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Abstract  

Aging, hypertension, diabetes, obesity, atherosclerosis, traumatic brain injury, and other 

factors can all synergistically promote diverse pathological mechanisms. These risk factors 

trigger widespread inflammation and oxidative stress, both of which can lead to blood-brain 

barrier (BBB) disruption. These pathological cascades lead to neuronal Ca2+ increase, 

neurodegeneration, gradual cognitive/memory decline, and eventually Alzheimer's disease. 

In particular, more recent research indicates that chronic inflammatory stimulus in the gut 

may induce (e.g., via serum amyloid A (SAA)) the release of proinflammatory cytokines. 

Hence, an effective preventive and therapeutic strategy could be based upon drug targeting 

toward a major SAA receptor responsible for the SAA-mediated cell signaling events leading 

to cognitive decline and eventually Alzheimer's disease. In addition, it has already been 

determined from past studies that drug-carrying lipid nanoparticles can take advantage of 

physiological receptor-mediated transport processes across the BBB for localized drug 

delivery in brain tissue. 
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1. Background 

Much evidence has been published which indicates that microvascular endothelial dysfunction, 

due to cerebrovascular risk factors (e.g., atherosclerosis, hypertension, obesity, diabetes, smoking, 

aging), precedes cognitive decline in Alzheimer's disease and contributes to its pathogenesis (see 

[1, 2] for reviews). By incorporating appropriate drug(s) into biomimetic (lipid cubic phase) 

nanocarriers, one obtains a multitasking combination therapeutic which targets certain cell-

surface scavenger receptors, and crosses the blood-brain barrier (BBB). Such targeting allows for 

various Alzheimer's-related cell types to be simultaneously searched out, in vivo, for localized drug 

treatment [3-6]. This (colloidal-nanocarrier) in vivo targeting advantage may be particularly 

important when delivering pleiotropic natural substances (e.g., an isoflavone) or for repurposing 

FDA-approved food additive(s) and/or drug(s), especially one which has shown the added ability to 

restore some cognitive functions in certain animal models of Alzheimer's disease [4]. 

2. Endothelial Dysfunction, and Targeted Treatment for Early Dementia 

It has been reported repeatedly that endothelial modulation and repair is feasible by 

pharmacological targeting [1, 2, 7-13] of the SR-BI receptors (i.e., “scavenger receptor class B, type 

I”) *13, 14+. Recently, Fung et al. specifically found that SR-BI mediates the uptake and transcytosis 

of high-density lipoproteins (HDL) across brain microvascular endothelial cells (i.e., across the BBB) 

[15]. Since SR-BI has already been identified as a major receptor for HDL (with their major 

apolipoprotein (apo)A-I) as well as for the recently reviewed *1, 2+ “lipid-coated 

microbubble/nanoparticle-derived” (LCM/ND) nanoemulsion (see below), this multitasking lipid 

nanoemulsion can arguably serve as a targeted, apoA-I-based, (SR-BI mediated) therapeutic agent 

for common (late-onset) dementias [16-18]. 

This targeted (LCM/ND-delivery) type approach receives added impetus from continual findings 

of cerebrovascular pathology [1, 19-29] and an apparent endothelium dysfunction [2, 17, 18, 25, 

30-36] in both Alzheimer's disease and its major risk factors [1, 2, 29-41]. By incorporating drug 

molecules into the LCM/ND lipid nanoemulsion type (yielding particle sizes mostly < 0.1 μm in 

diameter – see Figure 1), known to be a successful drug carrier [42, 43], one is likely to obtain a 

multitasking combination therapeutic capable of targeting cell-surface SR-BI. 
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Figure 1  LCM/ND nanoemulsion stability over time. (Adapted from ref. [2]). 

3. LCM/ND Nanoemulsion Type, and Targeting via Lipid Cubic Phases 

Monoglycerides exhibit different phase behaviors when they are exposed to water [44-50]. Of 

special interest, the dispersed Fd3m cubic phase can represent a lipid/water system which is 

particularly relevant to the earlier-described (Filmix®) LCM/ND lipid nanoemulsion formulation(s) 

on account of the fact that the patent claims describing the precise lipid composition of such 

nanoemulsion formulations (see especially Claim #1 in [51, 52]) specifically include cholesterol and 

three categories of (saturated) glycerides, that is, tri-, di-, and monoglycerides [51, 52]. In view of 

the advantageous attributes of monoglycerides (alluded to above), and since (saturated) 

monoglyceride represents the largest single-lipid fraction of the LCM/ND lipid nanoemulsion type, 

the monoglyceride content probably plays a dominant role in supporting the evident long-term 

stability of the liquid-crystalline lipid nanoparticles in such nanoemulsions [42]. 

