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Abstract

Epilepsy, a prevalent neurological disorder, affects more than 50 million individuals worldwide
and is characterizely recurring seizures. Nonsynonymous single nucleotide polymorphisms
(nsSNPs) found within coding regions of epilemdsited genes are believed to have
significant impacts on protein function. This is due to their tendency to cause mutations in the
encoced amino acids, which can subsequently lead to pathogenic alterations in protein
structure and function. Consequently, nsSNPs have the potential to serve as diagnostic
markers for epilepsy and other neuropsychiatric conditions. The primary objective sof thi
study is to evaluate th@armful effects of missense nsSNP mutations on @G®&BRAGene.
TheGABRAG@ene encodes the alpk@ subunit of theGABA receptor, and previous research
showed one case substitution mutatian the GABRA@ene is associated with childhood
absence epilepsy (CAE) and atonic seizures. To achieve this, we employed various
computational tools, including SIFT, PolyRReRROVEAN, Condel, SBIFXO, PMut, SNAP2,
MutPred2, and SNPeffect4.0, for predicting misgemsSNPs. Additionally, we used |
Mutant3.0 and MUpro to analyze protein stability, ConSurf to assess evolutionary
conservation, FTSite and COACH to predict ligand binding sites, SOPMA and PSIPRED to
analyze protein secondary structures, project HOPE #adipt structural changes, and |
TASSER to model the 3D structure. Furthermore, structural validation was conducted using
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the PROCHECK and ERRAT sei¥etbe same timegnolecular dynamics simulations were
performed using GROMACS to gain a better undeditay of the effects of mutations on
protein structure. Among the 451 missense nsSNPs identified withiG&BRAGene, three

were found to have pathogenic effects on the structure and function of the protein,
potentially, there may be a contribution to he development of seizures or other
neuropsychiatric disorders. Notably, two of these missense nsSN®PESandW112R were
located within the liganébinding domain, while the thirdG310R was situated in the
transmembrane domain. It is crucial to ackneddge that despite their predicted
pathogenicity, these variants are currently classified as of uncertain significance in clinical and
genomic databases worldwide due to the lack of correlation with epilepsy in empirical studies.
Without experimental datad validate these predictions, caution is warranted in interpreting
the findings
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1. Introduction

Epilepsy is a neurological disorder characterized by recurring seiddré¥hile approximately
20-30% of epilepsy cases are associated with tumors, strokes, or head injuries, the remaining 70
80% are believed to have genetic factf2s Genetic epilepsyefers to cases where seizures are a
primary symptom of the disorder and are directly caused by presumed or known mutations. It is
important to note that the underlying mutations responsible for genetic epilepsies are still largely
unknown[3].

In a studyconducted by Wang et al. in 2017, 977 genes associated with epilepsy were identified
through a comprehensive search of databases such as OMIM, HGMD, E@i&msyand PubMed
publications. These genes were classified into four groups based on the phenotypes of epilepsy
manifestation. Among the 977 genes, 84 were designated as epilepsy genes, 73 as
neurodevelopmentrelated genes, 536 as epilepsiated genes, rad 284 as putatively epilepsy
associated genes, which require further investigatidh The focus of this study is to evaluate the
GABRAG@ene, which falls under the putatively epilepsgsociated genes category.

GABA receptors, which belong to the Gl@op ion channel superfamily, play a crucial role as the
major inhibitory mediators in the mammalian central nervous system ({8\S)hese receptors are
O2YL}RRaSR 2F LISydl YSNRAO adzodzyAGasZ oA OB onFp RN T T
hc>™ ¥ s I [6) VhR diver8e molecular composition and expressioiGABA receptors'
subunits contribute to the variations in their properties, including agonist binding affinity,
conductance, kinetics, and distribution within the brdif]l. These diffeences may potentially
contribute to the pathogenesis of epilepsy and chronic seizure recurr@jce

The GABRA@ene encodes the alpk@ subunit of theGABA receptor. Previous studies have
identified connections between variations in tBABRAGene andyenetic epilepsy disorders such
as CAE. Dibbens et al. reported a mutation (Arg46Trp) iGHhBRA@ene in a patient with CAE.
¢CKAA YdziltdAazy Aa t20F0SR Ay | K2yYz2ft232dza NB13
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gammaz2 subunit of theGABA receptor, which is known to be associated with febrile seizures and
/19 Ay KdzYlyad ¢KS 1+ H adzmdzyAd Ydzil GA2y NBa&dzZ i
currents, indicating impaired assembly and functionalityGxABA receptors[9]. Furthermore,
Hernandez et al. found that the CABsociated Arg46Trp mutation in ti@ABRA@ene can cause
neuronal disinhibition in th&SABA receptor, leading to an increased predisposition to generalized
seizures due to reduced function and expressb® hi + |y R hi 1 NBOBLI 2 NZ
AAYAE LN 02 GKS ' v &dzodzy Al Y GA2y 6! NAyHuDf yo

When comparing genomic DNA sequences from different individuals, it is observed that certain
positions can contain two or more bases. Thesariations, known as single nucleotide
polymorphisms (SNPs), are highly prevalent, occurring at a frequency of approximately one out of
every 0.31 kilobase in the human genome. Additionally, SNPs can have distinct effects on
phenotypic levels dependingnatheir location[11]. SNPs with a minimum frequency of 1% in the
general population are believed to account for approximately 90% of-inthvidual variability and
nearly 100,000 amino acid differences. Due to their low mutation rate, SNPs serve aBlesalu
markers for investigating complex genetic characteristics. Consequegtyetic studies
increasingly use SNP markers tloeir numerous advantages. In general, SNPs can be categorized
as either intronic or exonic. Intronic SNPs are located inguminggenome areaand do not impact
protein products when translated. On the other hand, nsSNPs are exonic SNPs found in coding
regions that result in changes to protein length or amino acid var{d2fs Among the various types
of SNPs, nsSNPs in codiegions are considered to have the most significant effect on protein
functions, often leading to mutations in encoded amino acids that can detrimentally affect protein
structure and functiorj13].

