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Abstract 

Epilepsy, a prevalent neurological disorder, affects more than 50 million individuals worldwide 

and is characterized by recurring seizures. Nonsynonymous single nucleotide polymorphisms 

(nsSNPs) found within coding regions of epilepsy-related genes are believed to have 

significant impacts on protein function. This is due to their tendency to cause mutations in the 

encoded amino acids, which can subsequently lead to pathogenic alterations in protein 

structure and function. Consequently, nsSNPs have the potential to serve as diagnostic 

markers for epilepsy and other neuropsychiatric conditions. The primary objective of this 

study is to evaluate the harmful effects of missense nsSNP mutations on the GABRA6 gene. 

The GABRA6 gene encodes the alpha-6 subunit of the GABAA receptor, and previous research 

showed one case substitution mutation in the GABRA6 gene is associated with childhood 

absence epilepsy (CAE) and atonic seizures. To achieve this, we employed various 

computational tools, including SIFT, PolyPhen-2, PROVEAN, Condel, SNPs & GO, PMut, SNAP2, 

MutPred2, and SNPeffect4.0, for predicting missense nsSNPs. Additionally, we used I-

Mutant3.0 and MUpro to analyze protein stability, ConSurf to assess evolutionary 

conservation, FTSite and COACH to predict ligand binding sites, SOPMA and PSIPRED to 

analyze protein secondary structures, project HOPE to predict structural changes, and I-

TASSER to model the 3D structure. Furthermore, structural validation was conducted using 

http://creativecommons.org/licenses/by/4.0/
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the PROCHECK and ERRAT servers. At the same time, molecular dynamics simulations were 

performed using GROMACS to gain a better understanding of the effects of mutations on 

protein structure. Among the 451 missense nsSNPs identified within the GABRA6 gene, three 

were found to have pathogenic effects on the structure and function of the protein, 

potentially, there may be a contribution to the development of seizures or other 

neuropsychiatric disorders. Notably, two of these missense nsSNPs (W87S and W112R) were 

located within the ligand-binding domain, while the third (C310R) was situated in the 

transmembrane domain. It is crucial to acknowledge that despite their predicted 

pathogenicity, these variants are currently classified as of uncertain significance in clinical and 

genomic databases worldwide due to the lack of correlation with epilepsy in empirical studies. 

Without experimental data to validate these predictions, caution is warranted in interpreting 

the findings. 
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1. Introduction 

Epilepsy is a neurological disorder characterized by recurring seizures [1]. While approximately 

20-30% of epilepsy cases are associated with tumors, strokes, or head injuries, the remaining 70-

80% are believed to have genetic factors [2]. Genetic epilepsy refers to cases where seizures are a 

primary symptom of the disorder and are directly caused by presumed or known mutations. It is 

important to note that the underlying mutations responsible for genetic epilepsies are still largely 

unknown [3]. 

In a study conducted by Wang et al. in 2017, 977 genes associated with epilepsy were identified 

through a comprehensive search of databases such as OMIM, HGMD, Epilepsy Gene, and PubMed 

publications. These genes were classified into four groups based on the phenotypes of epilepsy 

manifestation. Among the 977 genes, 84 were designated as epilepsy genes, 73 as 

neurodevelopment-related genes, 536 as epilepsy-related genes, and 284 as putatively epilepsy-

associated genes, which require further investigation [4]. The focus of this study is to evaluate the 

GABRA6 gene, which falls under the putatively epilepsy-associated genes category. 

GABAA receptors, which belong to the Cys-loop ion channel superfamily, play a crucial role as the 

major inhibitory mediators in the mammalian central nervous system (CNS) [5]. These receptors are 

ŎƻƳǇƻǎŜŘ ƻŦ ǇŜƴǘŀƳŜǊƛŎ ǎǳōǳƴƛǘǎΣ ǿƛǘƘ мф ŘƛŦŦŜǊŜƴǘ ǎǳōǘȅǇŜǎ ƛŘŜƴǘƛŦƛŜŘ όˊм-ˊоΣ ʴм-ʴоΣ ʲм-ʲоΣ ʰм-

ʰсΣ ʻΣ ˉΣ ʶΣ ŀƴŘ ʵύ [6]. The diverse molecular composition and expression of GABAA receptors' 

subunits contribute to the variations in their properties, including agonist binding affinity, 

conductance, kinetics, and distribution within the brain [7]. These differences may potentially 

contribute to the pathogenesis of epilepsy and chronic seizure recurrence [8]. 

The GABRA6 gene encodes the alpha-6 subunit of the GABAA receptor. Previous studies have 

identified connections between variations in the GABRA6 gene and genetic epilepsy disorders such 

as CAE. Dibbens et al. reported a mutation (Arg46Trp) in the GABRA6 gene in a patient with CAE. 

¢Ƙƛǎ Ƴǳǘŀǘƛƻƴ ƛǎ ƭƻŎŀǘŜŘ ƛƴ ŀ ƘƻƳƻƭƻƎƻǳǎ ǊŜƎƛƻƴ ǘƻ ǘƘŜ ʴн ǎǳōǳƴƛǘ Ƴǳǘŀǘƛƻƴ ό!ǊƎунDƭƴύ ƛƴ ǘƘŜ 
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gamma-2 subunit of the GABAA receptor, which is known to be associated with febrile seizures and 

/!9 ƛƴ ƘǳƳŀƴǎΦ ¢ƘŜ ʴн ǎǳōǳƴƛǘ Ƴǳǘŀǘƛƻƴ ǊŜǎǳƭǘǎ ƛƴ ǊŜŘǳŎŜŘ ǎǳǊŦŀŎŜ ǊŜŎŜǇǘƻǊ ƭŜǾŜƭǎ ŀƴŘ ǊŜŎŜǇǘƻǊ 

currents, indicating impaired assembly and functionality of GABAA receptors [9]. Furthermore, 

Hernandez et al. found that the CAE-associated Arg46Trp mutation in the GABRA6 gene can cause 

neuronal disinhibition in the GABAA receptor, leading to an increased predisposition to generalized 

seizures due to reduced function and expression ƻŦ ʰʲʴ ŀƴŘ ʰʲʵ ǊŜŎŜǇǘƻǊǎΦ ¢Ƙƛǎ ƳŜŎƘŀƴƛǎƳ is 

ǎƛƳƛƭŀǊ ǘƻ ǘƘŜ ʴн ǎǳōǳƴƛǘ Ƴǳǘŀǘƛƻƴ ό!ǊƎунDƭƴύ ƭƛƴƪŜŘ ǘƻ ƘǳƳŀƴ /!9 [10]. 

When comparing genomic DNA sequences from different individuals, it is observed that certain 

positions can contain two or more bases. These variations, known as single nucleotide 

polymorphisms (SNPs), are highly prevalent, occurring at a frequency of approximately one out of 

every 0.3-1 kilobase in the human genome. Additionally, SNPs can have distinct effects on 

phenotypic levels depending on their location [11]. SNPs with a minimum frequency of 1% in the 

general population are believed to account for approximately 90% of inter-individual variability and 

nearly 100,000 amino acid differences. Due to their low mutation rate, SNPs serve as valuable 

markers for investigating complex genetic characteristics. Consequently, genetic studies 

increasingly use SNP markers for their numerous advantages. In general, SNPs can be categorized 

as either intronic or exonic. Intronic SNPs are located in non-coding genome areas and do not impact 

protein products when translated. On the other hand, nsSNPs are exonic SNPs found in coding 

regions that result in changes to protein length or amino acid variants [12]. Among the various types 

of SNPs, nsSNPs in coding regions are considered to have the most significant effect on protein 

functions, often leading to mutations in encoded amino acids that can detrimentally affect protein 

structure and function [13]. 

