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Abstract 

A core feature of convective geothermal resource production is wellbore energy flow Q ~ ρC 

x T x V. E.g., for wellbore fluid of volume heat capacity ρC ~ 4.3MJ/m3∙oC, temperature T ~ 

230oC, and volumetric flow V ~ 50L/s, wellbore heat energy production is Q~ 50MWth ~ 

5MWe. Wellbore fluid flow V =2πr0φv0ℓ for open wellbore length ℓ is given in turn by the 

spatially variable product crustal porosity times crustal fluid velocity v ≡ φv0 at the wellbore 

radius r0. For a geothermal wellbore to be productive (nominal Q ~ 5MWe), locally variable 

bulk inflow rates v = φv0 across crustal volumes of dimension ℓ must be adequate to sustain 

high wellbore flows (nominal V ~ 50L/s). Wide-ranging crustal well productivity statistics 

show that few crustal wells flow at these rates. This is not surprising as local bulk flow ~ 10-2 

m/s needed for production wellbores is decades greater than ambient bulk fluid flow ~ 10-8-

10-7m/s characteristic of natural convective geothermal systems. Such rare high flow locales 

must be found. While existing crustal surveys generally fix resource temperatures T with 
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nominal 500m spatial resolution, as yet no survey technique provides data to locate 

production-grade flow rates at nominal ℓ ~ 50m spatial resolution. In consequence, many 

costly unproductive wells are drilled before sites of productive local geothermal fluid bulk 

flow v = φv0 ~ 10-2 m/s are located. A seismic survey methodology sensitive to crustal flow v 

= φv0 at ℓ ~25m resolution has evolved from multi-channel seismic reflection technology 

applied to the production of shale hydrocarbons. The field-proven seismic flow-imaging 

methodology can be adapted from sedimentary terrains to volcanic terrains through 

appropriate seismic refraction means for generating effective seismic velocity models for 

convective geothermal flow volumes. Numerical simulation for characteristic ambient 

crustal heterogeneous flow distributions v = φv0 at ℓ ~50m resolution shows that travel-time 

data for seismic source energy refracted from deep geothermal wellbores to surface seismic 

sensor arrays can replicate the multi-channel seismic flow-imaging capability demonstrated 

for shale formations. Multi-channel seismic reservoir flow monitor detection and mapping of 

flow-induced seismic emissions in shale formations can be adapted to achieve similar 

mapping of convective geothermal flow system structures with v = φv0 ~ 10-2m/s at nominal 

ℓ ~ 50m resolution. Such seismic emission flow structure maps can greatly reduce the 

uncertainty and hence the cost of drilling effective production wells at brownfield sites and 

assessment/development wells at greenfield sites 
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1. Introduction 

To bring greater certainty to drilling convective geothermal systems, we adopt a new 

perspective on microseismicity through which to map the inherent and often strong crustal 

permeability spatial heterogeneity that creates drilling uncertainty. The new perspective can be 

expressed as “Meqs ~ Permeability”, with the sense that in the ambient crust the 

spatial/magnitude distributions of microseismicity closely follow the spatial/magnitude 

distributions of permeability. An observational procedure using surface seismic array data to 

locate microseismicity associated with permeability can identify high permeability flow sites with 

sufficient spatial resolution to target drilling in convective flow systems. Creating drilling certainty 

by high-resolution flow structure mapping can eliminate many of the 20-30 low productivity 

“exploration” wells now typically required for geothermal resource development. In addition to 

reducing direct drilling costs, mastering well production uncertainty allows more rapid and reliable 

costing of appropriate power generation facilities at brownfield sites, and lowers the cost 

threshold for developing smaller resource plays at greenfield sites. 

Our new microseismicity perspective unfolds through reinterpreting the traditional Gutenberg-

Richter (G-R) frequency-size relation for microseismicity in the ambient crust. We first note that 
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observed ambient crust microseismicity has a lognormal frequency distribution rather than the 

traditional power-law or fractal frequency distribution [1]. We then note that the newly observed 

microseismicity lognormal spatial and size distributions are statistically congruent with the 

lognormal spatial and size distributions of crustal permeability derived from well-log, well-core 

and well-productivity data across a wide range of geological settings [2-4]. The observed statistical 

congruence of ambient crust microseismicity with crustal permeability spans five to six orders of 

microseismicity scale magnitude meq ~ -3 to meq ~ +3. Where once narrow ranges of individually 

identifiable microseismic events have been interpreted to imply isolated faults as fluid conduits 

[5], our new perspective focuses the evidence for systematic microseismicity-permeability 

interactions across mm-km range of permeability scale sizes in the ambient crust [6-8]. 

Systematic interaction between crustal microseismicity and crustal permeability has been 

recently observed in hydrocarbon-bearing shale formations [9-14]. Surface seismic array data 

acquired during stimulation of shale formations can be routinely processed into detailed maps of 

crustal flow structures at 25m spatial resolution. Proceeding from our perspective on ambient 

crustal microseismicity, we seek here to adapt the sedimentary terrain flow-imaging methodology 

to volcanic terrains hosting convective geothermal flow systems [15]. While the seismic wave 

transmission properties of sedimentary and volcanic terrains vary significantly [16, 17], well-log, 

well-core and well-productivity data from the two terrains show similar relations between 

microseismicity and permeability [1-4, 6]. Our stated technology adaptation task thus focuses 

overcoming the difference in seismic wave transmission in orderly sedimentary sequences versus 

disorderly volcanic intrusion/extrusion sequences, with the goal of effectively mapping convective 

geothermal flow system heterogeneity.  

In our discussion, §2 seeks first to be precise about the multi-scale nature of fluid flow in the 

ambient crust. The long-held engineering view based on ignoring heterogeneity by averaging over 

crustal property fluctuations proves to be deeply incompatible with the empirics of ambient 

crustal fluid properties recorded by well-logs, well-cores, and well-production data. In particular, 

the engineering view cannot explain the observed statistics of ambient crust microseismicity. By 

contrast, our empirical view makes direct quantitative connection between observed crustal 

microseismicity and observed crustal permeability at all scales. With fully incorporated ambient 

crustal flow empirics in our discussion, it straightforward for §2 to quantify how detecting 

microseismicity associated with crustal flow at all scales can generate drilling cost savings for 

production wells at brownfield sites and exploration wells at greenfield sites. In §3 we outline the 

systematics of acquiring/stacking multi-channel seismic data to detect low-level reflection imaging 

signals in sedimentary sections, then show via numerical computation how to achieve the parallel 

signal acquisition and processing systematics for volcanic terrains. With affirmative §3 results in 

hand, §4 cites standard drilling costs to quantify how low-cost remote seismic sensing can 

eliminate a great deal of uncertainty in drilling high-cost geothermal wells in order to mobilise 

investor funds for winning clean baseload energy from convective geothermal sites worldwide. 