The emergence of large, complex biological data sets hessséated rapid advancements in
the field of bioinformatics or computational biology. While not a new field, bioinformatics has
become increasingly indispensable as biology transitions towardstlmighghput methods for
analyzing entire genomes. Bioinfoatics encompasses the scientific discipline involvestquiring,
storing, distributing, processing, interpreting, and analydigogical information. Consequently,
numerous databases and software applications have expanded to facilitate the analgsisetic
and physical data in order to infer the functions of model organisms and individuals. Computational
analysis provides effective and alternative methods for generating new hypotheses, designing
appropriate investigations, and interpreting vast ammts of data derived from genomscale
research. Computational oin silico analyses supplement traditional experimental biology
techniques by significantly enhancing predictive capabilifiey. The term in silicd refers to
experiments conducted usingpmputers and is analogous to the more familiar biological terms "
vitro" and 'in vivd' [15]. Given the exponential number of SNPs, it is impractical to determine the
biological significance of each SNP through wet laboratory techniques alone. However,
computational tools can be employed to screen potentially deleterious SNPs that may alter protein
function and structure before proceeding to wet laboratory analj/ss.

This study aimedo identify and validate the most deleterious missense nsSid$Bsciated with
the GABRA@ene and assess their impact on protein function and structure. This approach involved
investigating the underlying molecular mechanisms using varinusilico methods. Predicted
missense NnsSNPs, along with the native form,ewfarther analyzed through molecular dynamics
simulations tounderstand their effects on protein structure bettefhis investigation explores the
potential impact of missense nsSNPs on epilepsy and other neuropsychiatric disorders, focusing on
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the GABRA6gene. While our findings suggest a link between these variants and disease
susceptibility, further experimental validation is essential to substantiate these observations.
Nonetheless, elucidating the role of missense nsSNPs could offer valuable insightssease
mechanisms and inform future diagnostic and therapeutic strategies.

2. Materials and Methods

Theharmfulnature of missense nsSNPs in the function and structure of the h@AdBRAGene
was predicted by several computational algorithiWariousin silico tools were utilized to make
predictions to ensure that the results were highly accuraf&de approach followed to analyze
missense NsSSNPs in the present study is showigurel.

Retrieval missense nsSNPs

P dbSNP-NCBI ( Domain identification | = (3D structure modeling
| TomaeeT- J ,_ Pfam ) I'TASSER
Idcntif):ing most deleterious | "/i’redicling structural changes ) ( Validation of predicted model )
missense nsSNPs
. HOPE PROCHECK
SIFT ERRAT
PolyPhen-2 ﬂ \
PROVEAN — . u
Condel ] | Predicting protein secondary structure I ~
‘ SOPMA Predicting ligand binding sites
) U . L PSIPRED J FTSite
[ Disease-related prediction | ) ] n - L COACH
SNPs&GO p .
PMut J | Evolutionary conservation analysis | U'
U ! ConSurf ) 'ﬁ«[olecuiar dynamics dimu]alion\
- - - in water
[ Analysing molecular and | ﬂ‘ RMSD
phenotypic consequences e RMSE
SNAP?2 Analysing protein stability | Rg
MutPred2 = I-Mutant 3.0 SASA
SNPeffect 4.0 MUpro | \ DSSP
- \ / .y

puj
(0p))

CAIAINBK QWY G A O NBAWNBaBHNAGH 2By i2FF yIfels
ya{bta Dy . RAEXYyFo

2.1 DataMining

The missense nsSNPs for the hun@g@BRAGene were retrieved from the National Center for
Biotechnology Information (NCBI) dbSNP databfsd (https://www.ncbi.nlm.nih.gov/snpj.
Moreover, the protein sequence encoded by the hum@ABRA&ene was obtained from the
UniProt databas§l8] (https://www.uniprot.org/).

2.2 PredictingDeleteriousMissense nsSNPs

In silicotools, including SIFT, PolyPh&n PROVEAN, and Condekre utilizedto predict
deleterious missense nsSNPs

SIFT (Sorting Intolerant from Tolerant): An algorithm that uses sequence homology and the
physical properties of amino acids to predict an amino acid substitution effect on protein function.
The algorithm considered evolutionarily conserved regions toebsively intolerant to mutations,
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and therefore, amino acid substitution in these regions is more likely to be expected to affect
protein function[19]. In this study, a faster version of SIFT called SIFT 4G (SIFT for g¢p0hes)

used (The package available atttps://github.com/rvaser/sift4g. SIFT takes a protein sequence

and a list of substitutionsvhich is searched against a protein database for homology seardtieg.
protein database is UniR&d (16 February 2021 release) [28]FT score ranges from 0 to 1. The
amino acid substitution is considere@rmfulA ¥ G KS & 02NB f nonpI gKAES

PolyPher2 (Polymorphism Phenotyping v2): A tool that predicts the structuralfandtional
impacts of an amino acid substitution in human proteins. PolyPh€fhe package is available at
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloadsises a NRg Bays classifierwhich is
trained by supervised learning algorithms. HumDiv and HumVar datasets from the UniProt database
were used to train PolyPhea prediction models. The classifigrat used HumDiv should be used
for rare alleles assessment, natural sgien analysis, and dense mapping of regions determined
through genomewide association studies. ThtumVar classifreshould beutilized for Mendelian
disease recognitiorwhich requires recognizing mutations with severe effects from all the remaining
human variation, including many mildly deleterious alleJ28]. PolyPherR takes protein UniProt
ID and substitutions as an input file and identifies homologs of the protein sequences by Basic Local
Alignment Search Tool (BLA$A3] in the UniRefl00 (27 February 2021 release) database. The
PolyPher2 score ranges from 0 (neutral) to 1 (deleterious), and functional prediction is categorized
into probably damaging (damaging with high confidence), possibly damaging (damaging with low
confidence), and benign (benign with high confidence).

