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Abstract 

Epilepsy, a prevalent neurological disorder, affects more than 50 million individuals worldwide 

and is characterized by recurring seizures. Nonsynonymous single nucleotide polymorphisms 

(nsSNPs) found within coding regions of epilepsy-related genes are believed to have 

significant impacts on protein function. This is due to their tendency to cause mutations in the 

encoded amino acids, which can subsequently lead to pathogenic alterations in protein 

structure and function. Consequently, nsSNPs have the potential to serve as diagnostic 

markers for epilepsy and other neuropsychiatric conditions. The primary objective of this 

study is to evaluate the harmful effects of missense nsSNP mutations on the GABRA6 gene. 

The GABRA6 gene encodes the alpha-6 subunit of the GABAA receptor, and previous research 

showed one case substitution mutation in the GABRA6 gene is associated with childhood 

absence epilepsy (CAE) and atonic seizures. To achieve this, we employed various 

computational tools, including SIFT, PolyPhen-2, PROVEAN, Condel, SNPs & GO, PMut, SNAP2, 

MutPred2, and SNPeffect4.0, for predicting missense nsSNPs. Additionally, we used I-

Mutant3.0 and MUpro to analyze protein stability, ConSurf to assess evolutionary 

conservation, FTSite and COACH to predict ligand binding sites, SOPMA and PSIPRED to 

analyze protein secondary structures, project HOPE to predict structural changes, and I-

TASSER to model the 3D structure. Furthermore, structural validation was conducted using 
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the PROCHECK and ERRAT servers. At the same time, molecular dynamics simulations were 

performed using GROMACS to gain a better understanding of the effects of mutations on 

protein structure. Among the 451 missense nsSNPs identified within the GABRA6 gene, three 

were found to have pathogenic effects on the structure and function of the protein, 

potentially, there may be a contribution to the development of seizures or other 

neuropsychiatric disorders. Notably, two of these missense nsSNPs (W87S and W112R) were 

located within the ligand-binding domain, while the third (C310R) was situated in the 

transmembrane domain. It is crucial to acknowledge that despite their predicted 

pathogenicity, these variants are currently classified as of uncertain significance in clinical and 

genomic databases worldwide due to the lack of correlation with epilepsy in empirical studies. 

Without experimental data to validate these predictions, caution is warranted in interpreting 

the findings. 
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1. Introduction 

Epilepsy is a neurological disorder characterized by recurring seizures [1]. While approximately 

20-30% of epilepsy cases are associated with tumors, strokes, or head injuries, the remaining 70-

80% are believed to have genetic factors [2]. Genetic epilepsy refers to cases where seizures are a 

primary symptom of the disorder and are directly caused by presumed or known mutations. It is 

important to note that the underlying mutations responsible for genetic epilepsies are still largely 

unknown [3]. 

In a study conducted by Wang et al. in 2017, 977 genes associated with epilepsy were identified 

through a comprehensive search of databases such as OMIM, HGMD, Epilepsy Gene, and PubMed 

publications. These genes were classified into four groups based on the phenotypes of epilepsy 

manifestation. Among the 977 genes, 84 were designated as epilepsy genes, 73 as 

neurodevelopment-related genes, 536 as epilepsy-related genes, and 284 as putatively epilepsy-

associated genes, which require further investigation [4]. The focus of this study is to evaluate the 

GABRA6 gene, which falls under the putatively epilepsy-associated genes category. 

GABAA receptors, which belong to the Cys-loop ion channel superfamily, play a crucial role as the 

major inhibitory mediators in the mammalian central nervous system (CNS) [5]. These receptors are 

composed of pentameric subunits, with 19 different subtypes identified (ρ1-ρ3, γ1-γ3, β1-β3, α1-

α6, θ, π, ε, and δ) [6]. The diverse molecular composition and expression of GABAA receptors' 

subunits contribute to the variations in their properties, including agonist binding affinity, 

conductance, kinetics, and distribution within the brain [7]. These differences may potentially 

contribute to the pathogenesis of epilepsy and chronic seizure recurrence [8]. 

The GABRA6 gene encodes the alpha-6 subunit of the GABAA receptor. Previous studies have 

identified connections between variations in the GABRA6 gene and genetic epilepsy disorders such 

as CAE. Dibbens et al. reported a mutation (Arg46Trp) in the GABRA6 gene in a patient with CAE. 

This mutation is located in a homologous region to the γ2 subunit mutation (Arg82Gln) in the 
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gamma-2 subunit of the GABAA receptor, which is known to be associated with febrile seizures and 

CAE in humans. The γ2 subunit mutation results in reduced surface receptor levels and receptor 

currents, indicating impaired assembly and functionality of GABAA receptors [9]. Furthermore, 

Hernandez et al. found that the CAE-associated Arg46Trp mutation in the GABRA6 gene can cause 

neuronal disinhibition in the GABAA receptor, leading to an increased predisposition to generalized 

seizures due to reduced function and expression of αβγ and αβδ receptors. This mechanism is 

similar to the γ2 subunit mutation (Arg82Gln) linked to human CAE [10]. 

When comparing genomic DNA sequences from different individuals, it is observed that certain 

positions can contain two or more bases. These variations, known as single nucleotide 

polymorphisms (SNPs), are highly prevalent, occurring at a frequency of approximately one out of 

every 0.3-1 kilobase in the human genome. Additionally, SNPs can have distinct effects on 

phenotypic levels depending on their location [11]. SNPs with a minimum frequency of 1% in the 

general population are believed to account for approximately 90% of inter-individual variability and 

nearly 100,000 amino acid differences. Due to their low mutation rate, SNPs serve as valuable 

markers for investigating complex genetic characteristics. Consequently, genetic studies 

increasingly use SNP markers for their numerous advantages. In general, SNPs can be categorized 

as either intronic or exonic. Intronic SNPs are located in non-coding genome areas and do not impact 

protein products when translated. On the other hand, nsSNPs are exonic SNPs found in coding 

regions that result in changes to protein length or amino acid variants [12]. Among the various types 

of SNPs, nsSNPs in coding regions are considered to have the most significant effect on protein 

functions, often leading to mutations in encoded amino acids that can detrimentally affect protein 

structure and function [13]. 

The emergence of large, complex biological data sets has necessitated rapid advancements in 

the field of bioinformatics or computational biology. While not a new field, bioinformatics has 

become increasingly indispensable as biology transitions towards high-throughput methods for 

analyzing entire genomes. Bioinformatics encompasses the scientific discipline involved in acquiring, 

storing, distributing, processing, interpreting, and analyzing biological information. Consequently, 

numerous databases and software applications have expanded to facilitate the analysis of genetic 

and physical data in order to infer the functions of model organisms and individuals. Computational 

analysis provides effective and alternative methods for generating new hypotheses, designing 

appropriate investigations, and interpreting vast amounts of data derived from genome-scale 

research. Computational or in silico analyses supplement traditional experimental biology 

techniques by significantly enhancing predictive capabilities [14]. The term "in silico" refers to 

experiments conducted using computers and is analogous to the more familiar biological terms "in 

vitro" and "in vivo" [15]. Given the exponential number of SNPs, it is impractical to determine the 

biological significance of each SNP through wet laboratory techniques alone. However, 

computational tools can be employed to screen potentially deleterious SNPs that may alter protein 

function and structure before proceeding to wet laboratory analysis [16]. 

This study aimed to identify and validate the most deleterious missense nsSNPs associated with 

the GABRA6 gene and assess their impact on protein function and structure. This approach involved 

investigating the underlying molecular mechanisms using various in silico methods. Predicted 

missense nsSNPs, along with the native form, were further analyzed through molecular dynamics 

simulations to understand their effects on protein structure better. This investigation explores the 

potential impact of missense nsSNPs on epilepsy and other neuropsychiatric disorders, focusing on 
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the GABRA6 gene. While our findings suggest a link between these variants and disease 

susceptibility, further experimental validation is essential to substantiate these observations. 

Nonetheless, elucidating the role of missense nsSNPs could offer valuable insights into disease 

mechanisms and inform future diagnostic and therapeutic strategies. 

2. Materials and Methods 

The harmful nature of missense nsSNPs in the function and structure of the human GABRA6 gene 

was predicted by several computational algorithms. Various in silico tools were utilized to make 

predictions to ensure that the results were highly accurate. The approach followed to analyze 

missense nsSNPs in the present study is shown in Figure 1. 

 

Figure 1 Schematic representation of in silico workflow to analyze deleterious missense 

nsSNPs in human GABRA6 gene. 

