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Abstract 

Breast cancer (BC) is the most common cause of cancer-related death and is the malignancy 

most frequently diagnosed in females worldwide. BC incidence is predicted to continue 

increasing worldwide. Without interventions, annual new cases will reach over 3 million by 

2030. Genetic abnormalities account for almost 70% of all BC cases worldwide. Biological 

pathways implicated include non-coding RNAs (ncRNAs). MiRNAs are small non-coding RNA 

molecules that play a role in post-transcriptional regulation of gene expression. They can 

function as either tumor suppressors or oncogenes, and their role depends on the specific 

miRNA and target genes affected. The research on miRNA-based cancer treatments has 

yielded promising results. Depending on recent data, the goal of this review was to summarize 

the mechanisms that explain the role of some miRNAs in BC pathogenesis and drug resistance. 
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However, highlighting the areas needing further exploration and more research is required 

before using microRNAs in clinical settings. 
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1. Introduction 

Cancer is characterized by uncontrollable cell growth and invading other body tissues. Malignant 

tumors are another name for cancerous tumors. Benign tumors do not spread or invade near tissues. 

In the case of benign tumor removal, they rarely reoccur, whereas cancerous tumors do on occasion. 

Benign tumors can grow to be quite large at times, but some can cause severe symptoms or be fatal, 

such as benign tumors in the brain [1, 2]. 

Breast cancer (BC) is known as a type of cancer that starts in the breast. It starts in one or both 

breasts and occurs almost entirely in women, but men can get BC, too. Breast cancers can develop 

in many locations within the breast [3]. Breast cancer remains the most commonly diagnosed cancer 

in women worldwide. In 2020, an estimated 2.3 million new cases of BC were diagnosed globally [4, 

5]. Younger women are being diagnosed at increasing rates, potentially attributed to factors such 

as obesity, alcohol consumption, and reproductive patterns [6, 7]. In the present time, many 

therapeutic regimens for BC were developed can be enumerated as the following: 

• Surgery, which is the primary treatment for localized BC, is the surgical removal of the tumor 

via lumpectomy or mastectomy. It aims to remove all cancer from the breast and nearby 

lymph nodes [8, 9]. 

• Chemotherapy is used to treat many types of BC, especially when cancer has spread. Common 

chemodrugs include anthracyclines, taxanes, 5-FU, and cyclophosphamide, which are given 

before or after surgery [10, 11]. 

• Radiation therapy is given after lumpectomy to destroy any remaining cancer cells and reduce 

the risk of recurrence. External beam radiation is directed at the breast or chest wall [12, 13]. 

• Hormonal therapy is used for hormonally-responsive cancers like ER+ or PR+, for example, 

tamoxifen and aromatase inhibitors (e.g., anastrozole, letrozole, exemestane). Given for 5-10 

years after initial treatment [14]. 

• Targeted therapy that targets specific molecules involved in cancer growth. Examples are 

trastuzumab for HER2
+ cancer, palbociclib, and ribociclib for ER+/HER2

- metastatic disease [15]. 

• Immunotherapy is a treatment approach that uses drugs, such as atezolizumab and 

pembrolizumab, to help the immune system better recognize and destroy cancer cells [16, 

17]. 

• Combination therapy uses multi-modality treatment involving a combination of the above 

approaches depending on cancer stage, grade, and receptor status. The goal is to achieve the 

highest possible effectiveness in treatment while keeping the side effects within acceptable 

limits [18]. 

Our understanding of the biological regulation of genetic material has advanced significantly over 

the last two decades. The genome has 2% protein-coding genes and more than 90% non-coding 
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protein genes. Protein-coding genes undergo translation into proteins following transcription to 

RNA. Non-coding protein genes are transcribed but not translated into proteins [19]. Non-coding 

RNA is essential for genetic regulation. miRNAs are non-coding RNAs that are crucial in numerous 

diseases [20]. 

MicroRNA, regarded as a non-coding RNA, was discovered in 1993 in the nematode 

Caenorhabditis elegans. It is a member of the endogenous small non-coding RNA family. It is 

composed of ~22 nucleotides [21]. They participate in the posttranscriptional regulation of gene 

expression through one of two mechanisms: mRNA translation suppression or mRNA degradation. 

miRNA target sites are found in the 3'-UTR of more than 60% of human protein-coding genes. As a 

result, those genes are regulated by miRNA [22]. According to the miRNA database, over 1000 

miRNAs have been identified in the human genome. Those miRNAs regulate 1 to 5% of human gene 

expression. As a result, miRNAs are one of the most numerous classes of genomic regulators [23]. 

One of the earliest studies discussing the relation of miRNAs and breast cancer is the work by 

Costinean, Sandhu, and colleagues from the Croce lab, who reported the first in vivo evidence 

implicating the overexpression of a miRNA in cancer. They found that miR-155 directly caused a 

leukemic phenotype. The following year, the Slack group reported that a single oncogenic miRNA, 

miR-21, was enough to cause neoplastic development in a mouse model with no predisposing 

mutations. These findings suggested that tumors could become addicted to miR-21, similar to the 

phenomenon of addiction to oncogenic proteins [24-26]. 