PROVEAN (Protein Variation Effect Analyzer): A tool based on an alignment scoringthegthod
predicts functional effects of single amino acid substitutionsdrame insertions, deletions, and
multiple substitutions[24]. PROVEANtp://provean.jcvi.org/index.php uses a delta alignment
score (or delta score) to measure the effect of a variation. The protein sequence and a list of
substitutonsweresubth i G SR | & Ay Llzia (G2 GKS |f3I2NAIKY D t
A score <2.5 is consideretiarmful, while a score 2.5 is considered neutr§25].

Condel (CONsensus DELeteriousness): A method to predict the outcome-synarymous
SNPs ased on a weighted average of the normalized scores (WAS) of various tools. Condel
(https://bbglab.irbbarcelona.org/fannsdf)/uses a consensus deleteriousness score that integrates
the output of fivetools (Logrd26], MAPH27], Mutation AssessdP8], Polyphen2, and SIFT) into a
unified classificatiof29]. Protein UniProt ID and substitutions were submitted as an input file to
the algorithm. Cond& score ranges from O to 1, which is a higher sdbiat predictsSNPs as
deleterious.

2.3 PredictingDiseaseRelated Variants

To diseaseelated prediction of selected missense nsSNPs, &G%3 and PMut tools were used
in this step.

SNP= GO A support vector machine (SVM) based tool for predidisepserelated SNPs using
Gene Ontology (GO) termistip://snps.biofold.org/snpsand-go) [30]. Protein SwisProt code and
substitutions were submitted as inputs to the algorithm. When the input sequéneeSwis®rot
code, GO terms for the prediction will be retrieved automatically. The result consists of three
different algorithms SNP® GO, PhESNH31], and PANTHHB2]. SNP#& GO score ranges from 0
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to 1, if the score > 0.5 is consideredliseaserelated variationg KAt S | a02NB X no
benign.

PMut: A tool that predicts pathological properties of single amino acid substitutions. PMut
(http://mmb.irbbarcelona.org/PMuj uses a new networkbased method that is trained using a
manually curated database SwiBsot (October 2016 release), includes 27,203 deleterious and
38,078 benign mutations for 12,141 proteifi33]. Protein UniProt ID and substitutions were
submitted as inputs tahe algorithm. PMut score ranges from 0 to 1. A score > 0.5 is classified as
pathological variationand a score < 0.5 is classified as neutral.

2.4 Predicting theMolecular andPhenotypicConsequences o¥ariants

Further investigatiorwas done to predict molecular and phenotypic consequences of selected
missense nsSNEwough SNAP2, MutPred2, and SNPeffect4.0 tools.

SNAP2: A neural netwoblased classifier tool that predicts the functional effects of tion
synonymous SNPBbt{ps://rostlab.org/services/snap2wel/ SNAP2 uses evolutionary information
and structural features like solvent accessibility and predicted secondary structure to predict
@ NRX Iy ([84Q The pratén@éneere was submitted as input to the algorithm. SNAP2 score
ranges from100 €irmly neutral) to +100€normoudy influential).

MutPred2: A machine learnidAgased methodthat predicts the molecular and phenotypic
consequences caused by amino acid substitutions as pathogenic or benign (The package is available
at http://mutpred.mutdb.org/). It was trained using 53,180 deleterious and 2d6& putatively
benign mutations from the Human Gene Mutation Database (HGBH®)) Swisd/ar databas¢36],
dbSNP database, and intepecies pairwise alignments. MutPred2 takes protein Rhot 1D and
substitutions as an input file. MutPred2 gives twotput scores general score (g) and property
score (pr). The g score demonstrates the pathogenicity of the substitution and ranges between 0
and 1, a higher score indicates a greater proballityeingpathogenic. The pr score is the posterior
probabilty of losing or gaining a certain property because of the substitution and it also ranges
between 0 and 1, a higher score indicates more alteration of the property in the molecular
mechanism of the diseag87].

SNPeffect 4.0: A database that uses 4 tdolgredict molecular and structural phenotypic
consequences of human protecoding SNV&ittps://snpeffect.switchlab.org). SNPeffect 4.0 uses
TANGO[38] for aggregatiorprone regions prediction, WALT[29] for amyloidogenic regions
prediction, LIMB@Q40] for hsp70 chaperorninding sites prediction, and FoldX1] for analyzing
the possible impact of protein stabilifg2]. Protein UniProt ID and substitutions were submitted as
inputsto the algorithm Mutations can increase (ATANGO, dWALTZ, and dWALTZ > 50), decrease
(dTANGO, dWALTZ, and dWALTD¥ or have no effect (ATANGO, dWALTZ, and dWALTZ between
-50 and 50), aggregation propensity, amyloid propensity, and chaperone binding.

2.5 Predicting theHfect of Variants onProtein Sability

Analyzing missense nsSNPs effects on protein stability was accomplish&dulant3.0 and
MUpro tools through Gibbs free energy change calculation of mutant protein aneypidprotein.