2.1 Data Mining 

The missense nsSNPs for the human GABRA6 gene were retrieved from the National Center for 

Biotechnology Information (NCBI) dbSNP database [17] (https://www.ncbi.nlm.nih.gov/snp/). 

Moreover, the protein sequence encoded by the human GABRA6 gene was obtained from the 

UniProt database [18] (https://www.uniprot.org/). 

2.2 Predicting Deleterious Missense nsSNPs 

In silico tools, including SIFT, PolyPhen-2, PROVEAN, and Condel, were utilized to predict 

deleterious missense nsSNPs. 

SIFT (Sorting Intolerant from Tolerant): An algorithm that uses sequence homology and the 

physical properties of amino acids to predict an amino acid substitution effect on protein function. 

The algorithm considered evolutionarily conserved regions to be relatively intolerant to mutations, 

https://www.ncbi.nlm.nih.gov/snp/
https://www.uniprot.org/
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and therefore, amino acid substitution in these regions is more likely to be expected to affect 

protein function [19]. In this study, a faster version of SIFT called SIFT 4G (SIFT for genomes) [20] is 

used (The package is available at https://github.com/rvaser/sift4g). SIFT takes a protein sequence 

and a list of substitutions, which is searched against a protein database for homology searching. The 

protein database is UniRef90 (16 February 2021 release) [21]. SIFT score ranges from 0 to 1. The 

amino acid substitution is considered harmful if the score < 0.05, while the score ≥ 0.05 is tolerated. 

PolyPhen-2 (Polymorphism Phenotyping v2): A tool that predicts the structural and functional 

impacts of an amino acid substitution in human proteins. PolyPhen-2 (The package is available at 

http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads) uses a Naıv̈e Bayes classifier, which is 

trained by supervised learning algorithms. HumDiv and HumVar datasets from the UniProt database 

were used to train PolyPhen-2 prediction models. The classifier that used HumDiv should be used 

for rare alleles assessment, natural selection analysis, and dense mapping of regions determined 

through genome-wide association studies. The HumVar classifier should be utilized for Mendelian 

disease recognition, which requires recognizing mutations with severe effects from all the remaining 

human variation, including many mildly deleterious alleles [22]. PolyPhen-2 takes protein UniProt 

ID and substitutions as an input file and identifies homologs of the protein sequences by Basic Local 

Alignment Search Tool (BLAST) [23] in the UniRef100 (27 February 2021 release) database. The 

PolyPhen-2 score ranges from 0 (neutral) to 1 (deleterious), and functional prediction is categorized 

into probably damaging (damaging with high confidence), possibly damaging (damaging with low 

confidence), and benign (benign with high confidence). 

PROVEAN (Protein Variation Effect Analyzer): A tool based on an alignment scoring method that 

predicts functional effects of single amino acid substitutions, in-frame insertions, deletions, and 

multiple substitutions [24]. PROVEAN (http://provean.jcvi.org/index.php) uses a delta alignment 

score (or delta score) to measure the effect of a variation. The protein sequence and a list of 

substitutions were submitted as inputs to the algorithm. PROVEAN’s default threshold score is -2.5. 

A score < -2.5 is considered harmful, while a score > -2.5 is considered neutral [25]. 

Condel (CONsensus DELeteriousness): A method to predict the outcome of non-synonymous 

SNPs based on a weighted average of the normalized scores (WAS) of various tools. Condel 

(https://bbglab.irbbarcelona.org/fannsdb/) uses a consensus deleteriousness score that integrates 

the output of five tools (Logre [26], MAPP [27], Mutation Assessor [28], Polyphen2, and SIFT) into a 

unified classification [29]. Protein UniProt ID and substitutions were submitted as an input file to 

the algorithm. Condel's score ranges from 0 to 1, which is a higher score that predicts SNPs as 

deleterious. 

2.3 Predicting Disease-Related Variants 

To disease-related prediction of selected missense nsSNPs, SNPs & GO and PMut tools were used 

in this step. 

SNPs & GO A support vector machine (SVM) based tool for predicting disease-related SNPs using 

Gene Ontology (GO) terms (http://snps.biofold.org/snps-and-go) [30]. Protein Swiss Prot code and 

substitutions were submitted as inputs to the algorithm. When the input sequence is a Swiss Prot 

code, GO terms for the prediction will be retrieved automatically. The result consists of three 

different algorithms: SNPs & GO, PhD-SNP [31], and PANTHER [32]. SNPs & GO score ranges from 0 

https://github.com/rvaser/sift4g
http://genetics.bwh.harvard.edu/pph2/dokuwiki/downloads
http://provean.jcvi.org/index.php
https://bbglab.irbbarcelona.org/fannsdb/
http://snps.biofold.org/snps-and-go
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to 1, if the score > 0.5 is considered a disease-related variation, while a score ≤ 0.5 is considered 

benign. 

PMut: A tool that predicts pathological properties of single amino acid substitutions. PMut 

(http://mmb.irbbarcelona.org/PMut) uses a neural network-based method that is trained using a 

manually curated database Swiss Prot (October 2016 release), includes 27,203 deleterious and 

38,078 benign mutations for 12,141 proteins [33]. Protein Uni Prot ID and substitutions were 

submitted as inputs to the algorithm. PMut score ranges from 0 to 1. A score > 0.5 is classified as 

pathological variation, and a score < 0.5 is classified as neutral. 

2.4 Predicting the Molecular and Phenotypic Consequences of Variants 

Further investigation was done to predict molecular and phenotypic consequences of selected 

missense nsSNPs through SNAP2, MutPred2, and SNPeffect4.0 tools. 

SNAP2: A neural network-based classifier tool that predicts the functional effects of non-

synonymous SNPs (https://rostlab.org/services/snap2web/). SNAP2 uses evolutionary information 

and structural features like solvent accessibility and predicted secondary structure to predict 

variants’ effects [34]. The protein sequence was submitted as input to the algorithm. SNAP2 score 

ranges from -100 (firmly neutral) to +100 (enormously influential). 

MutPred2: A machine learning-based method that predicts the molecular and phenotypic 

consequences caused by amino acid substitutions as pathogenic or benign (The package is available 

at http://mutpred.mutdb.org/). It was trained using 53,180 deleterious and 206,946 putatively 

benign mutations from the Human Gene Mutation Database (HGMD) [35], Swiss Var database [36], 

dbSNP database, and inter-species pairwise alignments. MutPred2 takes protein Uni Prot ID and 

substitutions as an input file. MutPred2 gives two output scores: general score (g) and property 

score (pr). The g score demonstrates the pathogenicity of the substitution and ranges between 0 

and 1, a higher score indicates a greater probability of being pathogenic. The pr score is the posterior 

probability of losing or gaining a certain property because of the substitution and it also ranges 

between 0 and 1, a higher score indicates more alteration of the property in the molecular 

mechanism of the disease [37]. 

SNPeffect 4.0: A database that uses 4 tools to predict molecular and structural phenotypic 

consequences of human protein-coding SNVs (https://snpeffect.switchlab.org/). SNPeffect 4.0 uses 

TANGO [38] for aggregation-prone regions prediction, WALTZ [39] for amyloidogenic regions 

prediction, LIMBO [40] for hsp70 chaperone-binding sites prediction, and FoldX [41] for analyzing 

the possible impact of protein stability [42]. Protein UniProt ID and substitutions were submitted as 

inputs to the algorithm. Mutations can increase (dTANGO, dWALTZ, and dWALTZ > 50), decrease 

(dTANGO, dWALTZ, and dWALTZ < -50), or have no effect (dTANGO, dWALTZ, and dWALTZ between 

-50 and 50), aggregation propensity, amyloid propensity, and chaperone binding. 

2.5 Predicting the Effect of Variants on Protein Stability 

Analyzing missense nsSNPs effects on protein stability was accomplished by I-Mutant3.0 and 

MUpro tools through Gibbs free energy change calculation of mutant protein and wild-type protein. 

I-Mutant: A support vector machine (SVM) based web server tool that predicts protein stability 

changes upon single amino acid substitutions (https://folding.biofold.org/i-mutant/). I-Mutant 

estimates protein stability by calculating Gibbs free energy change (ΔΔG, kcal/mol) of the mutant 

http://mmb.irbbarcelona.org/PMut
https://rostlab.org/services/snap2web/
http://mutpred.mutdb.org/
https://snpeffect.switchlab.org/
https://folding.biofold.org/i-mutant/
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protein and wild-type protein (ΔΔG = ΔG (mutant type)-ΔG (wild-type)) [43]. This server can evaluate 

the protein stability change by the protein sequence or structure. In this study, protein sequence 

was used. The protein sequence and substitutions were submitted as inputs to the algorithm. If 0 < 

ΔΔG is considered to increase protein stability, while ΔΔG < 0 is considered to decrease protein 

stability. I-Mutant 3.0 predicts which a single substitution has a low effect (-0.5 ≤ ΔΔG ≤ 0.5 kcal/mol) 

or extensively increases protein stability (ΔΔG > 0.5 Kcal/mol) or extensively decreases protein 

stability (ΔΔG < -0.5 Kcal/mol). 