In a review by Lu et al. (2005), the authors reported the differential expression of miRNAs in 

breast cancer. They demonstrated that miRNAs could perform their function as oncogenes or tumor 

suppressors. They also discussed the potential of miRNAs as diagnostic and prognostic markers in 

BC therapy [27, 28]. So, in this review article, we will discuss some miRNAs' role in BC pathogenesis. 

2. The Biogenic Pathway of miRNAs 

Two main pathways exist for generating miRNAs from genetic sequences in the genome (see 

Figure 1). 

 

Figure 1 Biogenic pathways of miRNAs. 

2.1 Canonical/non conical Pathways of miRNA Biogenesis 

miRNA genes are transcribed by RNA polymerase II into long primary miRNA transcripts (pri-

miRNAs) that can be several kilobases long. In the nucleus, the pri-miRNA is cleaved by the Drosha 
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RNase complex into a 60-70 nucleotide stem-loop precursor miRNA (pre-miRNA). The pre-miRNA is 

then exported from the nucleus into the cytoplasm by Exportin-5. Dicer cleaves off the loop in the 

cytoplasm, leaving a short double-stranded miRNA/miRNA* duplex around 22 nucleotides long. One 

strand of the duplex is associated with the RNA-induced silencing complex (RISC) to regulate target 

mRNAs [29, 30]. 

2.2 Non-Canonical/Mirtrons Pathways 

Some miRNAs are situated within the introns of genes that encode proteins. The splicing 

machinery spliced and debranched the intron, generating a pre-miRNA-like structure without the 

involvement of Drosh. This pre-miRNA is then exported and processed similarly by Dicer/RISC [31]. 

So, miRNAs predominantly undergo canonical nuclear processing by Drosha and Dicer, but a 

minor fraction uses the non-canonical mirtron pathway dependent on splicing alone. Both 

ultimately produce mature functional miRNAs incorporated into RISC. 

3. Breast Cancer and Micro-RNAs 

Because of their stability in blood and differential expression in different tissues and diseases 

(Table 1), miRNAs have received much attention as cancer biomarkers. There is also the option of 

repeating measurements in a non-invasive manner. The underlying miRNA's mechanisms of high 

stability in an RNAase-rich environment are still unidentified. Two hypotheses about how miRNAs 

in circulation protect themselves against degradation are reported. The first hypothesis proposes 

that miRNAs are found in apoptotic bodies, microvesicles, lipoproteins, lipids, or exosomes [32, 33]. 

The second hypothesis proposes that miRNA is present in protein complexes. Almost all circulating 

miRNAs were recently discovered with protein complexes co-fractionated and bound to Argonaute 

proteins, indicating that they remain stable in circulation even when removed from the exosome 

[34, 35]. 

Several studies have discovered differences in miRNA expression in BC patients versus healthy 

subjects in blood or tissue. They suggested they could be used as predictive, prognostic, or 

diagnostic biomarkers. miRNA profiling in circulation has been proposed as a novel technique for 

detecting BC in the early stages [36]. A pilot study proposed that changes in circulating miRNA 

concentrations (up-or-down-regulation) could be used as markers in early detection of BC [37]. 

Furthermore, some miRNAs, such as miR-21 overexpression, have been linked to an advanced stage 

of the tumor, lymph node metastasis, and poor survival [38]. Some miRNA expression levels, such 

as miR-375 and miR-9, were strongly associated with ER+ BC. Other miRNAs' expression levels 

changed after treatment [39-41]. A different type of cancer was found to have higher miR-21 

expression levels. When comparing BC patients to healthy subjects, researchers discovered 

increased miR-21 expression in their serum. It was found to be more abundant in primary breast 

cancer tissues and breast cancer cell lines [42, 43]. 

MicroRNA-375 (on chromosome 2q35) was discovered as a -cell regulator for function and 

development and insulin secretion in pancreatic islets by targeting the PDK-1 and MTPN genes [44]. 

According to additional research, miRNA-375 is involved in multiple types of cancer by targeting 

several important genes such as AEG-1, YAP1, and IGF1R [45]. miR-375 has been proposed to 

function as an oncogene or a tumor suppressor, depending on the specific gene targets in various 

cancer types. However, its role in BC remains a topic of debate [46]. 
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miR-155 expression levels are consistently upregulated in breast tumor samples, acting as an 

anchor-miRNA. miR-155 has been linked to clinical markers, aggressive tumors, and decreased 

survival in BC patients. Some contradictory findings have been reported, such as the variable 

association of miR-155 with hormone receptor status [47]. It is also unclear whether miRNA-155 

causes cancer or promotes its progression. miR-155 has been shown in a mouse model to transform 

B-cells, but only in breast cells has it been shown to enhance cancerous properties. More research 

is needed to fully comprehend the significance of elevated miR-155 levels in BC [48]. 