[-Mutant: A support vector madhe (SVM) based web server tdabht predicts protein stability
changes upon single amino acid substitutiohstps://folding.biofold.org/i-mutant/). FMutant
SAGAYIFGSa LINPGUSAY aGlroAtAGe o0& OFfOdZ FGAYy3a DA
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proteinand wildi @ LIS LINR G SAY 0 n pnlD Totgpelf[4R). Yhizsdrvegtdan dvallas v
the protein stability change by the proteirguence or structure. In this study, protein sequence
was used. The protein sequence and substitutions were submitted as inputs to the algorithm. If 0 <
NnNBO2YAARSNBR (2 AYONBIF &S LINEGS Aty dedrdasepotein A G & =
stabilty. I-Mutant 3.0 predicts which a single substitution has alow effect®p X nnD X n dp
2N SEGSyargsSte AyONBlFrasSa LINRGSAYy &dloAftArade o)
a0l oAt AQSKcalmop).D

MUpro: A tool based on syort vector machine (SVM) and neural network methods, which is
used for protein stability prediction resulting from single amino acid substitutions
(http://mupro.proteomics.ics.uci.edy/ [44]. MUpro alsolikes tMutant can predict the stability
changes using protein sequence or protein structure. The protein sequence and substitutions were
adzo YAGOGUSR Fa AylLidzia G2 GKS |t 32NRG & mutaok Sy
increases proteinstadili @ ® LYy aGSIFIRZ AF nppbD A& yS3ladAaAdS GKE

2.6 EvolutionaryGonservationAnalysis

The ConSurf tool was utilized to identify selected missense nsSNPs' positions in evolutionarily
conserved regions

ConSurfA tool used foevolutionarily conservation analysis of amino acids in a protein, DNA, or
RNA to reveal important functional and/or structural arelags://consurf.tau.ac.il). ConSurtises
an empirical Bayesian method testimate the protein sequence conservation sedd5]. The
protein sequence was submitted as input to the algorithm. The conservation score is grouped into
9 grades, where 1 indicates most rapidly evolving areas, 5 indicates ohiaygng areas, and 9
indicates most evolutionary conserved areas.

2.7 PredictingProtein SecondarySructure

Secondary structures of selected missense nsSNPs were predicted by SOPMA and PSIPRED tools
SOPMA: A web version of the sefftimized prediction method (SOPNA6], whichis usedfor
secondary  structure  prediction of amino  acids httgs://npsa-prabi.ibcp.fr/cgt
bin/npsa_automat.pl?page=/NPSA/npsa_sopma.hirilhe joint prediction usinGOPMA, and a
neural network method (PHD) correctly predicts 82.2% of residues for 74%jpoédted amino
acids. The protein sequence was submitted as input to the algorithm.
PSIPRED: A highly accurate method that predicts the secondary structure teingro
(http://bioinf.cs.ucl.ac.uk/psipred). PSIPRE®7] includes two feeeforward neural networks that
perform an analysis of the output obtained from fBRIAST23]. The protein sequence was
submittedas input to the algorithm.

2.8 PredictingSructural Hfects ofVariants

The HOPE project predicted structural changes such as size, charge, and hydrophaloieity
between mutant and wild residues

HOPE (Have (y)Our Protein Explained): A web tool taqirde structural effects of single amino
acids substitutions on protein$itps://www3.cmbi.umcn.nl/hope). HOPE uses 3D structures of
the proteins available in the URirot database and Distributed Annoiah (DAS) servers to simulate
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the structural features of mutations on the witglpe protein[48]. However, if necessary, the HOPE
server can build homology models independently. HOPE sever also predicts structural changes
between mutant and wild residue$he protein sequence was submitted as input to the algorithm.

2.9 3DSructure Modeling andVisualizing ofNatives andVariants Sructures

The 3D structure of the protein is crucial to annotate the protein function of native and mutant
structures. Identification of domain regions and locating missense nsSNPs position in domains were
done through the Pfam databaspgl9] search fittp://pfam.xfam.org/). Then, generating 3D
structures of each native domain usindASSER (Iterative Threading E8f®ly Refinement) was
accomplished separatelynitps://zhanglab.dcmb.med.umich.edulNASSER/FTASSER is a method
for predicting protein structure that consists of 3 steps. In the first step, after the domain sequence
was submitted to the-TASSER server as input, a rér@ading program called LOMETS]
retrieved structural templates from the PDB libralfyl]. In the second step, fuléngth models are
constructed by assembling wlligned continuous fragments excised from the PDB templates, with
unaligned regions structures built by -#fitio modeling tased on replicaexchange Monte Carlo
simulations[52]. -TASSER simulations generate thousands of conformations named decoys. |
TASSER uses the SPICKER program (a clustering algg&hto) cluster all decoysThrough
clustering, SPICKER identifies livee-energy states. Eventually, the functional annotations are
obtained by matching the predicted structure models with known proteins in the BioLiP function
library[54]. -TASSER will predict up to the top five mod&lsonfidence score or-§€&ore estinates
the quality of predicted modelsGscore is typically in the range 66J2], wherein a higher value
signifies a bettexquality model; when C score-2.5, it indicates the model has a correct fold. |
TASSER takes protein sequence as input, and fipetanodels are predicted as output. In cases
where the output final models are less than fivihe similarity of the top templates identified via
LOMETS is indicated, and this caubesonverging of-TASSER simulatiofi$ie Cscore is usually
high in sich caseand predicts a higiguality model[55-57].

PROCHECK and ERRAT carried out structural validation for the predicted RB@BEHECK by
Psi/Phi Ramachandran plot analysis asegthe stereochemical quality of a protein structy&s].
ERRAT is another protein structural verification tihalt demonstrates the model's reliability-or
the best quality of the predicted model, the ERRAT value must be ovef33)%®ROCHECK and
ERRAT are available athe Structural Analysis and Verifiteh Server (SAVES)
(https://saves.mbi.ucla.edy/ PDB file was submitted as input to the server for both tools. Modeling
of mutated protein structures was performed using the mutagenesis feature in the P@dpl
visualization tool (2.3.0 version) using the predicted native typeTA3SER as a reference.