2. Materials and Methods 

Crustal rock with its ever-present fluid component is very far from a traditional engineering 

material. Engineering materials are typically valued for strong degrees of spatial uniformity and 

predictability, neither of which are conspicuous features of crustal flow systems [1-4, 6]. 
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Expressing crustal flow heterogeneity in terms of engineering materials obscures our 

understanding of the physical origin and nature of the heterogeneity and hinders development of 

operational means for managing crustal flow heterogeneity. Our new perspective on crustal 

microseismicity abandons the engineering sense that large isolated microseismic events dominate 

crustal flow properties, and instead takes microseismicity emissions to be relevant to crustal flow 

on all scales. Large seismic arrays open to the full range of microseismicity data offer geothermal 

operators the means of effectively surveying the inherent crustal flow heterogeneity of their 

resource.  

2.1 Microseismicity as Signifier of the Fluid-Rock Interaction Empirics of Crustal Permeability 

The conventional view of crustal fluid flow treats rock as an elastic continuum punctuated by 

small scale porosity that passively hosts the crustal fluid [18, 19]. Darcy’s mid-19th-century 

groundwater flow empirical relation viewed crustal permeability as analogous to the permeability 

of unconsolidated sands used to filter municipal water supplies [20, 21]. The unconsolidated sands 

analogy for crustal permeability was maintained during the early 20th-century groundwater survey 

support of expanding western US agriculture [22, 23], and passed on to 1930s groundwater and 

hydrocarbon reservoir flow modelling based on the mathematics of heat conduction in thermally 

uniform solids [24-27]. 

For the centenary of Darcy’s law, Hubbert produced the Figure 1 sketch in making a case for 

ignoring small-scale groundwater flow complexities [28, 29]. The historical perception of crustal 

permeability is here made explicit: any complication of groundwater flow at small scales (left 

portion of sketch) in a geological unit inevitably averages out to a quasi-uniform “effective” flow 

property characteristic of that unit; only at the formation scale (right portion of sketch) do flow 

properties undergo significant changes that cannot be averaged over. Hubbert’s Figure 1 sketch 

was later formalised into the familiar concept of the representative elementary volume (REV) as 

an aid to numerical modelling of reservoir flow [30, 31]. 

The underlying but largely unacknowledged reason for Figure 1 and the REV is the desire that 

small-scale and sparsely sampled well-log and well-core data be accepted as properly, or at least 

“effectively”, representative of the groundwater aquifer or hydrocarbon reservoir formation flow 

properties at the reservoir scale. In effective medium theory, small scale well-log and well-core 

flow property sampling can be “upscaled” for reservoir-scale flow modelling [32]. Despite 

considerable early cautionary evidence for the “flaw of averages” [33-36], Figure 1 spatial 

averaging paradigm remains the default position for dealing with crustal flow heterogeneity. 

The Figure 1 sketch implicitly assumes that spatial averages are effectively bounded at all 

significant scales. Such bounded behaviour for random spatial fluctuation sequences occurs only if 

the spatial fluctuations are uncorrelated in the appropriate scale range (the central limit theorem 

[6]). Uncorrelated random fluctuations have well-known statistical and spectral conditions. For a 

random fluctuation sequence of physical values χ such as porosity at a sequence of physical 

locations x, χ(x), to be spatially uncorrelated (and therefore suitably bounded), the N-point 

autocorrelation function A(y) ≡ 1/N ∑i=1…N χ(xi)χ(xi + y) must obey the twin conditions that A(y=0) = 

1 and A(y≠0) = 0 [6]. The associated spectral condition is that the Fourier power-spectrum of χ(x) is 

independent of spatial frequency k, |Χ(k)|2 ~ const in the appropriate scale range kmin < k < kmax. 
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Figure 1 Sketch of Hubbert spatial averaging process for characterising crustal properties 

related to fluid flow in geological formations [28]. At granular scales (left) and formation 

scales (right), spatial fluctuations shown along the vertical axis can be arbitrarily large 

over a given range of crustal volumes ∆V shown along horizonal axis. At reservoir 

scales (center volume range), spatial fluctuations average out to an equivalent flow 

medium with stationary mean value (dashed line). Accordingly, it is tacitly assumed 

that sparse small-scale sampling of reservoir-scale variations provides a statistically 

robust measure of formation flow properties. 

With the physical and statistical conditions lying behind Figure 1 and the REV made explicit, we 

can see unambiguously that no such condition is observed for the actual crust. Well-log rock 

physical property sequences in geological settings worldwide systematically violate the |Χ(k)|2 ~ 

const spectral condition required for Figure 1. Instead, well-log Fourier spectra everywhere obey 

the power-law scaling function |Χ(k)|2 ~ 1/kβ, where β ~ 1.2 ± 0.1, over five decades, 1/km k < 

1/cm, of scale range relevant to all aspects of geological formation and reservoir flow [2, 3, 7, 8]. 

Well-log spectral empiric |Χ(k)|2 ~ 1/k shows that the Figure 1 hypothesis that crustal 

permeability as equivalent to an unconsolidated sand is fundamentally wrong. Whether for 

sedimentary, igneous or metamorphic rock, spatial averages over crustal flow property 

fluctuations are not bounded as hypothesised in Figure 1. The spatial correlation features of 

crustal rock flow properties cannot be adequately represented by equivalent or effective media 

approximations such as the REV or elastic continua that depend on hosting crustal fluids in 

spatially uncorrelated voids [6-8]. 

The Figure 1 spatial averaging hypothesis has effectively conditioned interpretations of crustal 

microseismicity. In a Figure 1 elastic continuum view of crustal porosity and permeability, rock 

failure and fracturing occur largely without reference to hosted fluids [18]. The Griffith 

microfracture concept of metal failure applied to rock fracture processes effectively limited the 

role of crustal fluids to pressure relief of confining stresses acting on rock interfaces [18, 37]. In an 

elastic continuum framework, crustal microseismicity becomes a structureless agglomeration of 

frictional slips on spatially uncorrelated fracture surfaces of random size and orientation [18, 38]. 

The long-standing empirical Gutenberg-Richter (G-R) relation, N(m) ~ 10(-b x m), became regarded 

as a standard organisational principle for crustal seismicity by giving the statistical expectation 

number N(m) of seismic slip events larger than successive event magnitudes m [1, 39]. As the G-R 
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empirical constant b typically has a narrow range of values 0.75 < b < 1.5, the G-R relation came to 

be seen as a fractal, N(L) ~ 1/LD, relating event numbers to event dimension L with fractal 

dimension D [1, 40, 41].  