The emergence of large, complex biological data sets has necessitated rapid advancements in 

the field of bioinformatics or computational biology. While not a new field, bioinformatics has 

become increasingly indispensable as biology transitions towards high-throughput methods for 

analyzing entire genomes. Bioinformatics encompasses the scientific discipline involved in acquiring, 

storing, distributing, processing, interpreting, and analyzing biological information. Consequently, 

numerous databases and software applications have expanded to facilitate the analysis of genetic 

and physical data in order to infer the functions of model organisms and individuals. Computational 

analysis provides effective and alternative methods for generating new hypotheses, designing 

appropriate investigations, and interpreting vast amounts of data derived from genome-scale 

research. Computational or in silico analyses supplement traditional experimental biology 

techniques by significantly enhancing predictive capabilities [14]. The term "in silico" refers to 

experiments conducted using computers and is analogous to the more familiar biological terms "in 

vitro" and "in vivo" [15]. Given the exponential number of SNPs, it is impractical to determine the 

biological significance of each SNP through wet laboratory techniques alone. However, 

computational tools can be employed to screen potentially deleterious SNPs that may alter protein 

function and structure before proceeding to wet laboratory analysis [16]. 

This study aimed to identify and validate the most deleterious missense nsSNPs associated with 

the GABRA6 gene and assess their impact on protein function and structure. This approach involved 

investigating the underlying molecular mechanisms using various in silico methods. Predicted 

missense nsSNPs, along with the native form, were further analyzed through molecular dynamics 

simulations to understand their effects on protein structure better. This investigation explores the 

potential impact of missense nsSNPs on epilepsy and other neuropsychiatric disorders, focusing on 
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the GABRA6 gene. While our findings suggest a link between these variants and disease 

susceptibility, further experimental validation is essential to substantiate these observations. 

Nonetheless, elucidating the role of missense nsSNPs could offer valuable insights into disease 

mechanisms and inform future diagnostic and therapeutic strategies. 

2. Materials and Methods 

The harmful nature of missense nsSNPs in the function and structure of the human GABRA6 gene 

was predicted by several computational algorithms. Various in silico tools were utilized to make 

predictions to ensure that the results were highly accurate. The approach followed to analyze 

missense nsSNPs in the present study is shown in Figure 1. 

 

CƛƎǳǊŜ м {ŎƘŜƳŀǘƛŎ ǊŜǇǊŜǎŜƴǘŀǘƛƻƴ ƻŦ ƛƴ ǎƛƭƛŎƻ ǿƻǊƪŦƭƻǿ ǘƻ ŀƴŀƭȅȊŜ ŘŜƭŜǘŜǊƛƻǳǎ ƳƛǎǎŜƴǎŜ 

ƴǎ{btǎ ƛƴ ƘǳƳŀƴ D!.w!с ƎŜƴŜΦ 

2.1 Data Mining 

The missense nsSNPs for the human GABRA6 gene were retrieved from the National Center for 

Biotechnology Information (NCBI) dbSNP database [17] (https://www.ncbi.nlm.nih.gov/snp/). 

Moreover, the protein sequence encoded by the human GABRA6 gene was obtained from the 

UniProt database [18] (https://www.uniprot.org/). 

2.2 Predicting Deleterious Missense nsSNPs 

In silico tools, including SIFT, PolyPhen-2, PROVEAN, and Condel, were utilized to predict 

deleterious missense nsSNPs. 

SIFT (Sorting Intolerant from Tolerant): An algorithm that uses sequence homology and the 

physical properties of amino acids to predict an amino acid substitution effect on protein function. 

The algorithm considered evolutionarily conserved regions to be relatively intolerant to mutations, 

https://www.ncbi.nlm.nih.gov/snp/
https://www.uniprot.org/
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and therefore, amino acid substitution in these regions is more likely to be expected to affect 

protein function [19]. In this study, a faster version of SIFT called SIFT 4G (SIFT for genomes) [20] is 

used (The package is available at https://github.com/rvaser/sift4g). SIFT takes a protein sequence 

and a list of substitutions, which is searched against a protein database for homology searching. The 

protein database is UniRef90 (16 February 2021 release) [21]. SIFT score ranges from 0 to 1. The 

amino acid substitution is considered harmful ƛŦ ǘƘŜ ǎŎƻǊŜ ғ лΦлрΣ ǿƘƛƭŜ ǘƘŜ ǎŎƻǊŜ җ лΦлр ƛǎ ǘƻƭŜǊŀǘŜŘΦ 

PolyPhen-2 (Polymorphism Phenotyping v2): A tool that predicts the structural and functional 

impacts of an amino acid substitution in human proteins. PolyPhen-2 (The package is available at 

http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads) uses a NaƤɉve Bayes classifier, which is 

trained by supervised learning algorithms. HumDiv and HumVar datasets from the UniProt database 

were used to train PolyPhen-2 prediction models. The classifier that used HumDiv should be used 

for rare alleles assessment, natural selection analysis, and dense mapping of regions determined 

through genome-wide association studies. The HumVar classifier should be utilized for Mendelian 

disease recognition, which requires recognizing mutations with severe effects from all the remaining 

human variation, including many mildly deleterious alleles [22]. PolyPhen-2 takes protein UniProt 

ID and substitutions as an input file and identifies homologs of the protein sequences by Basic Local 

Alignment Search Tool (BLAST) [23] in the UniRef100 (27 February 2021 release) database. The 

PolyPhen-2 score ranges from 0 (neutral) to 1 (deleterious), and functional prediction is categorized 

into probably damaging (damaging with high confidence), possibly damaging (damaging with low 

confidence), and benign (benign with high confidence). 

PROVEAN (Protein Variation Effect Analyzer): A tool based on an alignment scoring method that 

predicts functional effects of single amino acid substitutions, in-frame insertions, deletions, and 

multiple substitutions [24]. PROVEAN (http://provean.jcvi.org/index.php) uses a delta alignment 

score (or delta score) to measure the effect of a variation. The protein sequence and a list of 

substitutions were submƛǘǘŜŘ ŀǎ ƛƴǇǳǘǎ ǘƻ ǘƘŜ ŀƭƎƻǊƛǘƘƳΦ twh±9!bΩǎ ŘŜŦŀǳƭǘ ǘƘǊŜǎƘƻƭŘ ǎŎƻǊŜ ƛǎ -2.5. 

A score < -2.5 is considered harmful, while a score > -2.5 is considered neutral [25]. 

Condel (CONsensus DELeteriousness): A method to predict the outcome of non-synonymous 

SNPs based on a weighted average of the normalized scores (WAS) of various tools. Condel 

(https://bbglab.irbbarcelona.org/fannsdb/) uses a consensus deleteriousness score that integrates 

the output of five tools (Logre [26], MAPP [27], Mutation Assessor [28], Polyphen2, and SIFT) into a 

unified classification [29]. Protein UniProt ID and substitutions were submitted as an input file to 

the algorithm. Condel's score ranges from 0 to 1, which is a higher score that predicts SNPs as 

deleterious. 