2.10 Predictindigand Binding Stes

The FTSite and COACH tools were used to predict the presence of selected missense nsSNPs in
ligandbinding sites.

FTSite: A accurate computational method for ligand binding site predictioased on
experimental evidence with aamccuracy of 94%(tps://ftsite.bu.edu/) [61]. PDB file was submitted
as input to the algorithm. FTSite idem three potential binding sites in proteins.

COACH (COnsensus approACH): A tool for ligand binding site prediction, which is based on two
comparative methods, TMBITE (bindingpecific substructure comparison) aneSHE (sequence
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profile alignment) which identify ligand binding templates from the BioLiP library. These two
methods combinedwith COFACTOR2], ConCavity[63], and FINDSITE4] methods generate
final predictiong65]. After the protein sequence was submitted to th€ ASSER fgenerating 3D
structures, it will be fed into the COACH pipeline for predicting ligand binding sites.

2.11 MolecularDynamicsSmulation in Water

Molecular dynamics simulations were performed using the GROMACS (2021.2 version) to reveal
changes at the atomic level in different time scales for wild and mutant §g&sThe Amber ffO9SB
protein force field was used for simulations. A cubic box waséd by extending 1 nm on each
side of the protein. The system was implemented by adding TIP3P water model molecules and
neutralizing them with Gibns. The energy minimization step was performed using the steepest
descent algorithm before the simulatiobongrange electrostatic interactions were modelading
the particle mesh Ewald (PME) methodhe shortrange electrostatic and van der Waals
interactions cutoff radius was set to 1 nm. Periodic boundary conditions were maintained to
eliminate surface effectsSThe bap¥ NB 3 | € 32NAGKY ¢l a dzaSR F2NJ aA
equations of motionA time step interval of 2 fs was used for all simulations. To constrain bonds
involving hydrogens the Lincs algorithm. Minimized systems should be equilibrated to reach the
desired temperature and pressure before tHendamentl dynamics start. Equilibrain is
conducted in two ensemble®NVT (constant Number of particles, Volume, and Temperature) and
NPT (constant Number of particles, Pressure, and Temperature). The system temperature and
pressure were coupled to arescale thermostat with a time constaof 0.1-ps at 300 K and a
ParrinelleRahman barostat with a time constant op2 at 1 bar. We first conducted a 298 NVT
equilibration and then a 100fs NPT equilibration. The molecular dynamics simulation of each
equilibrated system of the wild and rtant types was run for 100 ns. At last, the MDS trajectory
files analyses were calculated by GROMACS-luijdograms to get RMSD (root mean square
deviations), RMSF (root mean square fluctuations), Rg (radius of gyration), SASA (solvent accessible
surfae area), and DSSP (definition secondary structure of the protein) analyses. RMSD, RMSF, Rg,
FYyR {!'{! 2F /h d2Ya Ay (GKS GNIra2SOUG2NARSa 6SNB
the protein during molecular dynamics simulations were also tatied.

3. Results
3.1 Missense nsSNP&atasets

For the biological consequences study of missense nsSNPs, we retrieved 451 missense nsSNPs
with 386 rsIDs in the humaBABRAGene mapped to NM_000811.3 RefSeq (T&iefrom the
dbSNP databas@he protein sequence of th&ABRA@ene (with Q16445 ID) was retrieved from
the UniProt database.

3.2 Prediction oMost DeleteriousMissense nsSNPs

This study used four in silico tools, SIFT, PolyRh&ROVEAN, and Condel, to predict deleterious
missensensSNPsOut of 451 missense nsSNPs, 303 were predicted as deleterious and 148 as
tolerated by SIFT, 306 were predicted as deleterious and 145 as neutral by HumDiv R@lyPA&n
benign, 49 possibly damaging, and 259 probably damaging), 290 were preactiedeterious and
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161 as neutral by HumVar PolyPR2rn(157 benign, 55 possibly damaging, and 239 probably
damaging), 225 were predicted as deleterious and 226 as neutral by PROVEAN, and 298 were
predicted as deleterious and 153 as neutral by Condel é1%2dnd Figure2).
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148 145 161 153

350 226

300
250
200
150 303 306 290 298
100 225
50
0
SIFT HumDiv HumVar PROVEAN Condel
PolyPhen-2 PolyPhen-2

Deleterious Neutral

CAIEBNR GNAROdzGA2Y 2F LINBRAOGSR RSt SGSNAR2dza | )
KdzYby . w3y S® 5SSt SGESNRAABBK ¥ & i a 5 y3A §FIRNE S bl &b €
yva{bN®y fAIKG of dSo

Deleterious missense nsSNR=re predicted with default scores for each todigh scores across
the tools are considered to obtain high confidence deleterious missense nsSNHsscore = 0,
PolyPher2 score > 0.99, PROVEAN scof& end Condel score > 0.7 are used. Afteggrating the
scores, 3 missense nsSNPs inGABRAGene (Table 1) were obtained anded for further analysis.

Table 1The most deleterious missense nsSNPs by SIFT, PolPR&EOVEAN, and
CONDEL tools in tf@ABRA@enNe.

PolyPhen2 Sore

Transcript Subgit SIFT4G PROVEANCONDEL

rs 1D . HumDiv  HumVar
change ution Score . ... Score Score
probability probability
rs1428649051¢.260G > (W87S 0 1 1 -12.906 0.709363974
rs1199782347¢.334T > (W112RO0 1 1 -12.837 0.735214831
rs1317373536¢.928T > (C310R 0 1 1 -10.964 0.764688222

3.3 Prediction oDiseaseRelated Variants

To get more accurate resultselected missense nsSNPs were analyzed by &&sand PMut
to predict diseaseelated missense nsSNPs. SNPS50's result consists of three different
algorithms; SNP& GO, PhESNP, and PANTHER. Three selected missense nsSNPs in the human
GABRAG@ene were submitted to SNRsSGO and PMut to analyze diseasdated missense nsSNPs.
The output of SNP& GO, PhEBNP, PANTHER, and PMut predicted that aktselected missense
nsSNPsre diseaserelated (Table 2).
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Table 2Lissdiseaserelated missense nsSSNPGABRABY SNP& GO and PMut tools.

