
−1  𝜀𝑘𝑙 𝜀𝑚𝑛 (72) 

where 𝐼𝑒𝑓𝑎𝑏 represents the fourth-rank identity tensor. Next, rewrite equation (67) in the following 

form: 

𝜀𝑟𝑠 = 𝑀𝑟𝑠𝑖𝑗 𝜀𝑖̅𝑗 (73) 

Substituting equation (73) into equation (72) and simplifying the resulting expression after some 

tensor manipulation, we get: 

𝜎𝑒𝑓 = 𝑀𝑒𝑓𝑖𝑗 𝐸𝑖𝑗𝑘𝑙 𝑀𝑘𝑙𝑝𝑞  𝜀𝑝̅𝑞 +
1

2
𝐷̅𝑒𝑓𝑎𝑏𝑐𝑑 𝜀𝑎̅𝑏  𝜀𝑐̅𝑑 (74) 
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Comparing the equation (74) of the effective stress tensor with the original equation (49) of the 

effective stress tensor, the required conversion equation of the four-level elastic tensor can be 

immediately obtained, as shown below: 

𝐸̅𝑒𝑓𝑎𝑏 = 𝐸𝑖𝑗𝑘𝑙  𝑀𝑒𝑓𝑖𝑗 𝑀𝑘𝑙𝑎𝑏 (75) 

3.3 Surface Area Damage Effect Tensor 

Next one attempts to generalize equation (43) for the surface area damage variable using tensors. 

Let 𝑚𝑖𝑗𝑘𝑙 represent the new surface area damage effect tensor (which is a fourth-rank tensor) that 

corresponds to the scalar surface area damage variable 𝜙𝑠. Then the scalar relation in equation (43) 

can be written as follows using tensors with indicial notation: 

𝑀𝑖𝑗𝑘𝑙 = 𝑚𝑖𝑗𝑚𝑛𝑚𝑚𝑛𝑘𝑙 (76) 

Now the effective stress tensor equation (48) can be generalized as follows: 

𝜎𝑖𝑗 = 𝑚𝑖𝑗𝑚𝑛𝑚𝑛𝑚𝑘𝑙𝜎𝑘𝑙 (77) 

4. Conclusion and Discussion 

The nonlinear elastic constitutive equation of carbon nanotubes is used to establish a damage 

mechanics model to characterize the damage of carbon nanotubes. To this end, several issues were 

discussed. The formula is executed twice-using scalars and tensors. The two parts containing the 

scalar formula and the tensor formula are kept separate. In these two parts, the transformation 

relationship between linear elastic variable/tensor and third-order elastic variable/tensor is derived. 

New damage variables are also derived based on the surface area. This damage variable is very 

useful for studying the damage of nanomaterials such as carbon nanotubes, because surface area 

is critical in these types of materials. The surface area damage variable is compared with the classical 

damage variable based on the cross-sectional area. In addition, a tensor summary of the fourth-

level surface area damage effect tensor is also proposed. 

This a theoretical model based on the surface area damage effect tensor or scalar. This damage 

variable is very useful for studying the damage of nanomaterials such as carbon nanotubes, because 

surface area is critical in these types of materials. The surface area damage variable is compared 

with the classical damage variable based on the cross-sectional area. The theoretical formulation is 

rigorous, however, experimental data on damage are not available at this time to calibrate the 

model for specific materials. 

The model is valid for any configuration as this formulation is fundamental for the nonlinear 

elastic constitutive equation of carbon nanotubes and is used to establish a damage mechanics 

model to characterize the damage in carbon nanotubes. All configurations are valid for using this 

formulation for carbon nanotubes (CNTs) or multiwalled carbon nanotubes (MWCNTs). 
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