2.3 Predicting Disease-Related Variants 

To disease-related prediction of selected missense nsSNPs, SNPs & GO and PMut tools were used 

in this step. 

SNPs & GO A support vector machine (SVM) based tool for predicting disease-related SNPs using 

Gene Ontology (GO) terms (http://snps.biofold.org/snps-and-go) [30]. Protein Swiss Prot code and 

substitutions were submitted as inputs to the algorithm. When the input sequence is a Swiss Prot 

code, GO terms for the prediction will be retrieved automatically. The result consists of three 

different algorithms: SNPs & GO, PhD-SNP [31], and PANTHER [32]. SNPs & GO score ranges from 0 

https://github.com/rvaser/sift4g
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://provean.jcvi.org/index.php
https://bbglab.irbbarcelona.org/fannsdb/
http://snps.biofold.org/snps-and-go
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to 1, if the score > 0.5 is considered a disease-related variation, ǿƘƛƭŜ ŀ ǎŎƻǊŜ Җ лΦр ƛǎ ŎƻƴǎƛŘŜǊŜŘ 

benign. 

PMut: A tool that predicts pathological properties of single amino acid substitutions. PMut 

(http://mmb.irbbarcelona.org/PMut) uses a neural network-based method that is trained using a 

manually curated database Swiss Prot (October 2016 release), includes 27,203 deleterious and 

38,078 benign mutations for 12,141 proteins [33]. Protein Uni Prot ID and substitutions were 

submitted as inputs to the algorithm. PMut score ranges from 0 to 1. A score > 0.5 is classified as 

pathological variation, and a score < 0.5 is classified as neutral. 

2.4 Predicting the Molecular and Phenotypic Consequences of Variants 

Further investigation was done to predict molecular and phenotypic consequences of selected 

missense nsSNPs through SNAP2, MutPred2, and SNPeffect4.0 tools. 

SNAP2: A neural network-based classifier tool that predicts the functional effects of non-

synonymous SNPs (https://rostlab.org/services/snap2web/). SNAP2 uses evolutionary information 

and structural features like solvent accessibility and predicted secondary structure to predict 

ǾŀǊƛŀƴǘǎΩ ŜŦŦŜŎǘǎ [34]. The protein sequence was submitted as input to the algorithm. SNAP2 score 

ranges from -100 (firmly neutral) to +100 (enormously influential). 

MutPred2: A machine learning-based method that predicts the molecular and phenotypic 

consequences caused by amino acid substitutions as pathogenic or benign (The package is available 

at http://mutpred.mutdb.org/). It was trained using 53,180 deleterious and 206,946 putatively 

benign mutations from the Human Gene Mutation Database (HGMD) [35], Swiss Var database [36], 

dbSNP database, and inter-species pairwise alignments. MutPred2 takes protein Uni Prot ID and 

substitutions as an input file. MutPred2 gives two output scores: general score (g) and property 

score (pr). The g score demonstrates the pathogenicity of the substitution and ranges between 0 

and 1, a higher score indicates a greater probability of being pathogenic. The pr score is the posterior 

probability of losing or gaining a certain property because of the substitution and it also ranges 

between 0 and 1, a higher score indicates more alteration of the property in the molecular 

mechanism of the disease [37]. 

SNPeffect 4.0: A database that uses 4 tools to predict molecular and structural phenotypic 

consequences of human protein-coding SNVs (https://snpeffect.switchlab.org/). SNPeffect 4.0 uses 

TANGO [38] for aggregation-prone regions prediction, WALTZ [39] for amyloidogenic regions 

prediction, LIMBO [40] for hsp70 chaperone-binding sites prediction, and FoldX [41] for analyzing 

the possible impact of protein stability [42]. Protein UniProt ID and substitutions were submitted as 

inputs to the algorithm. Mutations can increase (dTANGO, dWALTZ, and dWALTZ > 50), decrease 

(dTANGO, dWALTZ, and dWALTZ < -50), or have no effect (dTANGO, dWALTZ, and dWALTZ between 

-50 and 50), aggregation propensity, amyloid propensity, and chaperone binding. 

2.5 Predicting the Effect of Variants on Protein Stability  

Analyzing missense nsSNPs effects on protein stability was accomplished by I-Mutant3.0 and 

MUpro tools through Gibbs free energy change calculation of mutant protein and wild-type protein. 

I-Mutant: A support vector machine (SVM) based web server tool that predicts protein stability 

changes upon single amino acid substitutions (https://folding.biofold.org/i-mutant/). I-Mutant 

ŜǎǘƛƳŀǘŜǎ ǇǊƻǘŜƛƴ ǎǘŀōƛƭƛǘȅ ōȅ ŎŀƭŎǳƭŀǘƛƴƎ Dƛōōǎ ŦǊŜŜ ŜƴŜǊƎȅ ŎƘŀƴƎŜ όɲɲDΣ ƪŎŀƭκƳƻƭύ ƻŦ ǘƘŜ Ƴǳǘŀƴǘ 

http://mmb.irbbarcelona.org/PMut
https://rostlab.org/services/snap2web/
http://mutpred.mutdb.org/
https://snpeffect.switchlab.org/
https://folding.biofold.org/i-mutant/
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protein and wild-ǘȅǇŜ ǇǊƻǘŜƛƴ όɲɲD Ґ ɲD όƳǳǘŀƴǘ ǘȅǇŜύ-ɲD όǿƛƭŘ-type)) [43]. This server can evaluate 

the protein stability change by the protein sequence or structure. In this study, protein sequence 

was used. The protein sequence and substitutions were submitted as inputs to the algorithm. If 0 < 

ɲɲD is ŎƻƴǎƛŘŜǊŜŘ ǘƻ ƛƴŎǊŜŀǎŜ ǇǊƻǘŜƛƴ ǎǘŀōƛƭƛǘȅΣ ǿƘƛƭŜ ɲɲD ғ л ƛǎ ŎƻƴǎƛŘŜǊŜŘ to decrease protein 

stability. I-Mutant 3.0 predicts which a single substitution has a low effect (-лΦр Җ ɲɲD Җ лΦр ƪŎŀƭκƳƻƭύ 

ƻǊ ŜȄǘŜƴǎƛǾŜƭȅ ƛƴŎǊŜŀǎŜǎ ǇǊƻǘŜƛƴ ǎǘŀōƛƭƛǘȅ όɲɲD Ҕ лΦр YŎŀƭκƳƻƭύ ƻǊ ŜȄǘŜƴǎƛǾŜƭȅ ŘŜŎǊŜŀǎŜǎ ǇǊƻǘŜƛƴ 

ǎǘŀōƛƭƛǘȅ όɲɲD ғ -0.5 Kcal/mol). 