MUpro: A tool based on support vector machine (SVM) and neural network methods, which is 

used for protein stability prediction resulting from single amino acid substitutions 

(http://mupro.proteomics.ics.uci.edu/) [44]. MUpro also likes I-Mutant can predict the stability 

changes using protein sequence or protein structure. The protein sequence and substitutions were 

submitted as inputs to the algorithm. When the energy change (ΔΔG) is positive, the mutation 

increases protein stability. Instead, if ΔΔG is negative the mutation decreases protein stability. 

2.6 Evolutionary Conservation Analysis 

The ConSurf tool was utilized to identify selected missense nsSNPs' positions in evolutionarily 

conserved regions. 

ConSurf: A tool used for evolutionarily conservation analysis of amino acids in a protein, DNA, or 

RNA to reveal important functional and/or structural areas (https://consurf.tau.ac.il/). ConSurf uses 

an empirical Bayesian method to estimate the protein sequence conservation score [45]. The 

protein sequence was submitted as input to the algorithm. The conservation score is grouped into 

9 grades, where 1 indicates most rapidly evolving areas, 5 indicates mildly changing areas, and 9 

indicates most evolutionary conserved areas. 

2.7 Predicting Protein Secondary Structure 

Secondary structures of selected missense nsSNPs were predicted by SOPMA and PSIPRED tools. 

SOPMA: A web version of the self-optimized prediction method (SOPM) [46], which is used for 

secondary structure prediction of amino acids (https://npsa-prabi.ibcp.fr/cgi-

bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html). The joint prediction using SOPMA, and a 

neural network method (PHD) correctly predicts 82.2% of residues for 74% of co-predicted amino 

acids. The protein sequence was submitted as input to the algorithm. 

PSIPRED: A highly accurate method that predicts the secondary structure of proteins 

(http://bioinf.cs.ucl.ac.uk/psipred/). PSIPRED [47] includes two feed-forward neural networks that 

perform an analysis of the output obtained from PSI-BLAST [23]. The protein sequence was 

submitted as input to the algorithm. 

2.8 Predicting Structural Effects of Variants 

The HOPE project predicted structural changes such as size, charge, and hydrophobicity-value 

between mutant and wild residues. 

HOPE (Have (y)Our Protein Explained): A web tool to predict the structural effects of single amino 

acids substitutions on proteins (https://www3.cmbi.umcn.nl/hope/). HOPE uses 3D structures of 

the proteins available in the Uni Prot database and Distributed Annotation (DAS) servers to simulate 

http://mupro.proteomics.ics.uci.edu/
https://consurf.tau.ac.il/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_sopma.html
http://bioinf.cs.ucl.ac.uk/psipred/
https://www3.cmbi.umcn.nl/hope/
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the structural features of mutations on the wild-type protein [48]. However, if necessary, the HOPE 

server can build homology models independently. HOPE sever also predicts structural changes 

between mutant and wild residues. The protein sequence was submitted as input to the algorithm. 

2.9 3D Structure Modeling and Visualizing of Natives and Variants Structures 

The 3D structure of the protein is crucial to annotate the protein function of native and mutant 

structures. Identification of domain regions and locating missense nsSNPs position in domains were 

done through the Pfam database [49] search (http://pfam.xfam.org/). Then, generating 3D 

structures of each native domain using I-TASSER (Iterative Threading ASS Embly Refinement) was 

accomplished separately (https://zhanglab.dcmb.med.umich.edu/I-TASSER/). I-TASSER is a method 

for predicting protein structure that consists of 3 steps. In the first step, after the domain sequence 

was submitted to the I-TASSER server as input, a meta-threading program called LOMETS [50] 

retrieved structural templates from the PDB library [51]. In the second step, full-length models are 

constructed by assembling well-aligned continuous fragments excised from the PDB templates, with 

unaligned regions structures built by ab-initio modeling based on replica-exchange Monte Carlo 

simulations [52]. I-TASSER simulations generate thousands of conformations named decoys. I-

TASSER uses the SPICKER program (a clustering algorithm) [53] to cluster all decoys. Through 

clustering, SPICKER identifies low free-energy states. Eventually, the functional annotations are 

obtained by matching the predicted structure models with known proteins in the BioLiP function 

library [54]. I-TASSER will predict up to the top five models. A confidence score or C-score estimates 

the quality of predicted models. C-score is typically in the range of [-5.2], wherein a higher value 

signifies a better-quality model; when C score > -1.5, it indicates the model has a correct fold. I-

TASSER takes protein sequence as input, and up to five models are predicted as output. In cases 

where the output final models are less than five, the similarity of the top templates identified via 

LOMETS is indicated, and this causes the converging of I-TASSER simulations. The C-score is usually 

high in such cases and predicts a high-quality model [55-57]. 

PROCHECK and ERRAT carried out structural validation for the predicted models. PROCHECK by 

Psi/Phi Ramachandran plot analysis assesses the stereochemical quality of a protein structure [58]. 

ERRAT is another protein structural verification tool that demonstrates the model's reliability. For 

the best quality of the predicted model, the ERRAT value must be over 80% [59]. PROCHECK and 

ERRAT are available at the Structural Analysis and Verification Server (SAVES) 

(https://saves.mbi.ucla.edu/). PDB file was submitted as input to the server for both tools. Modeling 

of mutated protein structures was performed using the mutagenesis feature in the PyMol [60] 

visualization tool (2.3.0 version) using the predicted native type by I-TASSER as a reference. 

2.10 Predicting Ligand Binding Sites 

The FTSite and COACH tools were used to predict the presence of selected missense nsSNPs in 

ligand-binding sites. 

FTSite: An accurate computational method for ligand binding site prediction based on 

experimental evidence with an accuracy of 94% (https://ftsite.bu.edu/) [61]. PDB file was submitted 

as input to the algorithm. FTSite identifies three potential binding sites in proteins. 

COACH (COnsensus approACH): A tool for ligand binding site prediction, which is based on two 

comparative methods, TM-SITE (binding-specific substructure comparison) and S-SITE (sequence 

http://pfam.xfam.org/
https://zhanglab.dcmb.med.umich.edu/I-TASSER/
https://saves.mbi.ucla.edu/
https://ftsite.bu.edu/
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profile alignment), which identify ligand binding templates from the BioLiP library. These two 

methods, combined with COFACTOR [62], Con Cavity [63], and FINDSITE [64] methods, generate 

final predictions [65]. After the protein sequence was submitted to the I-TASSER for generating 3D 

structures, it will be fed into the COACH pipeline for predicting ligand binding sites. 

2.11 Molecular Dynamics Simulation in Water 

Molecular dynamics simulations were performed using the GROMACS (2021.2 version) to reveal 

changes at the atomic level in different time scales for wild and mutant types [66]. The Amber ff99SB 

protein force field was used for simulations. A cubic box was formed by extending 1 nm on each 

side of the protein. The system was implemented by adding TIP3P water model molecules and 

neutralizing them with Cl-ions. The energy minimization step was performed using the steepest 

descent algorithm before the simulation. Long-range electrostatic interactions were modeled using 

the particle mesh Ewald (PME) method. The short-range electrostatic and van der Waals 

interactions cut-off radius was set to 1 nm. Periodic boundary conditions were maintained to 

eliminate surface effects. The leap-frog algorithm was used for simulations to integrate Newton’s 

equations of motion. A time step interval of 2 fs was used for all simulations. To constrain bonds 

involving hydrogens the Lincs algorithm. Minimized systems should be equilibrated to reach the 

desired temperature and pressure before the fundamental dynamics start. Equilibration is 

conducted in two ensembles: NVT (constant Number of particles, Volume, and Temperature) and 

NPT (constant Number of particles, Pressure, and Temperature). The system temperature and 

pressure were coupled to a v-rescale thermostat with a time constant of 0.1-ps at 300 K and a 

Parrinello-Rahman barostat with a time constant of 2-ps at 1 bar. We first conducted a 200-ps NVT 

equilibration and then a 1000-ps NPT equilibration. The molecular dynamics simulation of each 

equilibrated system of the wild and mutant types was run for 100 ns. At last, the MDS trajectory 

files analyses were calculated by GROMACS build-in programs to get RMSD (root mean square 

deviations), RMSF (root mean square fluctuations), Rg (radius of gyration), SASA (solvent accessible 

surface area), and DSSP (definition secondary structure of the protein) analyses. RMSD, RMSF, Rg, 

and SASA of Cα atoms in the trajectories were evaluated. The changes in the secondary structure of 

the protein during molecular dynamics simulations were also calculated. 