Figure 2 illustrates the standard G-R relation applied to seismic activity in Indonesian geothermal 

fields [42]. The empirical G-R relation parameter b is evaluated as the slope of the straight-line 

power-law fit to the observed decline trend (red-squares) for high magnitude cumulative event 

numbers log(N(m)) at successive event magnitudes m. Of greater interest to us, however, is the 

raw numbers of events given in Figure 2 by the open triangles. Not only do raw event numbers 

steadily decline for successively larger event magnitudes, but raw event numbers steadily decline 

for successively smaller event magnitudes. The standard Gutenberg-Richter relation has no physical 

explanation for the event number decline at small magnitudes (beyond assuming observational 

deficiencies [1]). Moreover, while the cumulative data format given by the red squares manifestly 

has no physical meaning, the format somewhat masks the messy raw event count that 

conspicuously fails to match the standard G-R relation at low event magnitudes. 

 

Figure 2 Microseismicity event numbers log10(N) as a function of event magnitudes m 

observed at Indonesia geothermal fields [42]. Triangles denote recorded event 

numbers for each magnitude interval. Squares denote cumulative recorded event 

numbers N>m, the number of events having magnitudes ≥ m. The cumulative data 

format has no physical significance but produces a more stable curve with which to 

evaluate the purely statistical b-value parameter. The cumulative data format disguises 

the event number decline for which the standard G-R relation had only a loose 

speculative explanation in terms of large numbers of supposed events too small to be 

detected [1]. MC in the plot indicates the magnitude at which the seismic network is 

“complete”, i.e., the magnitude at which seismic networks are supposed to begin to 

lose event count due to observational shortcomings. 
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The small-magnitude event number decline in fitting the G-R relation to microseismicity is 

historically ascribed to failure of seismic networks to record the very large number of supposed 

events that occur according to the standard G-R power-law trend at low magnitudes [1, 42-46]. In 

Figure 2, the quantity labelled MC is the event magnitude at which it is estimated that the event 

catalogue is “complete”. By hypothesis, all microseismic events of magnitude m > MC that 

occurred are recorded, while for events of magnitude m < Mc, progressively fewer events than 

expected for the standard G-R are detected. 

Figure 3 presents our alternative physically based analysis of the crustal microseismicity event 

size distribution [1-4]. Instead of the Figure 2 power-law fit restricted to the high magnitude limb 

of the microseismicity number distribution, Figure 3 shows that a class of lognormal distributions 

track the entire range of observed microseismicity event number distributions, duly accounting for 

event numbers for both low-magnitude and high-magnitude events. While microseismic network 

observational deficiencies likely reduce the number of low magnitude events detected [1], the 

fidelity of the Figure 3 lognormal curve fits over the entire magnitude range indicates that 

incidental observational defects are not the primary cause of microseismicity event number count 

declines seen in Figure 2 triangle data (cf. [1] for further details).  

 

Figure 3 Figure 2 Indonesia geothermal field microseismicity magnitude-frequency 

distribution (red circles) matched to a sequence of three crustal permeability 

distributions (blue traces). The crustal permeability frequency distribution curves are 

given by the permeability function κ ~ exp(αφ) evaluated for empirical parameter 

values α = 16:3:22 for the fixed normal porosity φ distribution shown in the lower right 

plot. The best fit distribution curve parameter, α ~ 19 with φ ~ 0.2, corresponds to the 

empirical condition αφ ~ 3-4 observed for crustal porosity-permeability data worldwide 

[2-4]. The decline of microseismicity event numbers for low magnitudes occurs for 

reasons of crustal physics rather than seismic network observational deficiency [1]. 

Confining the standard G-R power-law relation to high magnitude events poorly 

represents the underlying physics of ambient crust microseismicity [1]. 



JEPT 2020; 2(3), doi:10.21926/jept.2003012 
 

Page 8/28  

The Figure 3 lognormal fit to the Figure 2 distribution of microseismicity event sizes is not an 

incidental result of statistical curve fitting. Rather, from Figure 2 and Figure 3, we can infer that 

the standard Gutenberg-Richter power-law scaling relation fails to represent a fundamental set of 

fluid-rock interaction physical processes described in [2-4] that occur at all scales in the ambient 

crust and generate the spectral empiric |Χ(k)|2 ~ 1/k [7, 8]. The observed 1/k power-law scaling 

empiric arises as crustal rock undergoes consolidation from high-porosity disordered uppermost 

crustal sediment granularity to low-porosity ordered lower-crust ductile metamorphic granularity. 

Crustal fluids play an essential role in consolidation by mediating the change in pore-connectivity, 

i.e., permeability, of the consolidating rock. Pore connectivity is a statistical phenomenon that 

conditions the transition from grain-scale disorder in the disaggregated uppermost crust to grain-

scale order in the aggregated lower crust. Disordered granularity in the disaggregated uppermost 

crust is characterised by uncorrelated random fluctuations with flat spectral flat power-spectra 

|Χ(k)|2 ~ 1/k0 ~ const. Ordered granularity in the aggregated lower crust is characterised by highly-

correlated random fluctuations with steeply declining spectral power-spectra |Χ(k)|2 ~ 1/k2 arising 

from the macroscopic ductile flow interfaces of lower crust metamorphics. The order-disorder 

transition in crustal granularity observed in the seismic crust is an example of second order 

thermodynamic phase changes such as the ferromagnetic state, water at its critical point, and 

critical opalescence in binary fluids [3]. 

We can interpret the lognormal distribution of microseismicity in Figure 2 and Figure 3 in terms 

of the crustal permeability empiric κ(x,y,z) ~ exp(αφ(x,y,z)) [2-4, 6] providing a physical basis for 

microseismicity event number distributions. The crustal permeability empiric derives from the 

highly attested well-core poroperm relation, δφ ~ δlog(κ), for which the proportionality constant α 

is widely attested to obey the constraint αφ ~ 3-4 for mean formation porosity φ [3]. Figure 3 gives 

the best fit to Figure 2 microseismicity magnitude distribution for α ~ 19; for a porosity 

distribution with φ ~ 0.2, α ~ 19 yields αφ ~ 4. The Figure 3 crustal poroperm property αφ ~ 3-4 for 

geothermal domain microseismicity thus accords with crustal microseismicity observed in crustal 

domains from basement rock with mean porosities φ < 1% to reservoir rock with high mean 

porosities φ > 25% [3]. In contrast to the standard G-R interpretation of half of microseismicity 

event populations, the Figure 3 fit to Figure 2 microseismicity data is essentially a zero-free-

parameter prediction for the range of event magnitudes derived from fundamental crustal rock-

fluid interaction physics occurring at all scales [2-4, 6-8]. 