MUpro: A tool based on support vector machine (SVM) and neural network methods, which is 

used for protein stability prediction resulting from single amino acid substitutions 

(http://mupro.proteomics.ics.uci.edu/) [44]. MUpro also likes I-Mutant can predict the stability 

changes using protein sequence or protein structure. The protein sequence and substitutions were 

ǎǳōƳƛǘǘŜŘ ŀǎ ƛƴǇǳǘǎ ǘƻ ǘƘŜ ŀƭƎƻǊƛǘƘƳΦ ²ƘŜƴ ǘƘŜ ŜƴŜǊƎȅ ŎƘŀƴƎŜ όɲɲDύ ƛǎ ǇƻǎƛǘƛǾŜ, the mutation 

increases protein stabilƛǘȅΦ LƴǎǘŜŀŘΣ ƛŦ ɲɲD ƛǎ ƴŜƎŀǘƛǾŜ ǘƘŜ Ƴǳǘŀǘƛƻƴ ŘŜŎǊŜŀǎŜǎ ǇǊƻǘŜƛƴ ǎǘŀōƛƭƛǘȅΦ 

2.6 Evolutionary Conservation Analysis 

The ConSurf tool was utilized to identify selected missense nsSNPs' positions in evolutionarily 

conserved regions. 

ConSurf: A tool used for evolutionarily conservation analysis of amino acids in a protein, DNA, or 

RNA to reveal important functional and/or structural areas (https://consurf.tau.ac.il/). ConSurf uses 

an empirical Bayesian method to estimate the protein sequence conservation score [45]. The 

protein sequence was submitted as input to the algorithm. The conservation score is grouped into 

9 grades, where 1 indicates most rapidly evolving areas, 5 indicates mildly changing areas, and 9 

indicates most evolutionary conserved areas. 

2.7 Predicting Protein Secondary Structure 

Secondary structures of selected missense nsSNPs were predicted by SOPMA and PSIPRED tools. 

SOPMA: A web version of the self-optimized prediction method (SOPM) [46], which is used for 

secondary structure prediction of amino acids (https://npsa-prabi.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html). The joint prediction using SOPMA, and a 

neural network method (PHD) correctly predicts 82.2% of residues for 74% of co-predicted amino 

acids. The protein sequence was submitted as input to the algorithm. 

PSIPRED: A highly accurate method that predicts the secondary structure of proteins 

(http://bioinf.cs.ucl.ac.uk/psipred/). PSIPRED [47] includes two feed-forward neural networks that 

perform an analysis of the output obtained from PSI-BLAST [23]. The protein sequence was 

submitted as input to the algorithm. 

2.8 Predicting Structural Effects of Variants 

The HOPE project predicted structural changes such as size, charge, and hydrophobicity-value 

between mutant and wild residues. 

HOPE (Have (y)Our Protein Explained): A web tool to predict the structural effects of single amino 

acids substitutions on proteins (https://www3.cmbi.umcn.nl/hope/). HOPE uses 3D structures of 

the proteins available in the Uni Prot database and Distributed Annotation (DAS) servers to simulate 

http://mupro.proteomics.ics.uci.edu/
https://consurf.tau.ac.il/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
http://bioinf.cs.ucl.ac.uk/psipred/
https://www3.cmbi.umcn.nl/hope/
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the structural features of mutations on the wild-type protein [48]. However, if necessary, the HOPE 

server can build homology models independently. HOPE sever also predicts structural changes 

between mutant and wild residues. The protein sequence was submitted as input to the algorithm. 

2.9 3D Structure Modeling and Visualizing of Natives and Variants Structures 

The 3D structure of the protein is crucial to annotate the protein function of native and mutant 

structures. Identification of domain regions and locating missense nsSNPs position in domains were 

done through the Pfam database [49] search (http://pfam.xfam.org/). Then, generating 3D 

structures of each native domain using I-TASSER (Iterative Threading ASS Embly Refinement) was 

accomplished separately (https:// zhanglab.dcmb.med.umich.edu/I-TASSER/). I-TASSER is a method 

for predicting protein structure that consists of 3 steps. In the first step, after the domain sequence 

was submitted to the I-TASSER server as input, a meta-threading program called LOMETS [50] 

retrieved structural templates from the PDB library [51]. In the second step, full-length models are 

constructed by assembling well-aligned continuous fragments excised from the PDB templates, with 

unaligned regions structures built by ab-initio modeling based on replica-exchange Monte Carlo 

simulations [52]. I-TASSER simulations generate thousands of conformations named decoys. I-

TASSER uses the SPICKER program (a clustering algorithm) [53] to cluster all decoys. Through 

clustering, SPICKER identifies low free-energy states. Eventually, the functional annotations are 

obtained by matching the predicted structure models with known proteins in the BioLiP function 

library [54]. I-TASSER will predict up to the top five models. A confidence score or C-score estimates 

the quality of predicted models. C-score is typically in the range of [-5.2], wherein a higher value 

signifies a better-quality model; when C score > -1.5, it indicates the model has a correct fold. I-

TASSER takes protein sequence as input, and up to five models are predicted as output. In cases 

where the output final models are less than five, the similarity of the top templates identified via 

LOMETS is indicated, and this causes the converging of I-TASSER simulations. The C-score is usually 

high in such cases and predicts a high-quality model [55-57]. 

PROCHECK and ERRAT carried out structural validation for the predicted models. PROCHECK by 

Psi/Phi Ramachandran plot analysis assesses the stereochemical quality of a protein structure [58]. 

ERRAT is another protein structural verification tool that demonstrates the model's reliability. For 

the best quality of the predicted model, the ERRAT value must be over 80% [59]. PROCHECK and 

ERRAT are available at the Structural Analysis and Verification Server (SAVES) 

(https://saves.mbi.ucla.edu/). PDB file was submitted as input to the server for both tools. Modeling 

of mutated protein structures was performed using the mutagenesis feature in the PyMol [60] 

visualization tool (2.3.0 version) using the predicted native type by I-TASSER as a reference. 

2.10 Predicting Ligand Binding Sites 

The FTSite and COACH tools were used to predict the presence of selected missense nsSNPs in 

ligand-binding sites. 

FTSite: An accurate computational method for ligand binding site prediction based on 

experimental evidence with an accuracy of 94% (https://ftsite.bu.edu/) [61]. PDB file was submitted 

as input to the algorithm. FTSite identifies three potential binding sites in proteins. 

COACH (COnsensus approACH): A tool for ligand binding site prediction, which is based on two 

comparative methods, TM-SITE (binding-specific substructure comparison) and S-SITE (sequence 

http://pfam.xfam.org/
https://zhanglab.dcmb.med.umich.edu/I-TASSER/
https://saves.mbi.ucla.edu/
https://ftsite.bu.edu/
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profile alignment), which identify ligand binding templates from the BioLiP library. These two 

methods, combined with COFACTOR [62], Con Cavity [63], and FINDSITE [64] methods, generate 

final predictions [65]. After the protein sequence was submitted to the I-TASSER for generating 3D 

structures, it will be fed into the COACH pipeline for predicting ligand binding sites. 