3. Results 

3.1 Missense nsSNPs Datasets 

For the biological consequences study of missense nsSNPs, we retrieved 451 missense nsSNPs 

with 386 rsIDs in the human GABRA6 gene mapped to NM_000811.3 RefSeq (Table S1) from the 

dbSNP database. The protein sequence of the GABRA6 gene (with Q16445 ID) was retrieved from 

the UniProt database. 

3.2 Prediction of Most Deleterious Missense nsSNPs 

This study used four in silico tools, SIFT, PolyPhen-2, PROVEAN, and Condel, to predict deleterious 

missense nsSNPs. Out of 451 missense nsSNPs, 303 were predicted as deleterious and 148 as 

tolerated by SIFT, 306 were predicted as deleterious and 145 as neutral by HumDiv PolyPhen-2 (143 

benign, 49 possibly damaging, and 259 probably damaging), 290 were predicted as deleterious and 
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161 as neutral by HumVar PolyPhen-2 (157 benign, 55 possibly damaging, and 239 probably 

damaging), 225 were predicted as deleterious and 226 as neutral by PROVEAN, and 298 were 

predicted as deleterious and 153 as neutral by Condel (Table S2 and Figure 2). 

 

Figure 2 Distribution of predicted deleterious and neutral missense nsSNPs by 4 tools for 

human GABRA6 gene. Deleterious missense nsSNPs are shown in dark blue, and neutral 

nsSNPs are in light blue. 

Deleterious missense nsSNPs were predicted with default scores for each tool. High scores across 

the tools are considered to obtain high confidence deleterious missense nsSNPs. SIFT score = 0, 

PolyPhen-2 score > 0.99, PROVEAN score < -9, and Condel score > 0.7 are used. After integrating the 

scores, 3 missense nsSNPs in the GABRA6 gene (Table 1) were obtained and used for further analysis. 

Table 1 The most deleterious missense nsSNPs by SIFT, PolyPhen-2, PROVEAN, and 

CONDEL tools in the GABRA6 gene. 

rs ID 
Transcript 

change 

Substit

ution 

SIFT4G 

Score 

PolyPhen-2 Score 
PROVEAN 

Score 

CONDEL 

Score 
HumDiv 

probability 

HumVar 

probability 

rs1428649051 c.260G > C W87S 0 1 1 -12.906 0.709363974 

rs1199782347 c.334T > C W112R 0 1 1 -12.837 0.735214831 

rs1317373536 c.928T > C C310R 0 1 1 -10.964 0.764688222 

3.3 Prediction of Disease-Related Variants 

To get more accurate results, selected missense nsSNPs were analyzed by SNPs & GO and PMut 

to predict disease-related missense nsSNPs. SNPs & GO's result consists of three different 

algorithms; SNPs & GO, PhD-SNP, and PANTHER. Three selected missense nsSNPs in the human 

GABRA6 gene were submitted to SNPs & GO and PMut to analyze disease-related missense nsSNPs. 

The output of SNPs & GO, PhD-SNP, PANTHER, and PMut predicted that all three selected missense 

nsSNPs are disease-related (Table 2). 
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Table 2 Lists disease-related missense nsSNPs of GABRA6 by SNPs & GO and PMut tools. 

Substituti

on 

SNPs & GO 
PMut 

SNPs & GO PhD-SNP PANTHER 

Prediction RI 
Proba

bility 
Prediction RI 

Proba

bility 
Prediction RI 

Proba

bility 
Prediction Score 

W87S Disease 8 0.919 Disease 8 0.922 Disease 10 0.999 Disease 0.8214 

W112R Disease 9 0.93 Disease 9 0.937 Disease 10 0.979 Disease 0.8214 

C310R Disease 9 0.949 Disease 9 0.97 Disease 9 0.974 Disease 0.8627 

RI: Reliability Index. 

3.4 Prediction of the Molecular and Phenotypic Consequences of Variants 

To predict the molecular and phenotypic consequences of selected missense nsSNPs, we further 

investigated missense nsSNPs through SNAP2, MutPred2, and SNPeffect4.0 tools. The SNPeffect 

tool predicts SNPs’ consequence on aggregation-prone regions by TANGO, amyloid-forming regions 

by WALTZ, and hsp70 chaperone binding sites by LIMBO. The output of SNAP2 of three selected 

missense nsSNPs in the GABRA6 gene predicted that all three selected missense nsSNPs have 

damaging effects on protein structure. Since the score > 0.5 suggests pathogenicity in MutPred2, 

the output of MutPred2 showed that all three selected missense nsSNPs in the GABRA6 gene have 

damaging functional and structural effects (Detailed information in Table S3). According to the SNP 

effect results, TANGO and WALTZ analysis revealed that the C310R variant (dTANGO equals 302.70 

and dWALTZ equals -553.68) increases the aggregation tendency of the protein and decreases the 

amyloid propensity of the protein. However, none of the variations does affect the chaperone 

binding tendency of the protein (Table 3). 

Table 3 List of analyzed missense nsSNPs of the GABRA6 gene by SNAP2, MutPred2, and 

SNPeffect4.0 tools. 

Substitution 
SNAP2 

MutPred2 score 
SNPeffect4.0 

Prediction Score dTANGO dWALTZ dLIMBO 

W87S effect 87 0.953 0.00 -0.07 0.00 

W112R effect 87 0.948 0.00 -0.12 0.00 

C310R effect 87 0.964 302.70 -553.68 0.00 

(d in dTANGO, dWALTZ, and dLIMBO is the score change between the mutant and wild-type 

proteins). 

3.5 Prediction of the Effect of Variants on Protein Stability 

The effects of selected missense nsSNPs on protein stability were analyzed by I-Mutant3.0 and 

MUpro tools by calculating the Gibbs free energy change of mutant and wild-type proteins. I-

Mutant3.0 analyses showed that W87S and W112R variants decreased protein stability, and the 

C310R variant increased protein stability. In contrast, all three variants by Mupro prediction showed 

decreasing protein stability. W87S and W112R variants have ΔΔG values < -1 kcal/mol in both tools, 

which are expected to alter the function and structure of the protein (Table 4). 
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Table 4 List of missense nsSNPs of the GABRA6 gene, which was analyzed for protein 

stability by I-Mutant3.0 and MUpro tools. 

Substitution 
I-Mutant3.0 Mupro 

Prediction ΔΔG RI Prediction ΔΔG 

W87S Decrease -1.69 9 Decrease -1.0174971 

W112R Decrease -1.44 9 Decrease -1.2580621 

C310R Increase -0.32 2 Decrease -0.85748451 

RI: Reliability Index. 

3.6 Evolutionary Conservation Analysis 

To analyze the evolutionary conservation of selected missense nsSNPs, the ConSurf tool was used, 

which grouped amino acids based on conservation scores in 9 grades. As shown in Figure 3, ConSurf 

results indicated that W87 and W112 residues located in highly conserved regions with conservation 

scores of 9 and predicted as buried residues and have a structural impact on the protein, and C310 

predicted as buried residue with conservation scores of 8. 

 

Figure 3 ConSurf analysis of GABRA6 gene residues. The black boxes indicate the most 

deleterious missense nsSNPs. 
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3.7 Prediction of Protein Secondary Structure 

Amino acids’ secondary structure corresponding to the proteins was predicted by SOPMA and 

PSIPRED tools. SOPMA prediction showed the distributions of alpha helix, extended strand, beta-

turn, and random coil in proteins. PSIPRED predicted the distributions of strands, helices, and coils 

in proteins and validated the secondary structure of the proteins. SOPMA results showed 135 alpha 

helices (29.80%), 104 extended strands (22.96%), 11 beta turns (2.43%), and 203 random coils 

(44.81%) in the predicted secondary structure. In the 3 amino acid residues corresponding to 

selected missense nsSNPs, W87 and W112 are in random coils, and C310 in alpha helices (Figure 4). 

PSIPRED results indicated that in the 3 amino acid residues, W87 is located in strands, Y186 in coils, 

and C310 in helices (Figure S1). 

 

Figure 4 SOPMA analysis of GABRA6 gene residues. The black boxes indicate the most 

deleterious missense nsSNPs. 