Two important crustal factors emerge from the Figure 3 interpretation of the Figure 2 

geothermal domain microseismicity magnitude-frequency distribution. First, microseismicity is 

inherently coupled to fluid-rock properties of crustal rock rather than to purely elastic fracture-

mechanical properties as has been long and widely supposed [18, 19]. Second, lognormal 

permeability/microseismicity distributions κ ~ exp(αφ) are intrinsically associated with the spatial 

connectivity property of crustal flow systems in general and geothermal flow systems in particular 

[3]. In light of these crustal empirical factors, we can posit the need to directly observe the large-

scale spatially erratic continuity flow structures as a routine feature of managing geothermal 

resource production. §2.2 expands on this feature of ambient crustal flow distributions. 

2.2 Quantifying Crustal Flow Velocity Heterogeneity v = φv0 

Figure 2 and Figure 3 give microseismicity-based evidence that permeability spatial variations 
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κ(x,y,z) ~ exp(αφ(x,y,z)) pervade crustal volumes at all scales to influence the distribution of 

ambient fluid-related slip event magnitudes. Building on the microseismicity evidence for crustal 

fluid-rock interaction, we can estimate the impact of crustal fluid flow velocity heterogeneity on 

geothermal reservoir wellbore energy production Q ~ ρC x T x V, where wellbore fluid flow V = 

2πr0φv0ℓ is controlled by spatially variable crustal fluid flow v = φv0 in the vicinity of the wellbore. 

The Figure 2 and Figure 3 lognormal microseismicity event magnitude distributions invalidate 

the Figure 1 assumption that crustal spatial flow properties exhibit the spatial fluctuation spectral 

condition |Χ(k)|2 ~ 1/k0 ~ const. Crustal flow simulation in Figure 4 illustrates how spatial flow 

connectivity structures controlled by the Fourier spectral power-law scaling function |Χ(k)|2 ~ 

1/kβ, β ~ 1.2 ± 0 affect crustal permeability distribution κ(x,y,z) ~ exp(αφ(x,y,z)). Well-log data 

attest that this crustal spatial correlation property holds across the five decades of scale range 

1/km < k < 1/cm relevant to geothermal resource production [7, 8]. The overlaid red and blue 

synthetic 2D flow distributions in Figure 4 are controlled by the spatially correlated random 

porosity fluctuations that are inherent material features of the ambient crust. 

 

Figure 4 Overlay of two fluid velocity fields v = φv0 (red, blue arrows) for crustal 

permeability sections generated by two random number realisations of spatially 

correlated random porosity fields with |Χ(k)|2 ~ 1/k spectral power scaling [7, 8]. 

While such velocity fields have the same population of high- and low-flow areas, the 

spatial organisation of the velocity fields is subject to essentially infinite variety. 

Drilling in the vicinity of high-flow clustering is more productive than drilling in the 

vicinity of low-flow clustering. No sparse small-scale sampling algorithm suffices to 

represent the illustrated large-scale flow variations significant to convective 

geothermal wellbore production. Instead, to locate the high-flow clusters for optimal 

drilling, crustal fluid flow variations v = φv0 need to be mapped at the scale of interest. 
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It is visually evident from the Figure 4 velocity field V that some arbitrarily located wells will be 

good producers (i.e., have large Q), while many will be poor producers (i.e., have low Q). Figure 5 

histograms show the result of statistical evaluation of Figure 4 flow field v = φv0 realisations. The 

population of velocity amplitudes is lognormally distributed, as expected from the underlying 

crustal permeability distribution κ(x,y,z) ~ exp(αφ(x,y,z)). 

The high-flow velocity structures flagged as red histogram bars in Figure 5 may be statistically 

correlated with high magnitude microseismicity [5], but it is not clear how strongly microseismicity 

is correlated with the high-connectivity crustal flow structures that constitute a convective 

geothermal flow system. No claims for wellbore drilling targeting are made for high magnitude 

microseismic event locations [5]. Further, standard microseismicity events are typically too poorly 

located to function as a reliable map of crustal fracture-connectivity fluid flow structures that 

reservoir operators can target for production well drilling [5].  

 

Figure 5 Normalised lognormal distributions of crustal fluid velocity field v = φv0 

amplitudes for four spatially- correlated random porosity fields. Red histogram bars 

denote the high-flow velocity structures v = φv0 that would be logical targets for 

drilling high production Q ~ ρC x T x V wellbores for V = 2πr0φv0ℓ. Histogram axes are 

normalised to maximum value of computed crustal flow velocity v = φv0. There may be 

a statistical correlation between the high flow events and high magnitude microseismic 

events, but no such correlation has been established, and microseismicity event 

location is too poor to provide useful drilling targets [5]. 

Figure 6 compares the distribution of Figure 4 fluid flow velocity structure amplitudes (left) 

with the distribution of convective geothermal production well outputs Q ~ ρC x T x V (right) 

generated by producing fields worldwide [47]. Combining Figures 2, 3, 4, 5, 6, we see that the 
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physical and statistical features of crustal flow velocity heterogeneity V are quantitatively 

consistent across a range of observations (microseismicity and well-log/well-core data), scales (cm 

to km), and locations (geothermal fields, basement rock, aquifers, hydrocarbon reservoirs). 

 

Figure 6 Lognormal distribution of Figure 4 synthetic fluid flow velocity amplitudes at 

left plotted in format of convective geothermal field lognormal well-productivity 

distribution at right [47]. Velocity distribution horizonal axis (left) normalised to 

observed megawatts of electrical energy production MWe on horizontal axis (right). 

Figure 4 crustal flow velocity field amplitude distributions are in quantitative 

agreement with the observed distribution of convective geothermal well productivity 

worldwide.  

 

Figure 7 The average wellbore output Q ~ ρC x T x V MW as a function of number of 

wells drilled in Indonesia geothermal fields [48]. 

Our discussion of wellbore flow Q ~ ρC x T x V culminates with the Figure 7 exhibit of the 

operational consequences of the standard treatment of crustal fluid flow heterogeneity in 

convective geothermal resources. In absence of reliable forms of convective geothermal flow 

structure survey technology to locate the high value flow locations v = φv0 illustrated in Figure 4, 
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historical wellbore performance Q ~ ρC x T x V exploration is limited to the slow and costly method 

of locating high production well flow V = 2πr0φv0ℓ structure by drill bit [48]. 

Three consequences of lognormal distributions of crustal permeability affect wellbore flow 

velocity heterogeneity V = 2πr0φv0ℓ controlled by Figure 4 crustal flow variations v = φv0: 

(i) Early drilling is inefficient as adequately resolved flow-structure information v = φv0 is 

lacking; 

(ii) The physical origin of lognormal distributions of permeability imply that spatial flow 

structure variations v = φv0 inherently raise the issue of resource survey spatial resolution relevant 

to drilling targets; 

(iii) Unresolved flow structure variations force average well production for all wells shown in 

Figure 7 to be nearly 50% of the average well production for “successful” wells; i.e., with 

inadequate knowledge of flow spatial variation more than 50% of geothermal drilling expenditure 

is a “sunk cost”. 