In this particular targeted-delivery approach, the self-assembled “lipid particle” structure itself 

(after intravenous  injection) is directed via (adsorption of) plasma lipoproteins, including notably 

apoA-I, toward the appropriate receptors on the target-cell surface [42]. 

4. Molecular Mechanism of Colloidal Nanocarrier Formation 

Previous reports concerning colloidal nanocarriers [e.g., 5] do not fully explain how various 

(biobased) lipids, and their mixtures, are able to reliably form self-assembled non-lamellar 

nanostructures (i.e., lipid cubic phases) – which, in turn, have been observed to serve as colloidally 

stable nanocarriers for drug(s) in excess water (e.g., in blood plasma) [53]. The answer to this 

fundamental question resides in the physicochemical tendency of these biobased lipids to adopt a 

non-lamellar inverse topology. This special tendency, of these surface-active lipids, is itself a 

function of lipid head-group hydration, acyl chain length, and cholesterol content (see below). 
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As reviewed by Schwarz and Gompper [54], the predominance of the lamellar phase at ambient 

temperatures stems from the fact that (in contrast to many synthetic surfactants, which usually 

have large head groups and form micelles) lipids themselves have rather bulky hydrocarbon chains 

(e.g., [54-56]). Spontaneous curvature can be increased by changing molecular architecture, that is, 

by adding lipids with bulkier chains, or by replacing charged lipids with similar ones having only 

nonionic head groups to avoid Coulombic repulsion between head groups. Lipids with 

spontaneous curvature are often called “nonbilayer lipids”. Hence, with the resulting large 

spontaneous (negative or inverse) curvature, a cubic phase of inverse spherical micelles is often 

observed [54]. 

Notice that there is actual consensus that amphiphilic lipids with weakly hydrated, hydrophilic 

head groups serve to promote formation of an Fd3m cubic phase (also known as phase Q227) ([56]; 

cf. [57]), -- which is particularly relevant to the earlier-described [3] LCM/ND nanoemulsion 

formulation(s): Specifically, the saturated glycerides and cholesterol (and its ester derivatives), 

which together compose the basic Filmix® (LCM/ND) nanoemulsion formulation [42], are all 

nonionic and therefore each amphiphilic lipid in such a lipid mixture would only have a weakly 

hydrated, hydrophilic head  group. Consequently, the above facts considered together support the 

earlier provisional conclusion that the dispersed Fd3m micellar cubic phase represents the most 

probable or preferred lipid polymorphic form adopted by the particles in the LCM/ND 

nanoemulsions [3, 42]. 

  As concerns the acyl chain length of the saturated glycerides contained in the LCM/ND 

nanoemulsion formulations, in relation to promoting formation of an Fd3m cubic phase (or Q227), 

it is useful to also consider related experimental work employing biological amphiphilic lipids 

having saturated acyl chain lengths (which include) from 12 carbon atoms to 16 carbon atoms long 

[see below]. Our focus on this specific range of chain lengths stems from the fact that the 

saturated (nonionic) glycerides in the “particularly preferred” lipid mixture, used to form LCM/ND 

nanoemulsions, have acyl chain lengths of 12 carbons (e.g., glycerol monolaurate) and 16 carbons 

(e.g., glycerol tripalmitate) in length [42, 51, 52]. Hence, it is relevant to note a study by Seddon et 

al. [58] concerning the phase behaviors of a homologous series of saturated 

phosphoglyceride/fatty acid mixtures having chain lengths of C12 and higher, which were analyzed 

by X-ray diffraction and colorimetry, as a function of water content. These investigators reported 

that the lamellar phase is suppressed in these lipid mixtures, being replaced by inverse non-

lamellar phases for all (saturated acyl) chain lengths greater than C12, and at all levels of hydration 

([58]; cf. [59]). 