3.8 Prediction of Structural Effects of Variants 

HOPE was used to predict structural changes, including size, charge, and hydrophobicity value 

between mutant and wild residues. Of 3 selected missense nsSNPs in the GABRA6 gene, Ser and Arg 

residues in W87S and W112R mutants are more minor than Trp residue in wild-type forms. In 

contrast, Arg residue in the C310R mutant is more significant than the Cys residue in the wild-type 

form. The charge of Trp and Cys residues in W112R and C310R mutants was neutral, then turned to 

Arg residues with a positive charge. There is not any significant charge change in the W87S mutant. 

The wild-type residues in all three missense nsSNPs are more hydrophobic than the mutant residues. 

(Table S4). According to the project HOPE results, when the mutant residue is smaller than the wild-

type residue, it might lead to a loss of interactions in protein structure. If the mutant residue is more 

significant than the wild-type residue, it might lead to bumps in protein structure. When the charge 

of the wild-type residue is lost, it might cause a loss of interactions with other molecules or residues. 

If the mutation introduces a charge, it might cause the repulsion of ligands or other residues with 

the same charge. When the hydrophobicity of the wild-type residue is lost or decreased, the 

hydrophobic interactions will be lost either in the core of the protein or on the surface. If the 

mutation introduces a more hydrophobic residue, it might cause a loss of hydrogen bonds and/or 

disturb correct folding. 
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3.9 3D Structure Modeling and Visualizing of Wild and Mutant Structures 

The Pfam server was used to identify domain regions in the GABRA6 gene and locate selected 

missense nsSNP positions in different domains. In this study, we need domains that involve 

deleterious missense nsSNPs (Table 5). Generating 3D structure models was performed by the I-

TASSER server. Predicted models’ validation was done by PROCHECK and ERRAT servers. PROCHECK 

predicted the quality of wild models using Ramachandran plot analysis. The ERRAT indicated the 

overall quality factor of the predicted models. PyMol software was used to visualize wild and mutant 

protein structures. 

Table 5 List domains involving selected deleterious missense nsSNPs in the GABRA6 

gene. 

Protein name Domain name 
Start 

residue 

Stop 

residue 

Domain 

length 

Involved 

missense nsSNPs 

GBRA6_HUMAN 
Neurotransmitter-gated ion-

channel ligand-binding domain 
32 240 209 aa W87S and W112R 

GBRA6_HUMAN 
Neurotransmitter-gated ion-

channel transmembrane domain 
247 399 153 aa C310R 

Pfam reported two domains in the GABRA6 gene, including the neurotransmitter-gated ion-

channel ligand-binding domain (32-240), and a neurotransmitter-gated ion-channel 

transmembrane domain (247-399). Out of three selected missense nsSNPs for further analysis, two 

(W87S and W112R) are located in the ligand-binding domain, and one (C310R) is in the 

transmembrane domain. 

3D structure prediction of wild types for the ligand-binding domain and the transmembrane 

domain in the GABRA6 gene was modeled by I-TASSER. One model predicted a C-score of 1.16 for 

the ligand-binding domain, which was a high-quality model. And in the transmembrane domain, we 

selected the first model out of 5 predicted models with a C-score of -1.62 (Figure S2a and Figure 

S3a). Validation of predicted models’ quality was done by PROCHECK and ERRAT servers. The result 

of PROCHECK for the ligand-binding domain model showed 79.7% of residues in most favored 

regions, 18.7% in additional allowed regions, 1.6% in generously allowed regions, and 0% in the 

disallowed areas (Figure S2b). The ERRAT result showed that the overall quality factor for the 

predicted model was 87.940 (Figure S2c). PROCHECK’s result for the transmembrane domain model 

showed 77.3% of residues in the most favored regions, 12.8% in additional allowed regions, 7.1% in 

generously allowed regions, and 2.8% in the disallowed areas (Figure S3b). The ERRAT result showed 

that the predicted model's overall quality factor was 83.916 (Figure S3c). 

Finally, the predicted models were used to model mutant types by utilizing the mutagenesis 

feature in PyMol. Structural models for wild-types and deleterious missense nsSNPs in the ligand-

binding domain (W87S and W112R) and the transmembrane domain (C310R) are shown in Figure 5, 

Figure 6 and Figure 7. 
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Figure 5 (W87S): The amino acid Tryptophan (green) changed to Serine (red) at position 

87 in the ligand-binding domain. Visualization was done by PyMol software and HOPE 

result. 

 

Figure 6 (W112R): The amino acid Tryptophan (green) changed to Arginine (red) at 

position 112 in the ligand-binding domain. Visualization was done by PyMol software 

and HOPE result. 

 

Figure 7 (C310R): The amino acid Cysteine (green) changed to Arginine (red) at position 

310 in the transmembrane domain. Visualization was done by PyMol software and HOPE 

result. 

3.10 Prediction of Ligand Binding Sites 
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To determine the presence of the selected deleterious missense nsSNPs in protein-binding 

regions of the GABRA6 gene, we employed the FTSite and COACH algorithms, which are protein-

ligand docking tools. FTSite identified three potential binding sites in the ligand-binding domain of 

the protein. 

FTSite predicted three potential binding sites in the ligand-binding domain. Site 1 contains 15 

binding residues, site 2 includes 4, and site 3 contains 12 (Figure 8a and Table S5). Additionally, 

COACH predicted 20 amino acid residues as potential binding sites (Table S6). 

 

Figure 8 Illustration of GABRA6, ligand-binding domain (A), and transmembrane domain 

(B), with ligand-binding site predictions. FTSite were annotated the ligand-binding 

pockets. Site 1 is illustrated in red, while sites 2 and 3 are described in green and blue, 

respectively. 

Similarly, in the transmembrane domain, FTSite predicted three potential binding sites. Site 1 

contains 9 binding residues, site 2 includes 16 binding residues, and site 3 contains 6 (Figure 8b and 

Table S5). COACH predicted 44 amino acid residues as potential binding sites (Table S6). 

3.11 Molecular Dynamics Simulation of WT and Mutant Types 

To comparatively study the conformational changes of the WT and mutant types in physiological 

environments, we performed 100 ns molecular dynamic simulations for each domain. Various 

parameters, such as root mean square deviations (RMSD), root mean square fluctuations (RMSF), 

the radius of gyration (Rg), and solvent accessible surface area (SASA), were analyzed using the time-

dependent function of molecular dynamic simulation. These parameters were calculated for Cα 

atoms during the molecular dynamics simulations, with reference to their WT structures. 

The RMSD analysis of the WT and mutant types revealed significant deviations in their structural 

stability. The W87S and W112R mutants in the ligand-binding domain exhibited similar RMSD values. 

Compared to the WT structure, the mutant types in the ligand-binding domain showed higher 

fluctuation, as depicted in Figure 9a. The C310R mutant in the transmembrane domain also deviated 

from the WT structure, with the mutant type displaying lower fluctuation than the WT, as shown in 

Figure 9b. The average RMSD values for the WT, W87S, and W112R are 1.88 Å, 2.13 Å, and 2.38 Å, 

respectively. Furthermore, the WT and C310R mutants have average RMSD values of 6.18 Å and 

4.89 Å, respectively. 
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Figure 9 Analysis of RMSD values of the domain backbone of WT and mutant structures, 

ligand-binding domain (A), and transmembrane domain (B) at 100 ns simulation. The 

ordinate is RMSD (Å), and the abscissa is time (ns). 

The RMSF analysis of each residue illustrates the effect of mutations on their dynamics. The study 

of RMSF values revealed significant differences in fluctuation between the WT and mutant 

structures in the N-terminal region of the W87S mutant and the N-terminal region as well as 

positions 90-99 in the W112R mutant in the ligand-binding domain after 100 ns of molecular 

dynamic simulation (Figure 10a). Similarly, in the transmembrane domain, the analysis of RMSF 

values indicated significant differences in fluctuation between the WT and mutant structures in 

positions 38-57, 77-92, and the C-terminal region of the C310R mutant (Figure 10b). The RMSF plots 

show that residues in positions 1-22 and 65-100 of the W112R mutant in the ligand-binding domain, 

as well as residues in positions 39-53 and 77-99 of the C310R mutant in the transmembrane domain, 

exhibit a relatively flexible region compared to other residues. Additionally, the highest residual 

fluctuation is observed at positions 1 (8.01 Å) and 2 (5.96 Å) in the W87S mutant, positions 1 (6.90 

Å) and 2 (4.84 Å) in the W112R mutant, and positions 85 (7.95 Å) and 86 (7.71 Å) in the C310R 

mutant, when compared to their respective WT structures. 
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Figure 10 Analysis of RMSF values of the domain backbone of WT and mutant structures, 

ligand-binding domain (A), and transmembrane domain (B) over the entire simulation. 