If follows that in principle surface sensor surveys that can accurately identify the wellbore flow 

structure spatial variations V = 2πr0φv0ℓ controlled by crustal flow variations v = φv0 illustrated in 

Figure 4 can give geothermal operators prospects for: 

(i) Systematically reducing sunk costs; 

(ii) Reducing many early stage development drilling failures; 

(iii) Promoting small field development through lowered exploratory well drilling costs. 

3. Results 

Seismic emissions from fluid flow crustal flow velocity structures v = φv0 can be reliably and 

cost- effectively imaged by multi-channel seismic data processing developed for monitoring the 

stimulation and production of shale formation hydrocarbons at spatial resolutions of order 25m [9-

15]. Tomographic Fracture Imaging (TFI) builds on the multi-channel seismic reflectivity data 

acquisition and processing technology perfected in the search for and production of hydrocarbon- 

hosting stratigraphic traps in layered geological basin sedimentary sequences [16]. By using large 

arrays of a state-the-art stand-alone seismic sensor stations, TFI has demonstrated ability to 

acquire and process large amounts of seismic data to reliably detect and locate small-level seismic 

emissions associated with spatially and temporally persistent crustal flow structures. It should be 

explicitly noted that TFI flow imaging precisely targets the inherent crustal large-scale poro-

connectivity structures (Figure 4) that emit low-level seismic energy in direct proportion to spatial 

and temporal flow-connectivity [6-8, 9-14].  

Application of TFI from sedimentary settings to convective geothermal flow structure settings 

requires adaptation of reflection seismics technology. In this section, we first sketch existing field 

proven TFI acquisition/processing achieved via seismic velocity models gained from reflection 

seismic imaging in ordered sedimentary crustal sections, then describe the data 

acquisition/processing adaptation needed to deploy TFI methodology in disorderly convective 

geothermal terrains that do not admit of seismic reflection velocity structures. 

3.1 The principles of TFI Seismic Array Crustal Velocity Structure Imaging in Sedimentary Terrains 

Sedimentary basin sequence geological layers typically extend laterally for kms and are 

demarcated by small but laterally consistent changes in seismic wave speed across the layer 
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interfaces. The changes in seismic wave speed cause down-going seismic waves to reflect wave 

energy back towards the crustal surface [16]. The seismic reflection sequence is sketched in Figure 

8. 

 

Figure 8 Seismic wave reflection action at formation interfaces in layered sedimentary 

sequences. The widths of the wave trajectories scale with wave amplitude. Layer 

seismic velocities tend to increase with depth due to compaction (V4 > V3), but seismic 

wave energy also reflects when layers decrease in velocity (V3 < V2). 

Seismic reflection surveys map the reflectivity sequence of sedimentary layers using thousands 

of independent sensors deployed along the surface of a crustal survey volume. As outlined in 

Figure 9, each sensor returns a sequence of reflection signals generated by seismic waves created 

by surface sources of known positions at known times. By systematically determining the seismic 

velocity of each layer, weak reflection signals received by the many sensors are time-adjusted and 

added together to create a “signal stack” for the reflector sequence below the sensors. Reflection 

signal stack counts are typically of order 50 to 100 per sensor location. Such surveys are conducted 

across sensor arrays of 50 to 100 sensors per km2, often generating terabytes of seismic data. 

These data are processed by modern computational power into detailed seismic-velocity 

stratigraphic sequences of order 10-25m vertical and horizon resolution [16]. Drilling the surveyed 

geological sections routinely validates the seismic velocity stratigraphic imaging process. 

The central seismic reflection survey parameter is signal stack count or “fold”. In the Figure 9 

seismic reflection survey sketch, survey fold is the number of seismic traces with information 

about the reflectivity strength of a given patch of crust at a given depth. The larger the number of 

sensors, larger the fold, and the better the estimate of the reflectivity strength and the better the 

seismic image. A typical reflection seismic trace fold is half the number of sensor stations times 

the station interval per source interval, Nfold = Nsns x Dsns / 2 x Dsrc. I.e., for equal source and 

sensor spacing, Dsns = Dsrc, with a source point at each sensor offset, Nsrc = Nsns = 6, the survey 
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fold is 6/2 = 3 for reflector points below the source and sensor. Shot points too far from a sensor 

to be likely to register useful reflector point information do not contribute to the sensor fold. 

Reflection seismic sensor fold is thus computed for “active” rather than total sensors and sources. 

Sources that are active for a given sensor typically number in the range of 128-256, giving an 

effective seismic reflectivity image fold of 64 to 128. 

 

Figure 9 How seismic reflection survey sensors and sources build reflector signal count 

or “fold”. Sensors record reflected wave energy according to ray paths specific to a 

given source point. Signal fold is built by summing properly time-adjusted seismic 

wave energy from sensor-source ray paths common to specific reflection point. The 

proper time-adjustments to create accurate seismic images is found by trail-and-error 

computation [16]. Building the reflection image fold requires extensive computation to 

determine the seismic wave travel-times assigned to each geological layer within a 

crustal section. Determining seismic wave travel-times in reflection seismics is possible 

because the location and times of all seismic sources are known. 

From Figure 9, each of Nsns sensor traces contributing to image fold for each crustal patch at 

any given depth is associated with active source points of known location and time. Knowledge of 

each active source and sensor location and time for each seismic trace in a signal stack gives 

sufficient information for seismic data processing to construct a model of the seismic velocity 

structure at each point of the survey volume [16]. A reflection seismic image is thus effectively a 

point-by-point seismic velocity model of the crustal geological formation sequence. 

TFI proceeds according to the signal stacking principle of Figure 8 and Figure 9, with signal stack 

fold depending directly on summing data over large numbers of surface sensors Nsns. TFI signal 

fold building depends, however, on microseismic energy sources of unknown locations and times 

and must follow a different data acquisition and processing path from the seismic reflection 

imaging process sketched in Figure 8 and Figure 9. More particularly, TFI requires knowing in 

advance the seismic velocity structure of the survey volume. Processing TFI data for sedimentary 

terrains deploys the same degree of computing power as reflection seismics, but computation is 

directed towards finding unknown seismic emission sources in a known velocity field rather than 

finding unknown seismic velocities in a known source-sensor field.  

In more physical terms, TFI acquisition and processing differs from reflection seismic acquisition 

and processing because the target crustal fluid flow structures are treated as a series of point 

seismic sources which are different from the laterally extensive layers of sedimentary sequences 

reflecting seismic energy from (known) seismic sources. Sedimentary formation well-log sonic 
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seismic velocities typically vary by no more than 6% from a formation mean velocity, and long 

wavelength seismic reflection amplitudes are spatially averaged over most of this velocity 

variation. Reflection seismic image stacks comprise coherent sums of seismic energy along the 

length of sedimentary interfaces.  