2.11 Molecular Dynamics Simulation in Water 

Molecular dynamics simulations were performed using the GROMACS (2021.2 version) to reveal 

changes at the atomic level in different time scales for wild and mutant types [66]. The Amber ff99SB 

protein force field was used for simulations. A cubic box was formed by extending 1 nm on each 

side of the protein. The system was implemented by adding TIP3P water model molecules and 

neutralizing them with Cl-ions. The energy minimization step was performed using the steepest 

descent algorithm before the simulation. Long-range electrostatic interactions were modeled using 

the particle mesh Ewald (PME) method. The short-range electrostatic and van der Waals 

interactions cut-off radius was set to 1 nm. Periodic boundary conditions were maintained to 

eliminate surface effects. The leap-ŦǊƻƎ ŀƭƎƻǊƛǘƘƳ ǿŀǎ ǳǎŜŘ ŦƻǊ ǎƛƳǳƭŀǘƛƻƴǎ ǘƻ ƛƴǘŜƎǊŀǘŜ bŜǿǘƻƴΩǎ 

equations of motion. A time step interval of 2 fs was used for all simulations. To constrain bonds 

involving hydrogens the Lincs algorithm. Minimized systems should be equilibrated to reach the 

desired temperature and pressure before the fundamental dynamics start. Equilibration is 

conducted in two ensembles: NVT (constant Number of particles, Volume, and Temperature) and 

NPT (constant Number of particles, Pressure, and Temperature). The system temperature and 

pressure were coupled to a v-rescale thermostat with a time constant of 0.1-ps at 300 K and a 

Parrinello-Rahman barostat with a time constant of 2-ps at 1 bar. We first conducted a 200-ps NVT 

equilibration and then a 1000-ps NPT equilibration. The molecular dynamics simulation of each 

equilibrated system of the wild and mutant types was run for 100 ns. At last, the MDS trajectory 

files analyses were calculated by GROMACS build-in programs to get RMSD (root mean square 

deviations), RMSF (root mean square fluctuations), Rg (radius of gyration), SASA (solvent accessible 

surface area), and DSSP (definition secondary structure of the protein) analyses. RMSD, RMSF, Rg, 

ŀƴŘ {!{! ƻŦ /ʰ ŀǘƻƳǎ ƛƴ ǘƘŜ ǘǊŀƧŜŎǘƻǊƛŜǎ ǿŜǊŜ ŜǾŀƭǳŀǘŜŘΦ ¢ƘŜ ŎƘŀƴƎŜǎ ƛƴ ǘƘŜ ǎŜŎƻƴŘŀǊȅ ǎǘǊǳŎǘǳǊŜ ƻŦ 

the protein during molecular dynamics simulations were also calculated. 

3. Results 

3.1 Missense nsSNPs Datasets 

For the biological consequences study of missense nsSNPs, we retrieved 451 missense nsSNPs 

with 386 rsIDs in the human GABRA6 gene mapped to NM_000811.3 RefSeq (Table S1) from the 

dbSNP database. The protein sequence of the GABRA6 gene (with Q16445 ID) was retrieved from 

the UniProt database. 

3.2 Prediction of Most Deleterious Missense nsSNPs 

This study used four in silico tools, SIFT, PolyPhen-2, PROVEAN, and Condel, to predict deleterious 

missense nsSNPs. Out of 451 missense nsSNPs, 303 were predicted as deleterious and 148 as 

tolerated by SIFT, 306 were predicted as deleterious and 145 as neutral by HumDiv PolyPhen-2 (143 

benign, 49 possibly damaging, and 259 probably damaging), 290 were predicted as deleterious and 
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161 as neutral by HumVar PolyPhen-2 (157 benign, 55 possibly damaging, and 239 probably 

damaging), 225 were predicted as deleterious and 226 as neutral by PROVEAN, and 298 were 

predicted as deleterious and 153 as neutral by Condel (Table S2 and Figure 2). 

 

CƛƎǳǊŜ н 5ƛǎǘǊƛōǳǘƛƻƴ ƻŦ ǇǊŜŘƛŎǘŜŘ ŘŜƭŜǘŜǊƛƻǳǎ ŀƴŘ ƴŜǳǘǊŀƭ ƳƛǎǎŜƴǎŜ ƴǎ{btǎ ōȅ п ǘƻƻƭǎ ŦƻǊ 

ƘǳƳŀƴ D!.w!с ƎŜƴŜΦ 5ŜƭŜǘŜǊƛƻǳǎ ƳƛǎǎŜƴǎŜ ƴǎ{btǎ ŀǊŜ ǎƘƻǿƴ ƛƴ ŘŀǊƪ ōƭǳŜΣ ŀƴŘ ƴŜǳǘǊŀƭ 

ƴǎ{btǎ ŀǊŜ ƛƴ ƭƛƎƘǘ ōƭǳŜΦ 

Deleterious missense nsSNPs were predicted with default scores for each tool. High scores across 

the tools are considered to obtain high confidence deleterious missense nsSNPs. SIFT score = 0, 

PolyPhen-2 score > 0.99, PROVEAN score < -9, and Condel score > 0.7 are used. After integrating the 

scores, 3 missense nsSNPs in the GABRA6 gene (Table 1) were obtained and used for further analysis. 

Table 1 The most deleterious missense nsSNPs by SIFT, PolyPhen-2, PROVEAN, and 

CONDEL tools in the GABRA6 gene. 

rs ID 
Transcript 

change 

Substit

ution 

SIFT4G 

Score 

PolyPhen-2 Score 
PROVEAN 

Score 

CONDEL 

Score 
HumDiv 

probability 

HumVar 

probability 

rs1428649051 c.260G > C W87S 0 1 1 -12.906 0.709363974 

rs1199782347 c.334T > C W112R 0 1 1 -12.837 0.735214831 

rs1317373536 c.928T > C C310R 0 1 1 -10.964 0.764688222 

3.3 Prediction of Disease-Related Variants 

To get more accurate results, selected missense nsSNPs were analyzed by SNPs & GO and PMut 

to predict disease-related missense nsSNPs. SNPs & GO's result consists of three different 

algorithms; SNPs & GO, PhD-SNP, and PANTHER. Three selected missense nsSNPs in the human 

GABRA6 gene were submitted to SNPs & GO and PMut to analyze disease-related missense nsSNPs. 

The output of SNPs & GO, PhD-SNP, PANTHER, and PMut predicted that all three selected missense 

nsSNPs are disease-related (Table 2). 
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Table 2 Lists disease-related missense nsSNPs of GABRA6 by SNPs & GO and PMut tools. 

Substituti

on 

SNPs & GO 
PMut 

SNPs & GO PhD-SNP PANTHER 

Prediction RI 
Proba

bility 
Prediction RI 

Proba

bility 
Prediction RI 

Proba

bility 
Prediction Score 

W87S Disease 8 0.919 Disease 8 0.922 Disease 10 0.999 Disease 0.8214 

W112R Disease 9 0.93 Disease 9 0.937 Disease 10 0.979 Disease 0.8214 

C310R Disease 9 0.949 Disease 9 0.97 Disease 9 0.974 Disease 0.8627 

RI: Reliability Index. 

3.4 Prediction of the Molecular and Phenotypic Consequences of Variants 

To predict the molecular and phenotypic consequences of selected missense nsSNPs, we further 

investigated missense nsSNPs through SNAP2, MutPred2, and SNPeffect4.0 tools. The SNPeffect 

ǘƻƻƭ ǇǊŜŘƛŎǘǎ {btǎΩ Ŏƻnsequence on aggregation-prone regions by TANGO, amyloid-forming regions 

by WALTZ, and hsp70 chaperone binding sites by LIMBO. The output of SNAP2 of three selected 

missense nsSNPs in the GABRA6 gene predicted that all three selected missense nsSNPs have 

damaging effects on protein structure. Since the score > 0.5 suggests pathogenicity in MutPred2, 

the output of MutPred2 showed that all three selected missense nsSNPs in the GABRA6 gene have 

damaging functional and structural effects (Detailed information in Table S3). According to the SNP 

effect results, TANGO and WALTZ analysis revealed that the C310R variant (dTANGO equals 302.70 

and dWALTZ equals -553.68) increases the aggregation tendency of the protein and decreases the 

amyloid propensity of the protein. However, none of the variations does affect the chaperone 

binding tendency of the protein (Table 3). 