The ordinate is RMSF (Å), and the abscissa is residue. 

Based on the Rg analysis of the WT and mutant structures, it is evident that the W112R mutant 

exhibits a higher average Rg value (19.83 Å) in the ligand-binding domain compared to the WT 

(19.48 Å) and W87S mutant (19.41 Å), as depicted in Figure 11a. The ligand-binding domain's WT 

and W87S mutant structures display similar average Rg values. Conversely, in the transmembrane 

domain, the C310R mutant demonstrates a significantly lower average Rg value (16.31 Å) than its 

WT structure (17.03 Å), as illustrated in Figure 11b. This suggests a potential decrease in the 

flexibility of the C310R mutant, and interestingly, the C310R mutant appears to deviate from its Rg 

value after 30 ns. 
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Figure 11 Analysis of Rg of the domain backbone of WT and mutant structures, ligand-

binding domain (A), and transmembrane domain (B) over the entire simulation. The 

ordinate is Rg (Å), and the abscissa is time (ns). 

Furthermore, the SASA analysis reveals that in the ligand-binding domain, the W112R mutant 

exhibits a higher average SASA value (11663.50 Å²) than the WT (11468.27 Å). In comparison, the 

W87S mutant displays a lower average SASA value (11370.25 Å²) than the WT, as shown in Figure 

12a. In the transmembrane domain, the C310R mutant exhibits a lower average SASA value (8796.62 

Å²) than its WT (8936.70 Å²), as depicted in Figure 12b. Since a higher SASA value indicates protein 

expansion, it can be inferred that in the ligand-binding domain, the WT and W87S mutant are more 

stable than the W112R mutant, and the W87S mutant is more stable than the WT. The C310R 

mutant is more stable than its WT structure in the transmembrane domain. 
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Figure 12 Analysis of SASA of the domain backbone of WT and mutant structures, ligand-

binding domain (A), and transmembrane domain (B) over the entire simulation. The 

ordinate is SASA (Å²), and the abscissa is time (ns). 

To further investigate the structural changes resulting from substitutions in the GABRA6 gene in 

each mutant type, the number of different secondary structures in the mutated types was 

calculated and compared with the wild types, as presented in Supplementary Figures 4 to 10. 

Additionally, the contribution of different secondary structures in the protein structure during the 

simulation is summarized in Table 6. Moreover, to understand the secondary structural changes of 

the mutant types, the DSSP parameter was calculated during the simulation, as shown in Figure 13 

and Figure 14. 
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Figure 13 Variation in secondary structure elements for WT (A), W87S (B), and W112R 

(C) structures with respect to time, in the ligand-binding domain. 

 

Figure 14 Variation in secondary structure elements for WT (A) and C310R (B) structures 

with respect to time in the transmembrane domain. 
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Table 6 Contribution of different secondary structures in protein structure during the 

simulation. 

Protein Structure Coil β-sheet β-bridge Bend Turn α-helix 5-helix 310-helix 

WT ligand-binding domain 0.63 0.22 0.48 0.00 0.13 0.12 0.02 - 0.02 

W87S mutant 0.62 0.23 0.46 0.01 0.12 0.14 0.01 - 0.03 

W112R mutant 0.60 0.26 0.45 0.00 0.13 0.13 0.02 - 0.02 

WT transmembrane domain 0.63 0.15 0.00 0.00 0.13 0.21 0.42 0.00 0.08 

C310R mutant 0.58 0.17 0.00 0.00 0.15 0.17 0.41 0.02 0.08 

(Structure = α-helix + β-sheet + β-bridge + turn). 

The average coil percentage in the ligand-binding domain was 22.09%, 22.86%, and 25.85% for 

the WT, W87S, and W112R mutant structures, respectively (Figure S4a). In the transmembrane 

domain, the average coil percentage for the WT and C310R mutant structures was found to be 15.49% 

and 17.28%, respectively (Figure S4b). Secondary structure analysis in the ligand-binding domain 

reveals a significant difference in fluctuation between the WT and W112R mutant structures in the 

coil region residues. Similarly, in the transmembrane domain, a notable difference in fluctuation in 

the coil region can be observed between the WT and C310R mutant structures after approximately 

50 ns of molecular dynamics simulation. 

In the ligand-binding domain, the average percentage of β-sheet was found to be 48.32%, 46%, 

and 44.54% for the WT, W87S, and W112R mutant structures, respectively (Figure S5a). However, 

the average β-sheet percentage in the transmembrane domain was practically 0 (Figure S5b). The 

secondary structure analysis in the ligand-binding domain demonstrates a considerable difference 

in fluctuations between the WT and mutant structures, particularly in the residues of the β-sheet 

region. 

The average β-bridge percentages in the ligand-binding domain were determined to be 0.35% 

for the WT structure, 0.83% for the W87S mutant structure, and 0.28% for the W112R mutant 

structure (Figure S6a). In the transmembrane domain, the β-bridge percentages were found to be 

0.03% for the WT structure and 0.04% for the C310R mutant structure (Figure S6b). 

The average percentages of bend were similar among the WT, W87S mutant, and W112R mutant 

structures in the ligand-binding domain, with values of 12.69%, 12.11%, and 12.65%, respectively 

(Figure S7a). In the transmembrane domain, the average bend percentages were 12.85% for the WT 

structure and 14.75% for the C310R mutant structure (Figure S7b). Notably, the C310R mutant 

structure exhibited a significant increase in fluctuation in the bend region residues during the first 

30 ns compared to the WT structure in the ligand-binding domain. 

Regarding the average turn percentages, the ligand-binding domain showed values of 12.10% for 

the WT structure, 14.06% for the W87S mutant structure, and 13.43% for the W112R mutant 

structure (Figure S8a). In the transmembrane domain, the turn percentages were determined to be 

20.67% for the WT structure and 16.60% for the C310R mutant structure (Figure S8b). Notably, there 

were significant differences in fluctuation between the WT and three mutant structures in both 

domains within the turn region residues. 

Regarding average α-helix percentages, the ligand-binding domain exhibited values of 2% for the 

WT structure, 1.18% for the W87S mutant structure, and 1.62% for the W112R mutant structure 

(Figure S9a). In the transmembrane domain, the average α-helix percentages were 42.47% for the 
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WT structure and 41.37% for the C310R mutant structure (Figure S9b). Notably, there was a 

considerable difference in fluctuation in the α-helix region residues between the WT and C310R 

mutant structures throughout the molecular dynamics simulation times in the transmembrane 

domain. 

No 5-helix secondary structure was observed in the ligand-binding domain. However, in the 

transmembrane domain, the average percentages of 5-helix were 0.21% for the WT structure and 

1.95% for the C310R mutant structure. 

Lastly, the average 310-helix percentages in the ligand-binding domain were 2.41% for the WT 

structure, 2.93% for the W87S mutant structure, and 1.60% for the W112R mutant structure (Figure 

S10a). In the transmembrane domain, the average 310-helix percentages were 8.24% for the WT 

structure and 7.98% for the C310R mutant structure (Figure S10b). Notably, a decrease in 

fluctuation was observed in the W112R mutant structure compared to the WT structure in the 

ligand-binding domain. Conversely, an increase in fluctuation was visible in the transmembrane 

domain of the C310R mutant structure compared to the WT structure. 

4. Discussion 

This study aimed to identify the most detrimental missense nsSNPs associated with the human 

GABRA6 gene, which encodes the alpha-6 subunit of the GABAA receptor, and to investigate their 

molecular, functional, and structural effects on the protein. It is widely observed that evolutionarily 

conserved regions tend to contain disease-related SNPs. According to the neutral theory of 

evolution proposed by Kimura in 1983, amino acids that differ between species or SNPs that do not 

occur in coding regions of a protein are usually not influenced by natural selection or are under low 

selection pressure [67]. This suggests that such amino acid changes are generally tolerable and have 

minimal impact on protein function. Consequently, these amino acids are considered less mutable 

and more stable. However, nsSNPs occurring in coding regions of human genes can have phenotypic 

effects and may undergo natural selection. Amino acid substitution patterns can provide insights 

into selection patterns in protein-coding genes. An exciting example illustrating this is the 

distribution pattern of disease-related and non-pathogenic mutations in human genes. For instance, 

studies utilizing disease-related mutation data and phylogenetic analysis of multiple species have 

demonstrated that disease-associated substitutions (DAS) occur more frequently in evolutionarily 

conserved regions compared to regions subject to variation. Conversely, silent and polymorphic 

mutations exhibit the opposite trends, being randomly distributed. These patterns support the 

notion that protein-conserved regions are subjected to evolutionary pressure as these amino acids 

are crucial for the normal functioning of a particular gene. Conversely, due to their random 

distribution, silent mutations have minimal impact on organisms and may not be influenced by 

natural selection [68]. Therefore, this study has selected non-synonymous SNPs in coding regions 

for analysis. 