For crustal fluid flow structures, by contrast, the characteristic 6% variations in seismic velocity 

measured by sonic well-logs are point-structures driven by porosity variations in fracture-density 

and, more importantly, by variations in fracture connectivity. Flow-controlling formation 

permeability fluctuations along spatially erratic poro-connectivity structures within formations do 

not act coherently to form seismic wave reflection amplitudes. Flow-specific spatial variations 

make no contribution to Figure 8 and Figure 9 seismic reflected energy sequences. Rather, as 

learned from the §2 discussion of crustal microseismicity, TFI empirics establish that fluid flow in 

crustal permeability structures are sources of seismic energy emission by which TFI seismic flow 

images are generated [9-14]. The principles of TFI data acquisition and processing are thus to 

identify and locate the sources of spatially and temporally persistent seismic energy emission 

generated by fluid flowing along erratic percolation pathways within a crustal volume [Figure 4]. 

Because TFI signal acquisition lacks both source times and source locations from which to build 

a velocity model as in Figure 8 and Figure 9, TFI acquisition requires that an effective velocity 

model be generated in advance of image data processing. The TFI effective velocity model need 

not, however, be point-by-point velocity distribution as generated for seismic reflection surveys. It 

is sufficient for TFI to have a comprehensive set of travel-times TT(i,j) for seismic wave paths 

through the survey volume from a subsurface source point i to a surface sensor j. TFI in shale 

formations can rely on reflection seismic velocity models for the cross-table TT(i,j).  

Volcanic terrains, however, do not support reflection seismic imaging. In consequence, TFI in 

convective geothermal systems depends on the source-sensor geometry sketched in Figure 10, 

where travel-times TT(i,j) connect the ith source point ( the red box) in the survey volume to the jth 

sensor at the surface (blue dots). Acquisition and utilisation of cross-table travel-time sets TT(i,j) in 

volcanic terrains is described in §3.2. 

Provided with an effective velocity model of the crustal survey volume, TFI processing proceeds 

as indicated by the Figure 10 survey geometry. Let us consider a specific seismic energy source 

volume element or “voxel” represented by the red box within the Figure 10 survey volume. The 

key TFI interest is knowing if that particular voxel is emitting a temporal succession of low-level 

seismic energy due to fluid flow through the test voxel in flow communication with adjacent 

voxels. Any particular voxel 1 < i < Nvox may or may not be a source of flow-related seismic 

emission in any given time interval Δt. If the voxel is emitting seismic energy in the time interval 

Δt, the previously-determined cross-table of seismic wave travel-times TT(i,j) between the 

specified voxel location i and surface seismic sensor locations j=1…Nsns is used to add up the 

appropriately time-shifted seismic sensor interval data to build an Nsns ~ 1000 strong seismic 

emissions signal stack. The signal stack is built by summing sensor data for time-interval Δt with 

each sensor record adjusted according to the arrival times of a voxel-emitted energy given by the 

cross-table travel-time TT(i,j) from voxel i to sensor j. If during the given time interval Δt, the given 

voxel emits flow-related seismic energy, TFI processing coherently sums the seismic energy across 

all surface sensors to give an Nsns-fold signal stack for each voxel for the given time interval. The 

same stacking procedure is then performed for each voxel over sequences NΔt of time intervals to 

give an Nsns x NΔt-fold fold signal for each voxel. 
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Figure 10 The seismic sensor element of the TFI signal stacking fold is the number Nsns 

of surface sensors denoted by the grid of blue dots. For TFI, the surface sensors record 

flow-related source activity emitted over short time intervals Δt by a source “voxel” 

(volume element) represented by the red box. TFI data stacks for any given source 

voxel are a double sum over a sequence of NΔt time intervals and Nsns sensors. The 

seismic wave travel-time TT(i,j) from any given source voxel 1 ≤ i ≤ Nvox to any given 

surface sensor 1 ≤ j ≤ Nsns is computed from a known velocity model or from travel-

time data acquired for known seismic source activity at the wellbore depth indicated 

by the red asterisk. TFI performed over shale formation stimulation crustal volumes 

establishes crustal flow structure images connecting Nvox seismic emitting voxels 

acquired by surface seismic reflection geometry illustrated in F Figure 8 and Figure 9. 

For volcanic terrains, the necessary observational travel-time data TT(i,j) are acquired 

as discussed in §3.2. 

Figure 11 illustrates the final TFI stacking step covers the entire set of voxels. The Figure 11 

image produced by TFI data acquisition and processing is essentially that of a triple-stack crustal 

flow structure count Nfold = Nvox x NΔt x Nsns built up from Nvox spatial connected flow-active 

voxels each defined by NΔt x Nsns seismic emission samples. We note in Figure 11 that 25m 

spatial resolution of standard seismic stratigraphy can distinguish the most significant static 

geological structural features of a crustal volume. By acquiring fluid-flow-generated seismic 

emission signals, the Figure 11 25m image spatial resolution accurately locates the fracture 

specific fluid-active flow structures denoted by the red lines. The time-sequence of map-view 

flow-structures then shows the black patches of time-evolving seismic emission voxels following 

strands of the previously mapped fluid-active fracture structures. 
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Figure 11 Time sequence of shale formation fluid flow seismic activation (black 

smudges) generated by frack stimulation of wellbore (black line) at intersection of the 

wellbore and TFI red-line fracture connectivity structure. Red-line fracture connectivity 

structures inferred from TFI images prior to wellbore stimulation. Wellbore stimulation 

validated fracture-interpretation of TFI-mapped red-line fracture connectivity 

structures. Time sequence intervals in minutes; wellbore ~ 1km long; spatial resolution 

of image elements is 25m. The unpublished TFI data were recorded in the Barnett 

shale of Texas. 

3.2 Estimating the TFI Travel-Time Cross-Table TT(i,j) in Volcanic Terrains  

TFI imaging of convective geothermal flow systems proceeds in the same manner as TFI in shale 

formations illustrated in Figure 11 provided that the necessary seismic travel-time data TT(i,j) exist 

for crustal volume hosting the convective flow system. As seen in Figure 12, however, travel-time 

data TT(i,j) cannot be acquired through the reflection seismic imaging of sedimentary sequences 

that embed shale formations. In contrast to seismic waves traveling in long-settled orderly basin 

sedimentary layer sequences sketched in Figure 8 and Figure 9 and illustrated in the upper panel 

of Figure 12, seismic waves traveling in volcanic and magmatic terrains illustrated in the lower 

panel are disrupted at all scales [17]. Well-log physical properties within sedimentary layers are 

disrupted at ~ 6% deviation from the mean, but when these spatial variations are averaged over 
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seismic wavelengths, orderly differences between individual formation layers generally exceed 

disorderly differences within formations. No such lateral order is imposed over the internal 

disorder for intrusive magmatic and extrusive volcanic terrains. 

