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Abstract  

The yeast, Saccharomyces cerevisiae, the model eukaryote, has provided much 

understanding of molecular and cellular biology, as well as insights into many human 

diseases. In this paper we review how yeast studies are contributing to knowledge about the 

role of oxidative damage to cell health, and how one of the key players in Alzheimer’s 

disease, amyloid beta (Aβ) is linked to the reactive oxygen species response involving AHP1, 

which encodes an alkyl hydroperoxidase, Ahp1p, a protein involved in protection from lipid 

peroxidation.  
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1. Introduction 

There are many factors contributing to Alzheimer’s Disease (AD) and oxidative stress is 

proposed as one such factor [1]. The production of moderate levels of reactive oxygen species 

(ROS) is an essential and natural process that plays a role in cell signalling. However, ROS is also 

considered to be a factor in aging [2]. Oxidation can cause damage to lipids, DNA and proteins, 

which can lead to loss of mitochondrial dysfunction and cause cell death [3]. However, the study 

of these effects in humans (and in animal models) can be very challenging and limited.  

Yeast cells bear many similarities to human cells, including neuronal cells, and for many years 

yeast have been utilised as a model for Alzheimer’s Disease and for studying oxidative stress [4]. 

One of the attributes of yeast that make it particularly suitable for this research is its ability to be 

grown by fermentative metabolism even with extensive mitochondrial damage [5]. The outcome 

of loss of mitochondrial function is that cells no longer have respiratory function and cannot be 

grown on carbon sources such as ethanol. However, they can still exhibit fermentative growth on 

fermentable carbon sources such as glucose. Furthermore, ROS accumulation has also been 

reported to be the major signalling molecules for activation of the genes for pro-inflammatory 

mediators like cytokines and Nuclear Factor kappa B [6]. It would be intriguing to see how yeast 

can provide support for studies pertaining to inflammation, specifically in neuroinflammatory 

diseases.  

Many yeast genes that govern important cellular processes are conserved from yeast to 

humans. Similarities of neurons and yeast cells are not just limited to conserved fundamental 

processes. Molecules involved in cellular polarization in yeast (during budding and mating) and 

neurons (during growth of neurons) are structurally and functionally analogous and drive the 

phenotypic plasticity in these cells [7]. Conserved voltage gated ion channels and other molecules 

involved in cell-cell communication in yeast cells make them an excellent neuronal model. 

Formation of yeast flocculation also provides potential for exploring the multicellular dimension 

that is normal for higher eukaryotes [7]. 

2. Pro-Oxidant Chemicals that May be Involved in Alzheimer’s Disease 

We are exposed to many chemicals throughout our lives and the effects of the worst of these 

may be obvious because of their acute toxicity. Chemicals occur naturally in our foods and many 

are produced by us as well so many have not been subjected to rigorous investigation for their 

involvement in neurodegenerative disease. Cells make antioxidants such as glutathione and 

dihydroascorbate as part of their protection against oxidative damage, however, the levels may 

not always be high enough to provide full protection [8]. Dietary addition can be considered but 

levels may not reach those required for protection, especially when crossing the blood-brain 

barrier needs to be considered. Currently evidence that dietary antioxidants provide protective 

effects in human health is lacking. 

In AD the involvement of A [through this manuscript we are referring only to A(1-42)] is 

strong and there are links between A and ROS production [9]. In yeast, the constitutive 

expression of A in the secretory pathway is also implicated in a ROS response: expression of the 

A caused reduced growth and respiration and increase oxidative stress [2]. In a genome wide 

expression study of yeast producing cytosolic A fused to GFP (see Figure 1), a stress response was 
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observed that indicative of the yeast heat shock response (HSR) [10]. This HSR was confirmed by 

co-transformation with a plasmid encoding a heat shock reporter: the plasmid contained lacZ 

downstream of heat shock elements (HSE). In the co-transformants the levels of the enzyme -

galactosidase were highly elevated by the presence of A fused to GFP [11]. This HSR is likely to be 

due to the stress caused by ROS, but it should be noted that HSR in yeast can also be triggered by 

heat shock itself and when protein misfolding is detected. 

 

Figure 1 Saccharomyces cerevisiae transformants producing Aβ-GFP observed by confocal 

microscopy and differential interference contrast (DIC) microscopy. Courtesy of Sonia 

Sankovich, CSIRO. 