Experimental investigation through wet laboratory techniques can be time-consuming, 

expensive, and resource-intensive. However, prior utilization of bioinformatics tools can determine 

SNPs' molecular, functional, and structural effects on proteins, thereby reducing the preclinical 

stage's time frame and economic costs before further in vivo and in vitro analysis. To predict 

missense nsSNPs, a combination of tools include SIFT for predicting functional impacts based on 

sequence homology, PolyPhen-2 for assessing structural and functional consequences through 
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machine-learning classification, PROVEAN for aligning protein sequences to predict functional 

effects, Condel for combining multiple predictions into a consensus score, SNPs & GO for utilizing 

gene ontology terms in prediction, PMut for evaluating amino acid substitution effects, SNAP2 for 

considering sequence, structural, and evolutionary information, MutPred2 for associating non-

synonymous coding SNPs with diseases, and SNPeffect4.0 for machine-learning-based prediction of 

functional impacts were employed. I-Mutant3.0 and MUpro tools were also used for protein 

stability analysis, ConSurf for evolutionary conservation analysis, and SOPMA and PSIPRED for 

protein secondary structure analysis. Project HOPE was used to predict structural changes between 

mutant and wild residues, such as size, charge, and hydrophobicity value. For 3D structure modeling, 

the Pfam server was employed for domain region identification, the I-TASSER server for 3D structure 

model generation, and the PROCHECK and ERRAT servers for structural validation. Ligand binding 

site prediction was conducted using the FTSite and COACH servers. Finally, molecular dynamic 

simulations were performed for each WT and mutant structure using GROMACS to investigate 

conformational changes in physiological environments, with RMSD, RMSF, Rg, SASA, and DSSP 

values calculated. 

4.1 Missense nsSNPs Prediction 

In this study, 3 most deleterious missense nsSNPs in the human GABRA6 gene coding region 

(Table 1), after analyzing by SIFT, PolyPhen-2, PROVEAN, and Condel tools were identified with high 

confidence scores, which are high-risk missense nsSNPs. 

These selected missense nsSNPs were further analyzed using five tools to study the effects of 

mutations on the protein. Each computational method has different results due to predictions based 

on various databases and algorithms. SNPs & GO and PMut were used to predict disease-related 

missense nsSNPs; SNPs & GO's result consists of three different algorithms; SNPs & GO, PhD-SNP, 

and PANTHER. All 3 missense nsSNPs in the GABRA6 gene (W87S, W112R, and C310R, Table 2) were 

considered deleterious in all 4 algorithms. SNAP2, MutPred2, and SNPeffect4.0 tools were used to 

predict the molecular and phenotypic consequences of selected missense nsSNPs; SNPeffect tool 

predicts SNPs consequence by TANGO (predict aggregation-prone regions), WALTZ (predict amyloid 

forming regions), and LIMBO (predict hsp70 chaperone binding sites). Results of SNAP2 and 

MutPred2 of 3 selected missense nsSNPs in the GABRA6 gene showed that all 3 missense nsSNPs 

have damaging effects on protein structure and function. TANGO analysis showed that the C310R 

variant increases the aggregation tendency of the protein, and WALTZ analysis showed that this 

variant decreases the amyloid propensity of the protein (Table 3). 

4.2 Protein Stability Analysis 

Protein stability is critical for biomolecules' function, activity, and regulation. Missense mutations 

often impair the affected polypeptide propensity for the functional conformation folding and 

decrease the functional conformation stability; that leads to an increase in the proportion of mutant 

polypeptides that exist in a non-functional conformation, and the non-functional conformation is 

more prone to aggregation or degradation than the functional conformation. Any decreased 

stability and incorrect folding are the significant consequences of deleterious missense variants [69]. 

The effects of selected missense nsSNPs on protein stability were estimated by I-Mutant 3.0 and 

MUpro tools by calculating Gibbs free energy change (ΔΔG) of the mutant and wild-type proteins. 
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The ΔΔG values represent the change in free energy of folding between mutant and wild-type 

proteins, indicating protein stability changes upon mutation. ΔG measures the energy difference 

between folded and unfolded states. A positive ΔΔG (>0) signifies increased stability in the mutant 

protein compared to the wild-type, suggesting favorable folding. Conversely, a negative ΔΔG (<0) 

indicates decreased stability, implying less favorable folding. This parameter offers insights into how 

mutations affect protein stability: positive values imply stabilizing mutations, while negative values 

indicate destabilizing ones, aiding in understanding the functional impact of genetic variations on 

protein structure and function [70]. Selected missense nsSNPs in the GABRA6 gene showed 

decreasing protein stability in the mutant types by both tools, except the C310R variant, which 

showed increasing protein stability in the mutant type by I-Mutant3.0 analysis. W87S and W112R 

variants in the GABRA6 gene have ΔΔG values < -1 kcal/mol in both tools, which are expected to 

alter the function and structure of the protein. 

4.3 Evolutionary Conservation Analysis and Ligand Binding Sites Prediction 

Protein conformational changes are essential for the function of proteins. In recent years, some 

important investigations have proposed the structure of complexes that exhibit conformational 

changes upon binding and further understanding these proteins' functions. As more experimental 

work is done to characterize the dynamics of protein interactions, it has become increasingly clear 

that proteins can exist in different conformational states. The flexibility within the protein regions 

allows it to adopt a new conformation and bind ligands with different structures. The proteins' 

ability to adopt several structures allows functional diversity without relying on the sequence 

diversity evolution, which can significantly facilitate the potential to rapidly evolve new functions 

and new structures [71]. Many properties of proteins derive from two opposing factors: flexibility 

and conformation rigidity. Protein molecules need flexibility and rigidity in order to function. 

Flexibility is required for the regulation and function, and rigidity is essential for maintaining globular 

structure. In some proteins, there are flexible local sites that are highly conserved. This indicates 

the relevance of flexibility to the overall stability of proteins. So, flexibility and rigidity in protein 

conformation must be exquisitely balanced [72]. 

ConSurf was used to identify selected missense nsSNPs position in evolutionarily conserved 

regions; FTSite and COACH algorithms were used to predict whether these selected deleterious 

missense nsSNPs are present in protein binding regions. ConSurf results for the human GABRA6 

gene showed that two residues (W87 and W112) located in highly conserved regions (with scores 9) 

and predicted to have structural impacts on the protein, and another residue (C310) predicted as 

buried residue (with score 8). Further analysis using FTSite and COACH algorithms revealed no 

significant deleteriousness in selected missense nsSNPs at binding sites in its two protein domains. 

All the missense nsSNPs that were predicted as highly conserved by the ConSurf server could be 

used in pathogenic SNPs screening because neutral nsSNPs are more frequent in variable regions. 

In contrast, the deleterious nsSNPs are more common in the conserved areas [73]. 

4.4 Protein Secondary Structure Analysis 

According to secondary structure predicting tools of proteins used in this study, 74.61% of amino 

acids sites of GABRA6 protein are located in alpha helices and random coils (Figure 4), which 

corresponds to the evidence from the literature that sites of pathogenic and polymorphic mutations 
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are commonly found to be in alpha helices and random coils regions, and not frequently in beta-

strand areas [74]. Out of 3 amino acid residues corresponding to GABRA6 selected missense nsSNPs, 

SOPMA results indicated one residue (C310) located in alpha helices, and other two residues (W87 

and W112) in random coils; and PSIPRED results indicated W87 residue located in strands, W112 

residue in coils, and C310 residue in helices (Figure S1). 

4.5 Project HOPE Analysis 

Mutations in or near specific amino acids that contribute to the conformation of functional 

spatial are very likely to cause pathology. Missense mutations can cause amino acids to be 

substituted, resulting in size, charge, and hydrophobicity changes, affecting protein folding and 

interactions. According to the project HOPE analysis, mutation-related changes lead to loss of 

interaction or structural disorder, especially in the transmembrane domain. Furthermore, 

introducing or losing hydrophobicity or charge could cause misfolding, loss of interactions, or 

repulsion. As Ser and Arg residues in W87S and W112R mutants are more minor than Trp residue in 

wild-type forms, it may lead to loss of interactions in protein structure. Also, Arg residue in the 

C310R mutant is more significant than the Cys residue in the wild-type form, which may lead to 

bumps in protein structure. The charge of Trp and Cys residues in W112R and C310R mutants were 

neutral, then turned to Arg residues with a positive charge. Whenever the mutations introduce any 

charges, it might cause the repulsion of ligands or other residues with the same charge. In the W87S 

mutant, there is no charge change. The hydrophobicity in these three missense nsSNPs decreased 

compared to the wild-type forms, which might cause hydrophobic interactions to be lost in the core 

of the protein or on the surface (Table S4). 