Table 3 List of analyzed missense nsSNPs of the GABRA6 gene by SNAP2, MutPred2, and 

SNPeffect4.0 tools. 

Substitution 
SNAP2 

MutPred2 score 
SNPeffect4.0 

Prediction Score dTANGO dWALTZ dLIMBO 

W87S effect 87 0.953 0.00 -0.07 0.00 

W112R effect 87 0.948 0.00 -0.12 0.00 

C310R effect 87 0.964 302.70 -553.68 0.00 

(d in dTANGO, dWALTZ, and dLIMBO is the score change between the mutant and wild-type 

proteins). 

3.5 Prediction of the Effect of Variants on Protein Stability  

The effects of selected missense nsSNPs on protein stability were analyzed by I-Mutant3.0 and 

MUpro tools by calculating the Gibbs free energy change of mutant and wild-type proteins. I-

Mutant3.0 analyses showed that W87S and W112R variants decreased protein stability, and the 

C310R variant increased protein stability. In contrast, all three variants by Mupro prediction showed 

decreasing protein stability. W87S and W112R variants have ɲɲD ǾŀƭǳŜǎ ғ -1 kcal/mol in both tools, 

which are expected to alter the function and structure of the protein (Table 4). 
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Table 4 List of missense nsSNPs of the GABRA6 gene, which was analyzed for protein 

stability by I-Mutant3.0 and MUpro tools. 

Substitution 
I-Mutant3.0 Mupro 

Prediction ɲɲD RI Prediction ɲɲD 

W87S Decrease -1.69 9 Decrease -1.0174971 

W112R Decrease -1.44 9 Decrease -1.2580621 

C310R Increase -0.32 2 Decrease -0.85748451 

RI: Reliability Index. 

3.6 Evolutionary Conservation Analysis 

To analyze the evolutionary conservation of selected missense nsSNPs, the ConSurf tool was used, 

which grouped amino acids based on conservation scores in 9 grades. As shown in Figure 3, ConSurf 

results indicated that W87 and W112 residues located in highly conserved regions with conservation 

scores of 9 and predicted as buried residues and have a structural impact on the protein, and C310 

predicted as buried residue with conservation scores of 8. 

 

Figure 3 ConSurf analysis of GABRA6 gene residues. The black boxes indicate the most 

deleterious missense nsSNPs. 
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3.7 Prediction of Protein Secondary Structure 

!Ƴƛƴƻ ŀŎƛŘǎΩ ǎŜŎƻƴŘŀǊȅ ǎǘǊǳŎǘǳǊŜ ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ ǇǊƻǘŜƛƴǎ ǿŀǎ ǇǊŜŘƛŎǘŜŘ ōȅ {hta! ŀƴŘ 

PSIPRED tools. SOPMA prediction showed the distributions of alpha helix, extended strand, beta-

turn, and random coil in proteins. PSIPRED predicted the distributions of strands, helices, and coils 

in proteins and validated the secondary structure of the proteins. SOPMA results showed 135 alpha 

helices (29.80%), 104 extended strands (22.96%), 11 beta turns (2.43%), and 203 random coils 

(44.81%) in the predicted secondary structure. In the 3 amino acid residues corresponding to 

selected missense nsSNPs, W87 and W112 are in random coils, and C310 in alpha helices (Figure 4). 

PSIPRED results indicated that in the 3 amino acid residues, W87 is located in strands, Y186 in coils, 

and C310 in helices (Figure S1). 

 

Figure 4 SOPMA analysis of GABRA6 gene residues. The black boxes indicate the most 

deleterious missense nsSNPs. 

3.8 Prediction of Structural Effects of Variants 

HOPE was used to predict structural changes, including size, charge, and hydrophobicity value 

between mutant and wild residues. Of 3 selected missense nsSNPs in the GABRA6 gene, Ser and Arg 

residues in W87S and W112R mutants are more minor than Trp residue in wild-type forms. In 

contrast, Arg residue in the C310R mutant is more significant than the Cys residue in the wild-type 

form. The charge of Trp and Cys residues in W112R and C310R mutants was neutral, then turned to 

Arg residues with a positive charge. There is not any significant charge change in the W87S mutant. 

The wild-type residues in all three missense nsSNPs are more hydrophobic than the mutant residues. 

(Table S4). According to the project HOPE results, when the mutant residue is smaller than the wild-

type residue, it might lead to a loss of interactions in protein structure. If the mutant residue is more 

significant than the wild-type residue, it might lead to bumps in protein structure. When the charge 

of the wild-type residue is lost, it might cause a loss of interactions with other molecules or residues. 

If the mutation introduces a charge, it might cause the repulsion of ligands or other residues with 

the same charge. When the hydrophobicity of the wild-type residue is lost or decreased, the 

hydrophobic interactions will be lost either in the core of the protein or on the surface. If the 

mutation introduces a more hydrophobic residue, it might cause a loss of hydrogen bonds and/or 

disturb correct folding. 
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3.9 3D Structure Modeling and Visualizing of Wild and Mutant Structures 

The Pfam server was used to identify domain regions in the GABRA6 gene and locate selected 

missense nsSNP positions in different domains. In this study, we need domains that involve 

deleterious missense nsSNPs (Table 5). Generating 3D structure models was performed by the I-

¢!{{9w ǎŜǊǾŜǊΦ tǊŜŘƛŎǘŜŘ ƳƻŘŜƭǎΩ ǾŀƭƛŘŀǘƛƻƴ ǿŀǎ ŘƻƴŜ ōȅ twh/I9/Y ŀƴŘ 9ww!¢ ǎŜǊǾŜǊǎΦ twh/I9/Y 

predicted the quality of wild models using Ramachandran plot analysis. The ERRAT indicated the 

overall quality factor of the predicted models. PyMol software was used to visualize wild and mutant 

protein structures. 

Table 5 List domains involving selected deleterious missense nsSNPs in the GABRA6 

gene. 

Protein name Domain name 
Start 

residue 

Stop 

residue 

Domain 

length 

Involved 

missense nsSNPs 

GBRA6_HUMAN 
Neurotransmitter-gated ion-

channel ligand-binding domain 
32 240 209 aa W87S and W112R 

GBRA6_HUMAN 
Neurotransmitter-gated ion-

channel transmembrane domain 
247 399 153 aa C310R 

Pfam reported two domains in the GABRA6 gene, including the neurotransmitter-gated ion-

channel ligand-binding domain (32-240), and a neurotransmitter-gated ion-channel 

transmembrane domain (247-399). Out of three selected missense nsSNPs for further analysis, two 

(W87S and W112R) are located in the ligand-binding domain, and one (C310R) is in the 

transmembrane domain. 