More recently, using a new yeast reporter system with HSEs upstream of sequences encoding 

mCherry, red fluorescence was induced by the external addition of chemically-synthesised A 

peptide. This indicates that extracellular A also causes a HSR [12]. The design of this experiment 

indicates extracellular A is causing a ROS response.  

In addition to the general HSR observed in the genome wide expression analysis, cells 

producing GFP-A expressed almost twice as much mRNA for AHP1 than those expressing just GFP 

[10]. This suggested that the encoded alkyl hydroperoxidase is a major contributor used for 

protection against A. Therefore, the use of yeast in screening systems to find chemo 

preventatives of A-induced damage has utilised strains that are deleted for AHP1 [4, 13]. The lack 

of Ahp1p (the protein encoded by AHP1), increases the sensitivity of these assays [13] so that 

compounds altering the levels and localisation of A fused to GFP can be more readily ascertained.  

The involvement of chemicals as causative agents of AD is currently unclear. We have begun to 

look for an association by focusing on the effects of biogenic amines that affect mitochondrial 

respiration. As a start we have looked for, but not found, a synergistic interaction between 

dopamine and A (Dhakal and Macreadie, unpublished). The effects of other biogenic amines are 

currently being examined.  
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3. Proteins that May be Involved in Protection against Alzheimer’s Disease 

It is also obvious that our genes provide protection against life’s stresses. In yeast this has been 

well studied and the information is readily available in the literature as well as in searches within 

the Saccharomyces cerevisiae genome database (https://www.yeastgenome.org). In this database 

the ~6000 genes of yeast are listed, along with the descriptions of their gene products. The 

descriptions are systematic, extensive and linked to the relevant literature. Systematic deletions of 

these genes have led to information about their function and guides the discernment of human 

orthologs. With regards to protection against ROS the number of genes is considerable. Table 1 

provides a list of some yeast genes involved in various modes of protection against ROS and shows 

their human orthologs that can be identified by sequence similarity. As already mentioned the 

involvement of Ahp1p in protection in yeast is substantial. This leads to the suggestion that A 

damage may be via lipid peroxidation. Indeed, this is consistent with the localisation of the 42 

amino acid peptide A: it is very hydrophobic and readily localises to membranes. Even the fusion 

to GFP results in its localisation to “punctate patches” which appear novel (Figure 1). Our current 

thoughts are inclined to the view that the A/GFP fusion proteins are localised into membranes 

that have been disrupted from within the cell.  

Table 1 Conserved yeast and human genes and encoded proteins conferring protection 

against Oxidative Damage. 

Yeast genes Encoded proteins Human orthologs 

GPX1, GPX2, GPX3/HYR1 Phospholipid hydroperoxide 

glutathione peroxidase 

GPX4: isoform A, isoform 

B, isoform C, isoform D 

TSA1, TSA2 Thioredoxin peroxidase PRX2  

PRX1 (Mitochondria) 

AHP1 (Cytoplasm) 

Thiol peroxiredoxin PRX6 

PRX5 

TRX1, TRX2 (Cytoplasm) 

TRX3 (Mitochondria) 

Thioredoxin TRX isoform 1 

SOD1 (Cytoplasm) 

SOD2 (Mitochondria) 

Superoxide dismutase SOD1 

SOD2 

GSH1, GSH2 Glutathione synthase Gamma-glutamyl cysteine 

synthetase (GCS), GSH 

GTO1 (Peroxisome) 

GTO3 (Cytoplasm) 

Omega Class glutathione 

transferase 

GST 

CTA1, CTT1 Catalase Catalase 

GLR1 (Mitochondria) Glutathione reductase GSR (Mitochondria) 

GTT1 (ER stress) 

GTT2 (DNA replication stress) 

GTT3 

Glutathione S transferase Glutathione S transferase 

4. Ahp1p and its Human Ortholog Prx5: Significance in Neurons 

Following its discovery in 1999, Ahp1p, a peroxiredoxin family protein, has been found to have 

a significant role in detoxifying the yeast cells from ROS, RNS and alkyl hydroperoxides. 
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The protein contains two catalytic cysteines (Peroxidatic Cysteine (CP) at Cys62 and Resolving 