4.6 3D Structure Modeling 

Pfam server was utilized for domain region identification in GABRA6 protein; then, selected 

missense nsSNPs positions were located in different domains (Table 5). After generating 3D 

structure models by I-TASSER server and quality validation of predicted models by PROCHECK and 

ERRAT servers, PyMol software was used to visualize the 3D structural changes in the wild and 

mutant protein structures; the differences in the structures between the wild type and mutant type 

which visualized by PyMol software and 2D schematic structures from project HOPE proved the 

pathogenic impact of these deleterious missense nsSNPs on the protein (Figures 5 to 7). 

4.7 Substitution Effects on Structure Via Molecular Dynamics Simulations 

We conducted molecular dynamics simulations to investigate the potential deleterious effects of 

selected mutations on the protein. Specifically, we performed 100 ns simulations to examine these 

mutations' impact on the protein's structural dynamics. Molecular dynamics simulations probe the 

structural dynamics and stability of both wild-type and mutant proteins, shedding light on how 

mutations impact protein conformation, stability, and function. These simulations provide intricate 

atomic-level details, facilitating comprehension of disease mechanisms. 

In the case of the W87S mutant, the RMSD value was consistently higher during most of the 100 

ns simulation, particularly in the first 50 ns. This suggests that this mutant is likely to destabilize the 

protein structure compared to the WT. Although the RMSF value remained relatively constant in 
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most regions, it was higher in certain areas, indicating a potential loss of stability in the protein 

structure. Additionally, the Rg value was slightly lower throughout the simulation, which may 

contribute to an increase in the strength of the protein structure. Furthermore, the SASA value was 

lower than the WT and W112R mutant structures, indicating that the W87S mutant exhibits the 

highest level of stability among these variants. 

For the W112R mutant, the RMSD value consistently remained higher throughout the entire 

simulation, especially in the first 20 ns and the last 30 ns. This suggests that this mutant is likely to 

destabilize the protein structure compared to the WT. Similarly, the RMSF value was higher in 

specific regions, indicating a potential loss of stability in the protein structure. Moreover, the Rg 

value was higher throughout the 100 ns simulation, suggesting a possible decrease in the strength 

of the protein structure. The SASA value of the W112R mutant was the highest among the WT and 

mutant structures, indicating that this mutant is likely to be the least stable among them. 

In the case of the C310R mutant, the RMSD value consistently remained much lower throughout 

the simulation, suggesting that this mutant is more likely to stabilize the protein structure than the 

WT. The RMSF value showed higher and lower variations than the WT, indicating the possibility of 

both stability loss and gain in the protein structure. The Rg value was lower throughout the 

simulation, particularly after 30 ns, suggesting a potential increase in the stability of the protein 

structure. Additionally, the SASA value was lower than the WT structure, indicating that this mutant 

may cause a loss of stability in the protein structure. 

We conducted secondary structure analyses to understand the disruption in secondary 

structures during the simulation. We observed significant differences in coil, β-sheet, bend, turn, α-

helix, and 310-helix regions for the mutant types compared to the WT structures, as shown in Figures 

13 and 14. The results revealed that the total number of secondary structures involved in forming 

secondary structures is higher in the WT compared to all mutant types. 

Specifically, compared to the WT, the W87S and W112R mutants exhibited a decrease of 2.32% 

and 3.78% in β-sheets and turns, respectively, and an increase of 1.96% and 1.33% in β-sheets and 

turns, respectively. The W112R mutant also showed a reduction of 3.76% in coils. On the other hand, 

the C310R mutant displayed an increase of 1.79% in coils, 1.9% in bends, and 1.74% in 5-helices, 

along with a decrease of 4.07% in turns, compared to the WT. These alterations in secondary 

structures in the mutant types can influence the tertiary structure of the protein and potentially 

lead to changes in its three-dimensional structure or instability. 

Furthermore, the analysis revealed that in the W87S and W112R mutants, the amino acids 

removed from the secondary structure (Try) reduced β-sheets and converted to turn and coil 

structures. Conversely, the C310R mutant had no significant preference for conversion to any 

specific structure, as turns were reduced and converted to 5-helices, coils, and bends. Overall, the 

turn structure exhibited the most significant changes in the mutated types among the secondary 

structures. 

In conclusion, our molecular dynamics simulations suggest that the selected mutations can 

potentially affect the stability and secondary structure of the protein. The W87S and W112R 

mutants are likely to destabilize the protein structure, while the C310R mutant may contribute to 

its stabilization. These findings provide valuable insights into the impact of these mutations on the 

protein's structural dynamics and can aid in further investigations and understanding of their 

functional implications. 
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Although the research's simulation yielded insightful outcomes, certain constraints need 

acknowledgment. Firstly, the analysis was confined by a limited scope of reported missense nsSNPs, 

lacking verification through laboratory experiments. Additionally, the prediction of missense nsSNPs 

relied solely on publicly available data, hindering access to comprehensive clinical or genetic 

information. The study's focus on the GABRA6 gene's coding region restricted the generation of 3D 

protein structures using I-TASSER, potentially overlooking crucial amino acid positions. Furthermore, 

the simulation's duration may have been insufficient for capturing comprehensive system behavior, 

impacting the depth of the insights obtained. Lastly, the reliance on the parameters of the Amber 

ff99SB protein force field introduces potential biases in the results, suggesting the need for caution 

in interpretation. Given these limitations, complementing the study with wet laboratory 

experiments is advisable to validate and strengthen the findings. 

5. Conclusion 

This study aimed to investigate the functional and structural effects of missense nsSNPs in the 

human GABRA6 gene using advanced in-silico prediction tools. While experimental methods are 

more reliable for discerning deleterious nsSNPs, conducting repeated experiments on all pathogenic 

mutations is time-consuming. The approaches employed in this study provide evidence of the 

diverse effects of mutations, which can aid in characterizing their pathogenicity. Notably, three high-

risk missense mutations in the GABRA6 gene were identified, exhibiting the most detrimental 

impacts on protein structure and function. However, it's essential to recognize the limitations of our 

study, particularly the lack of experimental validation and the uncertain significance of these 

variants in clinical and genomic databases. These missense nsSNPs may have the potential to be 

considered as diagnostic markers or drug targets for epilepsy and other neuropsychiatric disorders. 

Consequently, future experimental designs can incorporate this in-silico data to analyze the 

biological context. To explore avenues for mitigating the effects of these three high-risk mutations 

in the mutated protein, it is suggested that research, such as targeted mutagenesis in vitro or animal 

models, be conducted to modify the functional or structural consequences of the mutations. 
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1. Figure S1: PSIPRED analysis of GABRA6 gene residues. The black boxes indicate the most 

deleterious missense nsSNPs. 

2. Figure S2: The first predicted 3D structure model of wild-type (A), the result of PROCHECK 

server (B), and the result of ERRAT server (C) for the ligand-binding domain. 

3. Figure S3: The first predicted 3D structure model of wild-type (A), the result of PROCHECK 

server (B), and the result of ERRAT server (C) for the transmembrane domain. 

4. Figure S4: coil secondary structure comparison between WT and mutant structures. 

5. Figure S5: β-sheet secondary structure comparison between WT and mutant structures. 

6. Figure S6: β-bridge secondary structure comparison between WT and mutant structures. 

7. Figure S7: bend secondary structure comparison between WT and mutant structures. 

8. Figure S8: turn secondary structure comparison between WT and mutant structures. 

9. Figure S9: α-helix secondary structure comparison between WT and mutant structures. 

10. Figure S10: 310-helix secondary structure comparison between WT and mutant structures. 

11. Table S1: All the missense nsSNPs in the GABRA6 gene. 

12. Table S2: Prediction of deleterious missense nsSNPs by four tools (SIFT, PolyPhen-2, PROVEAN, 

and CONDEL) in the GABRA6 gene. 

13. Table S3: Detailed output of MutPred2 tool for the three most deleterious nsSNPs in the 

GABRA6 gene. 

14. Table S4: Prediction of structural effects of the three most deleterious nsSNPs in the GABRA6 

gene by project HOPE. 

15. Table S5: Predicted ligand-binding sites by FTSite. 

16. Table S6: Predicted ligand-binding sites by COACH. 
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