 

 

Figure 12 Comparison of sedimentary layering (above) and absence of layering in 

magmatic intrusive (below). Views are to NW and SE, respectively, across the Rio 

Grande River plain in the San Juan volcanic fields near Creede, Colorado, USA. 

In accordance with the Figure 12 crustal rock order/disorder contrast, TFI applied to convective 

geothermal terrains does not attempt to process surface reflection seismic array data in terms of 

orderly seismic wave fronts implicit in Figure 8 and Figure 9. Instead, a geothermal terrain TFI 

survey needs to estimate the seismic travel-time cross-table TT(i,j) via seismic refraction as 

sketched in the Figure 13 version of the Figure 10 wellbore-seismic-source and surface seismic sensor 

array geometry.  

Figure 13 shows the refraction seismic elements needed for estimating TT(i,j) cross-table data 

for conducting TFI surveys in volcanic terrains. A 30MJ charge of propellant is ignited in an 

exploration or production wellbore to generate refraction seismic wave energy (green blob) that 

passes through the crustal survey volume (black dots) to the surface sensor array (blue dots). The 

observed refraction data, denominated TT(0,j) for sensors 1 ≤ j ≤ Nsns, are then processed to 

estimate the cross-table TT(i,j) by which to compute TFI stacks for each of the voxels 1 ≤ i ≤ Nvox. 

Figure 14, Figure 15 and Figure 16 illustrate the numerical simulations that establish the TT(i,j) 

estimation procedure specific to volcanic terrains [17]. 
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Figure 13 Elaboration of Figure 10 detailing the source-sensor geometry for seismic 

travel-time data TT(0,j) acquisition from which to estimate the voxel-sensor travel-

time cross-table TTest(i,j), 1 ≤ i ≤ Nvox and 1 ≤ j ≤ Nsens within the crustal volume 

outlined by black dots [17]. The green dot represents a seismic wave sourced from 

30MJ of propellant energy generated in the wellbore (red line) to be recorded at the 

surface seismic sensor array (blue dots). 

Figure 14 (left) illustrates a 100 x 100 x 100 node generic crustal numerical seismic velocity 

cube characteristic of the ambient crust [6-8]. The generic crustal velocity variations derive from 

two geological processes: 

(i) Spatial fluctuations with 6-8% RMS deviation due to variations of porosity distributed 

according to the power-law scaling spectral distribution |Χ(k)|2 ~ 1/k, 1/km < k < 1/Dm, observed 

in well-logs worldwide [6-8]; 

(ii) Nominal vertical and lateral velocity gradients of amplitude [gx,gy,gz]. 

Taking Figure 14 velocity cube to be the “true” velocity structure defining the field-observed 

source-to-surface travel-times TTtrue(0,j), we proceed to search for generic trial velocity cubes that 

provide estimated source-to-surface travel-time sets TTest(0,j) that approximate the TTtrue(0,j); i.e., 

we look for trial velocity distributions such that TTest(0,j) ~ TTtrue(0,j). Figure 14 (right) displays an 

example of the residual distribution TTest(i,j) - TTtrue(i,j) from such searches. For source-to-sensor 

travel times of order 1 second, the typical RMS residual difference TTest(i,j) - TTtrue(i,j) is ~ 3msec 

with ~ 3msec standard deviation. 3msec temporal fluctuations are equivalent to 15m spatial 

fluctuations. 
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Figure 14 (Left) A 100 x 100 x100 node distribution of seismic velocities comprising (i) 

spatial fluctuations with power-law-scaling power that scales inversely with spatial 

frequency k, |X(k)|2 ~ 1/k, and (ii) vertical and horizontal gradients; the colourbar 

codes velocities in m/s; the velocity cube defines the cross/table TTtrue(i,j). (Right) The 

distribution of travel-time residuals TTest(i,j) - TTtrue(i,j) for the left-hand velocity 

distribution; the colourbar codes the residuals in msec; the RMS residual is ~ 3msec 

with 3msec standard deviation. 

Figure 15 illustrates the extent to which it is possible to find trial seismic velocity cubes for 

which the estimated seismic travel-times j = 1. Nsns for a nominal voxel source i TTest(i,j) in red closely 

overlie the “true” travel-times TTtrue(i,j) in blue.  

 

Figure 15 Overlay of Nsns surface sensor travel-times from a nominal source voxel i 

computed from “true” velocity field (blue) and from an estimated velocity field (red). 

As the red travel-times closely approximate the blue travel-times, TFI-processed Nsns-

fold stacks of voxel seismic emissions will be accurate representations of actual seismic 

emissions recorded by the surface sensor array for the ith voxel. 
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Figure 16 gives the result of using suitable estimation velocity cubes to locate nine instances of 

arbitrary source voxels denoted by the red asterisk within the “true” velocity cube of Figure 14 

(left). For each asterisk source location of travel-time cross-table TTtrue(i,j), six black circles denote 

a sequence of estimated positions for the source voxel derived from an estimated cross-table 

TTest(i,j). The best-fit black circles correspond to the actual source location with an effective 

accuracy of 1.3 nodes. The location procedure can be repeated for multiple estimated travel-cross 

tables TTest(i,j) to strengthen the statistical certainty of the source location. The Figure 16 caption 

gives details. 

 

Figure 16 Display of source-voxel search algorithm performance. For the Figure 14 

(left) “true” velocity field with source-sensor travel-time cross-table TTtrue(i,j), nine 

random source-voxel locations are selected, im, m = 1….9. For each selected source-

voxel, the location im is identified by a red asterisk. Six values of estimated source 

positions 1 ≤ iest ≤ 6 are plotted as black circles. The six iest locations are those that 

most nearly minimise the travel-time-residual function ∑j=1…Nsns |TTtrue(im,j) - 

TTest(iest,j)|. For each test voxel location im, the estimated source positions iest with the 

smallest residuals successfully locate the test voxel. Estimated locations with higher 

residuals show the potential for source voxel location error. Performing the location 

search for several estimated travel-travel cross-tables TTest(i,j) reliably reduces the 

statistical source-voxel location error. The statistical accuracy of estimated source-

voxel locations is ~1.3 nodes. 

4. Discussion 

The TFI time-lapse sequence of flow-induced seismic emission imaging shown in Figure 11 
illustrates that Nvox sets of Nsns travel-time tables repeated for NΔt time-intervals of TFI listening 

data can produce 15-25m accurate crustal flow activity maps in sedimentary settings for which 

seismic reflection imaging provides accurate seismic velocity models. Figure 14, Figure 15 and 

Figure 16 illustrate the means by which seismic refraction data acquired in the Figure 13 source-

sensor geometry can provide adequate velocity models by which to perform TFI on convective 
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geothermal systems at spatial resolution ~ 50m. Creating flow-structure images that resolve flow 

heterogeneity v = φv0 illustrated in Figure 4 at ℓ ~ 50m spatial resolution can directly give 

convective geothermal resource operators the information needed to efficiently drill production 

wellbores defined by thermal power output Q ~ ρC x T x V, where wellbore volumetric flow V 

=2πr0φv0ℓ is expressed in terms related to heterogeneous flow images giving v = φv0 at scale 
lengths ℓ ~ 50m.  