SNPs& GO PMut
Substituti SNP GO PhDSNP PANTHER
on Prediction RI P.r.oba Prediction RI P_r_oba Prediction RI P.r_oba Prediction Score
bility bility bility
W87S Disese 8 0.919 Disease 8 0.922 Disease 10 0.999 Disease 0.8214
W112R Disease 9 0.93 Disease 9 0.937 Disease 10 0.979 Disease 0.8214
C310R Disease 9 0.949 Disease 9 0.97 Disease 9 0.974 Disease 0.8627

RI

: Reliability Index

3.4 Prediction of theMolecular andPhenotypicConsequences ofariants

To predict the molecular and phenotypic consequences of selected missense nsSNPs, we further
investigated missense nsSNPs through SNAP2, MutPred2, and SNPeffect4.0 tools. The SNPeffect
022t LINB Rifsdiieaice fntaggeegatigche regions by TANGO, amyléaming regions
by WALTZ, and hsp70 chaperone binding sites by LIMBO. The output of SNAP2 of three selected
missense NsSNPs in ti@ABRAGene predicted that all three selected missense nsSNPs have
damaging effects on protein structure. Since the score > 0.5 suggests pathogenicity in MutPred?2,
the output of MutPred2 showed that all three selected missense nsSNPs GAB&AGene have
damaging functional and structural effects (Detailed informatioiableS3. According to the SNP
effect results, TANGO and WALTZ analysis revealed th@3h@Rrariant (dTANGO equals 302.70
and dWALTZ equalS53.68) increases the aggregation tendency of the protein and decreases the
amyloid propensity of the protei However, none of the variations does affect the chaperone
binding tendency of the protein (Table 3).

Table 3List of analyzed missense nsSNPs of2ZAB8RAGene by SNAP2, MutPred2, and
SNPeffect4.0 tools.

SubstitutionSNAP2 MutPred?2 scoreSNPeffecm'0
PredictionScore dTANGCAWALT.dLIMBC
W87S effect 87 0.953 0.00 -0.07 0.00
W112R effect 87 0.948 0.00 -0.12 0.00
C310R effect 87 0.964 302.70 -553.68 0.00
(d in dTANGO, dWALTZ, and dLIMBO is the score change between the amatamtdtype
proteins).

3.5 Prediction of thedfect of Variants onProtein Sability

The effects of selected missense nsSNPs on protein stability were analyzdtutant3.0 and
MUpro tools by calculatinghe Gibbs free energy change of mutant and wiide proteins |
Mutant3.0 analyses showethat W87Sand W112Rvariants decreased protein stability, and the
C310Rvariant increased protein stabilitin contrastall three variants by Mupro prediction showed
decreasing protein stabilityv87SandW112Rvariants havgn n D @ |-T kda8riol im both tools
which are expected to alter the function and structure of the protein (Table 4).
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Table 4List of missense nsSNPs of tBABRA@ene which was analyzed for protein
stability by tMutant3.0 and MUpro tools.

Substitution [-Mutant3.0 Mupro

Prediction n n DRI Prediction ph n D
W87S Decrease -1.69 9 Decrease -1.0174971
W112R Decrease -1.44 9 Decrease -1.2580621
C310R Increase -0.32 2 Decrease -0.85748451

RI: Reliability Index

3.6 EvolutionaryonservationAnalysis

To analyze the evolutionary conservation of selected missense nsSNPs, the ConSurf tool was used,
which grouped amino acids based on conservation scores in 9 grades. As sikagure8, ConSurf
results indicated that W87 and W112 residues located in highly conserved regions with conservation
scores of 9 and predicted as buried residues and have a structural impact on the protein, and C310
predicted as buried residue with conservation scores.of 8
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The conservation scale:

Variable Average Conserved

- An exposed residue according to the neural-network algorithm.
- A buried residue according to the neural-network algorithm.
£ - A predicted functional residue (highly conserved and exposed).
- A predicted structural residue (highly conserved and buried).
- Insufficient data - the calculation for this site was
performed on lese than 10% of the sequences.

Figure 3ConSurf analysis @ABRA@ene residues. The black boxes indicate the most
deleterious missense NsSNPs.
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3.7 Prediction oProtein SecondarySructure

' YAYy2 FOAR&aQ aSO2yRINE &0GNHzZOG0dzZNE O2NNBaLRyRA
PSIPRED tools. SOPMA prediction showed the distributions of alpha helix, extended strand, beta
turn, and random coil in proteins. PSIPRED predicted the distributions of strands, helices, and coils
in proteins and validated the secondary structure of thetpms. SOPMA results showed 135 alpha
helices (29.8%), 104 extended strands (22.%9%, 11 beta turns (2.48), and 203 random coils
(44.82% in the predicted secondary structure. In the 3 amino acid resicioesespondingto
selected missense nsSNPs, Vd&@d W112 are in random coils, and C310 in alpha helkigarg4).

PSIPRED results indicated that in the 3 amino acid residues, W87 is located in strands, Y186 in colls,
and C310 in helice&igureS)).