Cysteine (CR) at Cys31), one of which gets oxidized forming cysteine sulfenic acid during the 

reduction of the oxidized molecules referred to as peroxidatic cysteine and the other one resolves 

the oxidized cysteine by forming a disulphide bond termed as resolving cysteine [14]. In most 

cases, cysteines are conserved from Ahp1p to Prx5 (human ortholog of Ahp1p), however some 

yeast may not have both residues in a monomeric form. S. cerevisiae Ahp1p, existing as a 

homodimer, requires another molecule of itself to form the cysteine disulphide bond during 

reduction of the lipid peroxides [14]. In the meantime, Prx5, acts as monomer, has both the 

residues (Cys47 as CP and Cys151 as CR) within itself and acts independently catalysing the 

reduction of oxidized lipids (Refer to Figures 2 and 3) [14, 15]. The reduced state of the original 

molecules is achieved through the help of the NADPH cofactor and enzymes like thioredoxin and 

thioredoxin reductase [16]. 

 

Figure 2 Schematic representation of mechanism of action of Ahp1p (1) and Prx5 (2) 

against lipid peroxides. 
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Figure 3 Three-dimensional model for S. cerevisiae Ahp1p (A) and human Prx5 (B) 

showing conserved cysteine residues. 

Among the peroxiredoxin family of proteins in yeast, Ahp1p is a major contributor in providing 

protection against the metal associated oxidative stress [16]. As shown in Figure 4, the human 

ortholog of the yeast Ahp1p, peroxiredoxin 5 isoform S, exhibits 30% sequence identity and 52% 

sequence similarity with Ahp1p demonstrating the conserved nature of the Ahp1p. One of the 

intriguing aspects of human Prx5 is the presence of isoform L which contains a leader peptide 

(absent in isoform S) that directs it to the mitochondrion. Thus, one gene, through differential 

transcriptional initiation produced two transcripts. One encodes the L isoform which is a 214 

amino acid peroxiredoxin protein that is directed to the mitochondria in humans while the other 

encodes the shorter 162 amino acid version is located in vacuoles and the cytoplasm.  

Multiple functions have been assigned to the human ortholog of Ahp1p from various studies. 

Some of the important functions of the Prx5 could include down-regulation of the cyclin 

dependant kinase-5 (Cdk5), clearance of ROS and RNS, protection against oligomeric Aβ-

associated mitochondrial fragmentation, endoplasmic stress and metal-induced toxicity including 

iron-induced toxicity represented in Figure 5 [17-20]. 

Cdk5-p25 complex activation has also been found to be causing hyperphosphorylation of tau 

that will lead to the formation of neurofibrillary tau tangles in neuronal cells [21]. Considering this 

evidence from the literature, the protection of the Prx5 could possibly be one of the crucial events 

in protecting cells from oxidative stress including in the ageing neuronal cells, which will otherwise 

deteriorate with accumulation of ROS and misfolded proteins. Studies in cancer cells also highlight 

the positive effect (to the cancer cells) of overexpression of Prx5 in proliferation and 

tumorigenicity [22]. This could possibly align with the neuronal cell cycle re-entry hypothesis, 

where the neuronal cells are triggered to enter the cell division cycle causing the death of the 

neuronal cells: normally neuronal cells are in a G0 cell cycle and do not divide. Instead, entry into 

cell division cycle means proceeding towards the death of the cell causing the neuronal loss [23]. 
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Figure 4 Alignment of the Ahp1p protein (S. cerevisiae S288c) with the human 

peroxiredoxin 5, mitochondrial protein precursor protein, isoform L (NP_036226.2) of 

214 amino acids. A second variant of the human peroxiredoxin 5, isoform S, 

(NM_001358516.1) results from internal transcription start site, producing a form that 

lacks the first 52 amino acids and is underlined above. Conserved cysteines are 

highlighted. 

 

Figure 5 Representation of predicted roles of Ahp1p/Prx5 from various studies. 

5. Conclusions 

Yeast offers a convenient system to dissect the mechanisms in biology, including the 

understanding of neurodegenerative disease. Here we have presented an analysis of the yeast 

cellular response to the presence of Aβ, which demonstrates a lipid peroxide response. Further 

studies will address how Aβ causes this particular response and whether there may be other 

https://www.ncbi.nlm.nih.gov/nuccore/NM_001358516.1
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factors, such as biogenic amines, drugs and food products, that exacerbate or ameliorate the 

effects of Aβ. The use of yeast enables this work to be performed with relative ease. 
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