3D structure prediction of wild types for the ligand-binding domain and the transmembrane 

domain in the GABRA6 gene was modeled by I-TASSER. One model predicted a C-score of 1.16 for 

the ligand-binding domain, which was a high-quality model. And in the transmembrane domain, we 

selected the first model out of 5 predicted models with a C-score of -1.62 (Figure S2a and Figure 

S3a)Φ ±ŀƭƛŘŀǘƛƻƴ ƻŦ ǇǊŜŘƛŎǘŜŘ ƳƻŘŜƭǎΩ ǉǳŀƭƛǘȅ ǿŀǎ ŘƻƴŜ ōȅ twh/I9/Y ŀƴŘ 9ww!¢ ǎŜǊǾŜǊǎΦ ¢ƘŜ ǊŜǎǳƭǘ 

of PROCHECK for the ligand-binding domain model showed 79.7% of residues in most favored 

regions, 18.7% in additional allowed regions, 1.6% in generously allowed regions, and 0% in the 

disallowed areas (Figure S2b). The ERRAT result showed that the overall quality factor for the 

predicted model was 87.940 (Figure S2c)Φ twh/I9/YΩǎ ǊŜǎǳƭǘ ŦƻǊ ǘƘŜ ǘǊŀƴǎƳŜƳōǊŀƴŜ ŘƻƳŀƛƴ ƳƻŘŜƭ 

showed 77.3% of residues in the most favored regions, 12.8% in additional allowed regions, 7.1% in 

generously allowed regions, and 2.8% in the disallowed areas (Figure S3b). The ERRAT result showed 

that the predicted model's overall quality factor was 83.916 (Figure S3c). 

Finally, the predicted models were used to model mutant types by utilizing the mutagenesis 

feature in PyMol. Structural models for wild-types and deleterious missense nsSNPs in the ligand-

binding domain (W87S and W112R) and the transmembrane domain (C310R) are shown in Figure 5, 

Figure 6 and Figure 7. 
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Figure 5 (W87S): The amino acid Tryptophan (green) changed to Serine (red) at position 

87 in the ligand-binding domain. Visualization was done by PyMol software and HOPE 

result. 

 

Figure 6 (W112R): The amino acid Tryptophan (green) changed to Arginine (red) at 

position 112 in the ligand-binding domain. Visualization was done by PyMol software 

and HOPE result. 

 

Figure 7 (C310R): The amino acid Cysteine (green) changed to Arginine (red) at position 

310 in the transmembrane domain. Visualization was done by PyMol software and HOPE 

result. 

3.10 Prediction of Ligand Binding Sites 
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To determine the presence of the selected deleterious missense nsSNPs in protein-binding 

regions of the GABRA6 gene, we employed the FTSite and COACH algorithms, which are protein-

ligand docking tools. FTSite identified three potential binding sites in the ligand-binding domain of 

the protein. 

FTSite predicted three potential binding sites in the ligand-binding domain. Site 1 contains 15 

binding residues, site 2 includes 4, and site 3 contains 12 (Figure 8a and Table S5). Additionally, 

COACH predicted 20 amino acid residues as potential binding sites (Table S6). 

 

CƛƎǳǊŜ у LƭƭǳǎǘǊŀǘƛƻƴ ƻŦ D!.w!сΣ ƭƛƎŀƴŘπōƛƴŘƛƴƎ ŘƻƳŀƛƴ ό!ύΣ ŀƴŘ ǘǊŀƴǎƳŜƳōǊŀƴŜ ŘƻƳŀƛƴ 

ό.ύΣ ǿƛǘƘ ƭƛƎŀƴŘπōƛƴŘƛƴƎ ǎƛǘŜ ǇǊŜŘƛŎǘƛƻƴǎΦ C¢{ƛǘŜ ǿŜǊŜ ŀƴƴƻǘŀǘŜŘ ǘƘŜ ƭƛƎŀƴŘπōƛƴŘƛƴƎ 

ǇƻŎƪŜǘǎΦ {ƛǘŜ м ƛǎ ƛƭƭǳǎǘǊŀǘŜŘ ƛƴ ǊŜŘΣ ǿƘƛƭŜ ǎƛǘŜǎ н ŀƴŘ о ŀǊŜ ŘŜǎŎǊƛōŜŘ ƛƴ ƎǊŜŜƴ ŀƴŘ ōƭǳŜΣ 

ǊŜǎǇŜŎǘƛǾŜƭȅΦ 

Similarly, in the transmembrane domain, FTSite predicted three potential binding sites. Site 1 

contains 9 binding residues, site 2 includes 16 binding residues, and site 3 contains 6 (Figure 8b and 

Table S5). COACH predicted 44 amino acid residues as potential binding sites (Table S6). 

3.11 Molecular Dynamics Simulation of WT and Mutant Types 

To comparatively study the conformational changes of the WT and mutant types in physiological 

environments, we performed 100 ns molecular dynamic simulations for each domain. Various 

parameters, such as root mean square deviations (RMSD), root mean square fluctuations (RMSF), 

the radius of gyration (Rg), and solvent accessible surface area (SASA), were analyzed using the time-

dependent function of molecular dynamic simulation. ThesŜ ǇŀǊŀƳŜǘŜǊǎ ǿŜǊŜ ŎŀƭŎǳƭŀǘŜŘ ŦƻǊ /ʰ 

atoms during the molecular dynamics simulations, with reference to their WT structures. 

The RMSD analysis of the WT and mutant types revealed significant deviations in their structural 

stability. The W87S and W112R mutants in the ligand-binding domain exhibited similar RMSD values. 

Compared to the WT structure, the mutant types in the ligand-binding domain showed higher 

fluctuation, as depicted in Figure 9a. The C310R mutant in the transmembrane domain also deviated 

from the WT structure, with the mutant type displaying lower fluctuation than the WT, as shown in 

Figure 9b. The average RMSD values for the WT, W87S, and W112R are 1.88 Å, 2.13 Å, and 2.38 Å, 

respectively. Furthermore, the WT and C310R mutants have average RMSD values of 6.18 Å and 

4.89 Å, respectively. 
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CƛƎǳǊŜ ф !ƴŀƭȅǎƛǎ ƻŦ wa{5 ǾŀƭǳŜǎ ƻŦ ǘƘŜ ŘƻƳŀƛƴ ōŀŎƪōƻƴŜ ƻŦ ²¢ ŀƴŘ Ƴǳǘŀƴǘ ǎǘǊǳŎǘǳǊŜǎΣ 

ƭƛƎŀƴŘπōƛƴŘƛƴƎ ŘƻƳŀƛƴ ό!ύΣ ŀƴŘ ǘǊŀƴǎƳŜƳōǊŀƴŜ ŘƻƳŀƛƴ ό.ύ ŀǘ млл ƴǎ ǎƛƳǳƭŀǘƛƻƴΦ ¢ƘŜ 