10 20 30 40 50 60 70 80 90 100

| | | | | | | | | |
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eee hhhhhh
ESSSLLQYDLIGQTVSSETIKSNTGEYVIMTVYFHLQRKMGYFMIQIYTPCIMTVILSQVSFWINKESVPARTVFGITTVLTMTTLSISARHSLPKVSYA
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teeee eeee theeeectttceeeeeeeeee ee eeee heeeee ee

heeee eeeeeeeehhhttceeeeee theeeehhheeeeectt hheeetheeeeeehhhhh ee
TAMDWFIACFAFVFSALIEFAAVNYFTNLQTQKAKRKAQFAAPPTVTISKATEPLEAEIVLHPDSKYHLKKRITSLSLPIVSSSEANKVLTRAPILQST
hhhhhhhhI1hhhhhhhhhhhhhhhhh hhhhhhhhhechhhhhhh
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Alpha helix (Hh)
Extended strand (Ee)
Beta turn (Tt)
Random coil (Cc)

Figure4 SOPMA analysis GfABRA@ene residues. lie black boxes indicate the most
deleterious missense NnsSNPs.

3.8 Prediction oRructural Efects of Variants

HOPE was used to predict structural changeduding size, charge, and hydrophobicity value
between mutant and wild residues. Of 3 selected missense nsSSNPGABRAGene, Ser and Arg
residuesin W87S and W112R mutants are more minor than Trp residue intypi&forms. In
contrast,Arg reside inthe C310Rmutant ismore significanthan the Cys residue e wild-type
form. The charge of Trp and Cys residmned/112R and C310R mutants wesitral, then turredto
Arg residues with a positive charge. There is not any significant charge ahahg&Vv87Smutant.

The wildtype residues in all three missense nsSNPs are more hydrophobic than the mutant residues.
(TableS4. According to the project HOPE results, when the mutant residue is smaller than the wild
type residue, it might lead talossof interactions in protein structurdf the mutant residue isnore
significantthan the wildtype residue, it might lead to bumps in protein structure. When the charge

of the wildtype residue is lost, it might cause a loss of interactions with otheeoutés or residues.

If the mutation introduces a charge, it might cause the repulsion of ligands or other residues with
the same charge. When the hydrophobicity of the wilde residue is lost or decreased, the
hydrophobic interactions will be lost eithen the core of the protein or on the surface. If the
mutation introduces a more hydrophobic residue, it might cause a loss of hydrogen bonds and/or
disturb correct folding.
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3.9 3DSructure Modeling andVisualizing ofwild and Mutant Sructures

The Pfanrserver was used to identify domain regions in tB@BRA@ene and locate selected
missense NsSNP positions in different domains. In this study, we need domains that involve
deleterious missense NnsSNPs (Table 5). Generating 3D structure models was petigrihe +
¢! {{9w ASNIISNXY t NBERAOISR Y2RStaQ QlIftARIOAZ2Y ¢
predicted the quality of wild modelssingRamachandran plot analysis. The ERRAT indicated the
overall quality factor of the predicted modeRyMol sofware was used to visualize wild and mutant
protein structures

Table 5Listdomains involvingselected deleterious missense nsSNPs in GABRA6
gene.

Start Stop  Domain Involved

Protein name Domain name . . ,
residue residue length  missense NnsSNP

Neurotransmittergated ior
channel liganebinding domain
Neurotransmittergated ion
channel transmembrane doma

GBRAG6_HUMA 240 209 aa W87S and W112

GBRAG6_HUMA 247 399 153 aa C310R

Pfam reported two domains in th&ABRA@ene, including the neurotransmittegated ion
channel liganebinding domain (3240), and a neurotransmittegated ionrchannel
transmembrane domain (24399). Out of three selected missense nsSNPs for further analysis, two
(W87S and W112R are located inthe ligandbinding domain, and oneC310R is in the
transmembrane domain.

3D structure prediction of wild types for the ligahding domain and the transmembrane
domain in theGABRA@ene was modeled byTASSERIne model predicted a-8core of 1.16dr
the ligandbinding domainwhich was a higlquality model. And in the transmembrane domaive
selected the first model out of 5 predicted modelith a Gscore of-1.62 fFigureS2aand Figure
S330 + I fARIFIOGA2Y 2F LINBRAOGSR Y2RStaQ ljdatAadage o1
of PROCHECK for the ligandding domain model showed 79.7% of residues in most favored
regions, 18.7% in additional allowed regions, 1.6% in generously alleagsohs, and 0% ithe
disallowed area (FigureS2h. The ERRAT result showed that the overall quality factor for the
predicted model was 87.94FigureS29® t wh/ 1 9/ YQa NBadzZ & F2NJ 6KS 0
showed 77.3% of residuestime most favoredregions, 12.8% in additional allowed regions, 7.1% in
generously allowed regions, and 2.8%he disallowed ares (FigureS30). TheERRAT result showed
that the predicted model's overall quality factaas 83.916KigureS3g.

Finally, the predicted modelwere used to model mutant types ljilizing the mutagenesis
feature in PyMol. Structural models for witgpes and deleterious missense nsSNPs in the ligand
binding domain\W87SandW112R and the transmembrane domai@810Rare shown irFigureb,
Figue 6 andFigure?.
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Figure5 (W87S): The amino acid Tryptophan (green) changed to Serine (red) at position
87 in the liganebinding domain. Visualization was done by PyMol software and HOPE
result.

WI112R

Figure6 (W112R): The amino acid Tryptophan (green) changed to Arginine (red) at
position 112 in the ligantbinding domain. Visualization was done by PyMol software
and HOPE result.

Figure7 (C310R): The amino acid Cysteine (green) changed to Arginine (redjtadrp
310 in the transmembrane domain. Visualization was done by PyMol software and HOPE
result.

3.10 Prediction otigand Binding Stes
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To determine the presence of the selected deleterious missense nsSNPs in 4{biatiirg
regions of theGABRA@ene, we employed the FTSite and COACH algorithms, which are protein
ligand docking tools. FTSite identified three potential binding sites in the liganaihg domain of
the protein.