The operational implications for present-day geothermal energy production are summarised in 

the two parts of Figure 17 [49, 50]. At left is 50 years of steady rise in global energy consumption; 

at right is evidence of slowing rather than advancing geothermal power production growth. The 

slowing growth in the contribution of geothermal power to the global energy economy is arguably 

due to the high cost and risk of identifying a suitable convective geothermal resource and 

estimating its size and productivity. While there have been improvements in surface exploration 

technology that can in principle develop ample geothermal prospects in a range of markets, Figure 

17 makes it evidence that to date these improvements have done little to mitigate the capital cost 

and risk of exploration drilling codified in the wellbore production expression Q ~ ρC x T x V. As we 

have discussed, current exploration techniques do not accurately predict where to drill. Neither do 

these surveys provide reliable estimates of the resource fluid flow capacity as measured by the 

ability to drive an electricity-generating turbine. Without improved assessment of geothermal flow 

system structure denoted by volumetric flow broken down into terms relevant to flow 

heterogeneity, i.e., the simple and straightforward expressions Q ~ ρC x T x V and V =2πr0φv0ℓ 

connecting wellbore performance to crustal flow uncertainty, drilling production wellbores 

remains a significant investment risk. The risk is greatest at the initial stages of a project before 

knowing whether the geothermal resource has enough capacity to recover the drilling costs, e.g., 

Fig 0.1 [51]. Early stage test drilling can account for 15 percent of the overall capital cost at a point 

when the risk of project failure is still high. These upfront risks have a knock-on effect throughout 

the project from both technical and financing perspectives. 

 

Figure 17 (Left) Steady growth of global energy consumption for last 50 years [49]. 

(Right) Slowing growth of geothermal power production (red) and stationary growth in 

capacity (blue) over last 20 years (diamonds = United States; squares = 

Indonesia/Philippines) [50]. 

To put numbers to the “cost of exploration”, a representative capital outlay for initial drilling of 

a prospect is USD25M for two to four wells [51]. Further drilling costs of order USD50-100M are 
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predicated on (1) the initial drilling outcome being one successful test production well and one 

successful test reinjection well, and (2) a 75% success rate of subsequent drilling returning average 
production well output of Q ~ 7MWe. Figure 6 (right) indicates that the global norm for “successful” 

geothermal production wells at 3-4MWe is one half of this expectation. From inspection of the 

Figure 7 early stage drilling success rates, both the expected outcome of the initial USD25M test 

drilling and the success profile of the follow-on USD50-100M development drilling are far from 

reassuring to an investor. 

Given that there is a clear global demand for clean baseload electric power together with an 

equally clear availability of geothermal resources to supply that power, there is every reason to 

support the World Bank conclusion that the problem facing geothermal resource development lies 

with persistent uncertainty in drilling wellbores that access high-flow zones in convective 

geothermal flow system [47]: 

“There is no reasonable basis for forecasting the probability of success in the Exploration Phase 

of a project (first 5 wells). … This low average success rate across exploration wells serves to confirm 

the high risks of initial drilling, as well as driving high return expectations for early-stage investors. 

It is clear, therefore, that every effort should be made to reduce risk in the Exploration Phase.” 

The cost profile of performing the adapted TFI flow-structure surveys on convective geothermal 

systems is a small percentage of the potential drilling cost saving. Established TFI data acquisition 

uses standard stand-alone reflection seismic sensor modules available at nominal bulk rental 

rates, and TFI data processing is performed at commercial rates set by reflection seismic data 

processing [9-14]. Performance of wellbore seismic refraction seismic sourcing for TFI surveys on 

convective geothermal terrains is based on established wellbore deflagration stimulation 

technology [15]. Processing wellbore seismic refraction travel-time data to acquire the TFI source-

voxel-to-sensor travel-time cross-table is performed via Matlab-implemented standard Fast 

Matching Method wave-front propagation computation. Matlab performed all computations 

discussed in this paper. Neither field data acquisition technology/cost, nor data processing 

technology/cost, should be seen as impeding implementation and development of a TFI capability 

for progressing convective geothermal brownfield or greenfield operations.  

We summarise the cost implications our discussion in terms of specific numbers from a specific 

class of convective geothermal resources, that of the island of Sumatra [52]. Developing 

Indonesia’s largely untapped ~1150MWe convective geothermal power production potential in 

Sumatra requires drilling ~ 160 production wellbores of mean productivity at 7MWe mean 

wellbore productivity. Judging from Figure 6 and Figure 7 present rates of drilling success, we 

might easily double the estimated number of wells required in realising the Sumatra promise 

without improved drilling success. At present and at ~ USD5M per production well, accessing 

Sumatra’s geothermal power potential requires an investment of order USD1.5B. 

From the example of Sumatra alone, if TFI provides the technical means to reduce the risk of 

geothermal production well drilling by 25% to 50%, the benefits from raw project drilling cost saving 

and from downstream project planning and enabling are measured in the hundreds of millions of 

dollars. In the world beyond the Sumatra prime resource, there are a large number of geothermal 

sites of lesser potential where TFI drilling derisking can be proportionally more productive and 

enabling. Reducing convective geothermal drilling uncertainty through understanding and 

deploying TFI flow structure mapping technology can save many millions of dollars to the benefit of 

millions of people. 
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5. Conclusions 

Crustal reservoir flow-structure imaging technology using multi-channel seismic surface array 

data acquisition and processing is proven for sedimentary shale formations. We have shown how 

this shale formation flow imaging technology can be adapted to volcanic terrains hosting 

convective geothermal flow systems. The difference between sedimentary and volcanic settings is 

essentially only that sedimentary formations acquire the necessary seismic velocity structure 

information via seismic reflection data while volcanic terrains will require use of seismic refraction 

data. Simulated seismic refraction data acquired via subsurface propellant seismic sources 

recorded by surface seismic sensor arrays provide sufficient seismic travel time map detail to 

locate flow-related seismic emission sites with 50m spatial resolution within a geothermal 

reservoir survey volume. Connecting the imaged seismic emission sites into convective flow 

structures with 50m spatial resolution gives highly accurate targets for exploration and production 

well drilling. As current development of convective geothermal systems depends on costly drilling 

with spatial targeting control of perhaps 500 meters, low-cost remote crustal permeability images 

giving productive/sustainable convection flow structures with 50m accuracy can greatly improve 

the return on drilling investment for both brownfield and greenfield convective geothermal 

resources.  
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