ƻǊŘƛƴŀǘŜ ƛǎ wa{5 ό)ύΣ ŀƴŘ ǘƘŜ ŀōǎŎƛǎǎŀ ƛǎ ǘƛƳŜ όƴǎύΦ 

The RMSF analysis of each residue illustrates the effect of mutations on their dynamics. The study 

of RMSF values revealed significant differences in fluctuation between the WT and mutant 

structures in the N-terminal region of the W87S mutant and the N-terminal region as well as 

positions 90-99 in the W112R mutant in the ligand-binding domain after 100 ns of molecular 

dynamic simulation (Figure 10a). Similarly, in the transmembrane domain, the analysis of RMSF 

values indicated significant differences in fluctuation between the WT and mutant structures in 

positions 38-57, 77-92, and the C-terminal region of the C310R mutant (Figure 10b). The RMSF plots 

show that residues in positions 1-22 and 65-100 of the W112R mutant in the ligand-binding domain, 

as well as residues in positions 39-53 and 77-99 of the C310R mutant in the transmembrane domain, 

exhibit a relatively flexible region compared to other residues. Additionally, the highest residual 

fluctuation is observed at positions 1 (8.01 Å) and 2 (5.96 Å) in the W87S mutant, positions 1 (6.90 

Å) and 2 (4.84 Å) in the W112R mutant, and positions 85 (7.95 Å) and 86 (7.71 Å) in the C310R 

mutant, when compared to their respective WT structures. 
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CƛƎǳǊŜ мл !ƴŀƭȅǎƛǎ ƻŦ wa{C ǾŀƭǳŜǎ ƻŦ ǘƘŜ ŘƻƳŀƛƴ ōŀŎƪōƻƴŜ ƻŦ ²¢ ŀƴŘ Ƴǳǘŀƴǘ ǎǘǊǳŎǘǳǊŜǎΣ 

ƭƛƎŀƴŘπōƛƴŘƛƴƎ ŘƻƳŀƛƴ ό!ύΣ ŀƴŘ ǘǊŀƴǎƳŜƳōǊŀƴŜ ŘƻƳŀƛƴ ό.ύ ƻǾŜǊ ǘƘŜ ŜƴǘƛǊŜ ǎƛƳǳƭŀǘƛƻƴΦ 

¢ƘŜ ƻǊŘƛƴŀǘŜ ƛǎ wa{C ό)ύΣ ŀƴŘ ǘƘŜ ŀōǎŎƛǎǎŀ ƛǎ ǊŜǎƛŘǳŜΦ 

Based on the Rg analysis of the WT and mutant structures, it is evident that the W112R mutant 

exhibits a higher average Rg value (19.83 Å) in the ligand-binding domain compared to the WT 

(19.48 Å) and W87S mutant (19.41 Å), as depicted in Figure 11a. The ligand-binding domain's WT 

and W87S mutant structures display similar average Rg values. Conversely, in the transmembrane 

domain, the C310R mutant demonstrates a significantly lower average Rg value (16.31 Å) than its 

WT structure (17.03 Å), as illustrated in Figure 11b. This suggests a potential decrease in the 

flexibility of the C310R mutant, and interestingly, the C310R mutant appears to deviate from its Rg 

value after 30 ns. 
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CƛƎǳǊŜ мм !ƴŀƭȅǎƛǎ ƻŦ wƎ ƻŦ ǘƘŜ ŘƻƳŀƛƴ ōŀŎƪōƻƴŜ ƻŦ ²¢ ŀƴŘ Ƴǳǘŀƴǘ ǎǘǊǳŎǘǳǊŜǎΣ ƭƛƎŀƴŘπ

ōƛƴŘƛƴƎ ŘƻƳŀƛƴ ό!ύΣ ŀƴŘ ǘǊŀƴǎƳŜƳōǊŀƴŜ ŘƻƳŀƛƴ ό.ύ ƻǾŜǊ ǘƘŜ ŜƴǘƛǊŜ ǎƛƳǳƭŀǘƛƻƴΦ ¢ƘŜ 

ƻǊŘƛƴŀǘŜ ƛǎ wƎ ό)ύΣ ŀƴŘ ǘƘŜ ŀōǎŎƛǎǎŀ ƛǎ ǘƛƳŜ όƴǎύΦ 

Furthermore, the SASA analysis reveals that in the ligand-binding domain, the W112R mutant 

exhibits a higher average SASA value (11663.50 Å²) than the WT (11468.27 Å). In comparison, the 

W87S mutant displays a lower average SASA value (11370.25 Å²) than the WT, as shown in Figure 

12a. In the transmembrane domain, the C310R mutant exhibits a lower average SASA value (8796.62 

Å²) than its WT (8936.70 Å²), as depicted in Figure 12b. Since a higher SASA value indicates protein 

expansion, it can be inferred that in the ligand-binding domain, the WT and W87S mutant are more 

stable than the W112R mutant, and the W87S mutant is more stable than the WT. The C310R 

mutant is more stable than its WT structure in the transmembrane domain. 
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CƛƎǳǊŜ мн !ƴŀƭȅǎƛǎ ƻŦ {!{! ƻŦ ǘƘŜ ŘƻƳŀƛƴ ōŀŎƪōƻƴŜ ƻŦ ²¢ ŀƴŘ Ƴǳǘŀƴǘ ǎǘǊǳŎǘǳǊŜǎΣ ƭƛƎŀƴŘπ

ōƛƴŘƛƴƎ ŘƻƳŀƛƴ ό!ύΣ ŀƴŘ ǘǊŀƴǎƳŜƳōǊŀƴŜ ŘƻƳŀƛƴ ό.ύ ƻǾŜǊ ǘƘŜ ŜƴǘƛǊŜ ǎƛƳǳƭŀǘƛƻƴΦ ¢ƘŜ 

ƻǊŘƛƴŀǘŜ ƛǎ {!{! ό)чύΣ ŀƴŘ ǘƘŜ ŀōǎŎƛǎǎŀ ƛǎ ǘƛƳŜ όƴǎύΦ 

To further investigate the structural changes resulting from substitutions in the GABRA6 gene in 

each mutant type, the number of different secondary structures in the mutated types was 

calculated and compared with the wild types, as presented in Supplementary Figures 4 to 10. 

Additionally, the contribution of different secondary structures in the protein structure during the 

simulation is summarized in Table 6. Moreover, to understand the secondary structural changes of 

the mutant types, the DSSP parameter was calculated during the simulation, as shown in Figure 13 

and Figure 14. 
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CƛƎǳǊŜ мо ±ŀǊƛŀǘƛƻƴ ƛƴ ǎŜŎƻƴŘŀǊȅ ǎǘǊǳŎǘǳǊŜ ŜƭŜƳŜƴǘǎ ŦƻǊ ²¢ ό!ύΣ ²ут{ ό.ύΣ ŀƴŘ ²ммнw 

ό/ύ ǎǘǊǳŎǘǳǊŜǎ ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƛƳŜΣ ƛƴ ǘƘŜ ƭƛƎŀƴŘπōƛƴŘƛƴƎ ŘƻƳŀƛƴΦ 

 

CƛƎǳǊŜ мп ±ŀǊƛŀǘƛƻƴ ƛƴ ǎŜŎƻƴŘŀǊȅ ǎǘǊǳŎǘǳǊŜ ŜƭŜƳŜƴǘǎ ŦƻǊ ²¢ ό!ύ ŀƴŘ /омлw ό.ύ ǎǘǊǳŎǘǳǊŜǎ 

ǿƛǘƘ ǊŜǎǇŜŎǘ ǘƻ ǘƛƳŜ ƛƴ ǘƘŜ ǘǊŀƴǎƳŜƳōǊŀƴŜ ŘƻƳŀƛƴΦ 