FTSite predicted three potential binding sites in the ligaimting danain. Site 1 contains 15
binding residues, site Bicludes 4, and site 3 contains 1Figure8a and Table&s5. Additionally,
COACH predicted 20 amino acid residues as potential binding sites $bable

86, Ph Ser 93, Ile 94, Ala
95, Tyr 115, Met 117, Leu
119, lle 121

Site I1: Asp 84, Thr 85, Phe
86, Tyr 146

Site I11: Phe 86, Phe 87, Arg
88, Phe 143 144, Ser 145,
Tyr 146, Ile 189, Ser 191, Thr
193, Tyr 196, Tle 198

Site ITI: Trp 59, Ala 62, Val 63,
Leu 124, Arg 127, 1le 128

CA JWeNB dza GDNO-.GvEI2/ BMAWYRR Y3 R2YFAY 6! 02X FyR (N}
0. 03 GAHUKYRANYH yRAGS LINSRAOGAZ2Y add CUMRMAYIB 6 S
L2 O1 St ARt {f HZASNMGI SR anh yI WBIBE REEYONENBESIYi SI YR of
NBalLISOGAGSt e

Similarly, m the transmembrane domain, FTSite predicted three potential binding sites. Site 1
contains 9 binding residues, siterludes 16 binding residues, and site 3 contains 6 (Figure 8b and
Table S5). COACH predicted 44 amino acid residues as potential lsiben@ able S6).

3.11 MolecularDynamicsSmulation of WT andMutant Types

To comparatively study the conformational changes of the WT and mutant types in physiological
environments, we performed 100 ns molecular dynamic simulations for each domainou¥ari
parameters, such as root mean square deviations (RMSD), root mean square fluctuations (RMSF),
the radius of gyration (Rg), and solvent accessible surface area (SASA), were analyzed using the time
dependent function of molecular dynamic simulation. Thes LJ- N YSGSNE 6SNB Ol
atoms during the molecular dynamics simulations, with reference to their WT structures.

The RMSD analysis of the WT and mutant types revealed significant deviations in their structural
stability. Thew87SandW112Rmutants in the liganebinding domain exhibited similar RMSD values.
Compared to the WT structure, the mutant types in the ligéamding domain showed higher
fluctuation, as depicted iRigure9a. TheC310Rnutant in the transmembrane domain also deviated
from the WT structure, with the mutant type displaying lower fluctuation than the WT, as shown in
Figure9b. The average RMSD values for the W87S andW112Rare 1.88 A, 2.13 A, and 2.38 A,
respectively. Furthermore, the WT ai@B10Rmnutants have average RMBvalues of 6.18 A and
4.89 A, respectively.
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The RMSF analysis of each residue illussrdte effect of mutations on their dynamics. T&tady
of RMSF values revealed significant differences in fluctuation between the WT and mutant
structures in the Nerminal region of thew87Smutant and the Nterminal region as well as
positions 9099 in he W112Rmutant in the liganebinding domain after 100 ns of molecular
dynamic simulationKigurel10a). Similarly, in the transmembrane domain, the analysis of RMSF
values indicated significant differences in fluctuation between the WT and mutant structures in
positions 3857, 7792, and the @erminal region of theC310Rnutant (FigurelOb). The RMSHots
show that residues in positionsZ2 and 65100 of theW112Rmutant in the liganebinding domain,
as well as residues in positions-39 and 7799 of theC310Rnutant in the transmembrane domain,
exhibit a relatively flexible region compared to othesidues. Additionally, the highest residual
fluctuation is observed at positions 1 (8.01 A) and 2 (5.96 A) W8#Smutant, positions 1 (6.90
A) and 2 (4.84 A) in th&/112Rmutant, and positions 85 (7.95 A) and 86 (7.71 A) inGB&0R
mutant, when canpared to their respective WT structures.
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Based on the Rg analysis of the WT and mutant structures, it is evident thatthgRmutant
exhibits a higher average Rg value (19.83 A) in the ligamting domain compared to the WT
(19.48 A) andv87Smutant (19.41 A), as depicted in Figure 11a. idendbinding domain's WT
and W87S mutant structuredisplay similar average Rg values. Conversely, in the transmembrane
domain, theC310Rmutant demonstrates a significantly lower average Rg value (1&)81an its
WT structure (17.03 A), as illustrated in Figure 11b. This suggests a potential decrease in the
flexibility of theC310Rnutant, and interestingly, th€310Rnutant appears to deviate from its Rg

value after 30 ns.
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Furthermore, the SASA analysis reveals that in the liggmding domain, thew112Rmutant
exhibits a higher average SASA value (11663.50 A2 than the WT (1146812 ¢diparisonthe
W87Smutant displays a lower average SASA value (11370.25 A3 than the WT, as shown in Figure
12a. In the transmembrane domain, th8 DR mutant exhibits a lower average SASA value (8796.62
A2 thanits WT (8936.70 A3, as depicted in Figure 12b. Since a higher SASA value indicates protein
expansion, it can be inferred that in the ligahohding domain, the WT an@/87Smutant are more
stable than theW112Rmutant, and theW87Smutant is more stable than the WThe C310R
mutant is more stable than its WT structure in the transmembrane domain
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To further investigate the structural chargeesulting from substitutions in th @ ABRAGene in
each mutant type, the number of different secondary structures in the mutated types was
calculated and compared with the wild types, as presented in Supplementary Figures 4 to 10.
Additionally, the contibution of different secondary structures in the protein structure during the
simulation is summarized in Table 6. Moreover, to understand the secondary structural changes of
the mutant types, the DSSP parameter was calculated during the simulation,\as shBigure 13
andFigurel4.
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