It was also stated earlier (in this section regarding adoption of non-lamellar topology) that 

cholesterol is another important component in the basic LCM/ND nanoemulsion formulation. This 

fact is consistent with published data from related experimental studies using phosphoglyceride 

bilayers: As summarized by Chen and Rand [60], cholesterol has been found to destabilize bilayers 

of some common biological phosphoglycerides, and to induce the formation of the inverse phase 

in these systems [61-65]. Specifically, while sterols cannot alone form lamellar structures, sterols 

like cholesterol appear to have evolved to fill the flickering spaces among the acyl chains in 

membrane bilayers (e.g., [66]). Furthermore, cholesterol has the unique capability among 

membrane lipids of rapidly “flip-flopping” (between opposite monolayers of a membrane bilayer), 

and because of its small (and nonionic) head group, a negative curvature is made easier by an 

accumulation of cholesterol (see [42] for a review). 
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In view of all the above considerations concerning the roles of lipid head-group hydration, acyl 

chain length, and cholesterol content, the dispersed lipid particles of LCM/ND nanoemulsions very 

likely represent liquid-crystalline inverse-topology nanocarriers, i.e., dispersed lipid cubic phases 

(cf. [42]). 

5. Serum Amyloid A (SAA), SR-BI, and Alzheimer's Disease 

Various past studies indicate that inflammation plays an important role in the process of 

amyloid deposition and, therefore, inhibition of inflammatory cascades may attenuate 

amyloidogenic processes – such as Alzheimer's disease (e.g., [67]; cf. [68, 69] ). Moreover, recent 

research indicates that chronic inflammatory stimulus in the gut may induce (e.g., via serum 

amyloid A from the gastrointestinal tract [cf. below] ) the release of proinflammatory cytokines. At 

the same time, increased BBB permeability due to aging (or dysfunction), in turn, allows these 

proinflammatory cytokines to enter the brain, inducing glia reactivity [70, 71]. ( Note too that 

unlike other acute phase proteins, which are synthesized primarily in the liver, acute-phase SAA is 

also markedly expressed at local sites of tissue inflammation. Furthermore, very recent work by 

other investigators suggest that brain injury can elicit a systemic inflammatory response mediated 

through SAA that contributes to the pathological outcomes. For example, SAA can induce 

activation of the inflammasome in microglial cells and give rise to cytokine release which can 

exacerbate inflammation in the brain following neurological diseases [72-74].) Hence, an effective 

preventive and therapeutic strategy could be based upon drug targeting toward a major SAA 

receptor responsible for the SAA-mediated cell signaling events leading to cognitive decline and 

eventually Alzheimer's disease. 

Specifically, earlier research [75] has already confirmed that SR-BI receptors (or its human 

ortholog CLA-1) function as cell-surface SAA receptors -- which bind, internalize, and mediate SAA-

induced proinflammatory effects (cf. [76]). Accordingly, multiple studies suggest that SAA may 

have profound effects on innate immunity as a result of its chemotactic and cytokine-inducing 

activities [72]. However, Baranova et al. additionally report that (in cell culture) CLA-1/SR-BI 

ligands “efficiently compete” with SAA for CLA-1/SR-BI binding [75]. For example, it has already 

been documented repeatedly in the literature that both apo A-I and SAA are substrates for SR-BI, 

which indicates that SR-BI can mediate the transport of both proteins across the BBB (e.g., [77]). 

Not surprisingly, therefore, Robert et al. have recently asserted that many lines of evidence 

suggest a protective role regarding HDL and its major apolipoprotein (apo)A-I in Alzheimer's 

disease *17+. Accordingly, a similar benefit (of “competitive binding” to SR-BI receptors) may well 

accompany intravenous use clinically of the LCM/ND lipid nanoemulsion vehicle -- which has 

already been repeatedly described in the peer-reviewed literature (based upon numerous in vivo 

animal studies) as a targeted, apoA-I-based, (SR-BI mediated) drug-delivery agent [see Sect. 2].  

6. Conclusions 

The risk factors for Alzheimer's disease can all synergistically promote diverse pathological 

mechanisms. In particular, more recent research indicates that chronic inflammatory stimulus in 

the gut may induce (e.g., notably via serum amyloid A (SAA)) the release of proinflammatory 

cytokines. At the same time, increased BBB permeability due to aging and/or dysfunction, in turn, 

allows these proinflammatory cytokines to enter the brain, inducing glia reactivity. Hence, an 
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effective preventive and therapeutic strategy could be based upon drug targeting toward a major 

SAA receptor responsible for the SAA-mediated cell signaling events leading to cognitive decline 

and eventually Alzheimer's disease. 
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