In BC xenograft models and cell lines, miRNA-155 promotes tumor growth and cell proliferation, 

inhibits apoptosis, and mediates TGF-driven EMT. Since miRNA-155 levels are elevated in invasive 

tumors and BC metastases, the role of miRNA-155 in EMT holds promising therapeutic potential 

[49]. Also, many miRNAs play regulatory roles in BC, which can be summarized by the following: 

• Control of cell proliferation: miRNAs regulate genes involved in cell cycle progression and 

replication. Deregulation contributes to the uncontrolled growth of cancer cells [50]. 

• Regulation of apoptosis: Both pro- and anti-apoptotic genes are targeted by miRNAs, 

affecting susceptibility to programmed cell death. Misregulation promotes the survival of 

damaged cells [51]. 

• Modulation of invasion and metastasis: miRNAs influence EMT, extracellular matrix 

degradation, angiogenesis, and other processes involved in cancer cell invasion and spread to 

other organs [52]. 

• Metabolic reprogramming: Emerging role in regulating cancer cell metabolism at the post-

transcriptional level to support bioenergetic and biosynthetic demands of rapid proliferation 

[53]. 

• Stem cell regulation: miRNAs are implicated in the self-renewal and differentiation of normal 

and cancer stem cells, believed to drive tumor initiation and recurrence [54]. 

• Treatment response: Aberrant miRNA levels modulate sensitivity to chemotherapy, 

radiotherapy, hormonal, and targeted agents. May influence the acquisition of resistant 

phenotypes [55]. 

• Epigenetic and genetic regulation: Reciprocal regulatory interactions between miRNAs and 

other epigenetic/genetic factors form complex networks governing breast cancer 

pathogenesis [56]. 

• Immune modulation: Impact anti-tumor immunity through local and systemic effects on 

immune cell populations, cytokine production, and immune checkpoints [57]. 

• Tumor microenvironment: Crosstalk with stromal cells influences multiple processes like 

angiogenesis and tumor-promoting inflammation [58]. 

So, in summary, miRNAs control numerous facets of breast cancer biology at the post-

transcriptional level. Their deregulation has wide-ranging impacts on disease behavior and 

outcomes. 

4. The Dual Role of miRNAs in BC 

MicroRNAs can act as oncogenes and tumor suppressors (Table 1) in BC development and 

progression. Their role depends on the specific miRNA and target genes affected. Oncogenic miRNAs, 

also known as oncomiRs, are frequently upregulated in BC. They promote tumor growth and 

metastasis by repressing tumor suppressor genes. Examples include the miR-17-92 cluster and miR-
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21, which target apoptosis, proliferation, and metastasis genes. Other miRNAs can function as 

oncogenes by negatively regulating the expression of tumor suppressor genes, and upregulation of 

these miRNAs inhibits anti-cancer genes, again promoting tumor growth and progression for 

examples, miR-21, miR-155, miR-10b, miR-373, and miR-520c [59-61]. 

Tumor suppressor miRNAs are commonly downregulated in BC, and their decrease contributes 

to uncontrolled cell growth. For instance, the miR-205/200 families typically suppress oncogenes 

such as RAS, HER2/neu, and ZEB1/2. Low levels of these miRNAs deactivate tumor suppressive 

pathways [62, 63]. 

Depending on tumor stage and subtype, the same miRNA can function as both an oncogene and 

tumor suppressor. For example, high miR-10b promotes metastasis, but low levels also contribute 

to invasion and progression in some subtypes. The targets of a given miRNA and the cellular context 

determine whether it drives tumor initiation or suppresses cancer cells [64, 65]. Overall, the precise 

regulatory roles of miRNAs are complex and context-dependent in BC development. Understanding 

their dual functions is important for developing new prognostic biomarkers and miRNA-based 

therapies Table 1. 

Table 1 Changes in miRNA expression in BC. (According to previously reported data by 

other research groups). 

miRNA Detection site Change in miRNA expression 

miRNA-10b 

Whole blood 

It is more prevalent in ER-negative subjects than ER+-

positive subjects but cannot distinguish BC from 

healthy subjects [66]. 

Serum 
↑ When comparing metastatic BC (M1 stage) to 

normal subjects [67]. 

BC cell lines 
BC-M1 and BC-S1 micrometastatic breast cell lines had 

higher levels than MDA-MB231 and GI-101 [67]. 

Metastatic BC 

cells 

↑ It is used as a prognostic marker in metastatic BC 

cells, and if it is elevated in non-metastatic tumors, it 

indicates poor prognosis, metastasis, and invasion [52]. 

miRNA-21 

Serum ↑ Especially stage IV cancer [68]. 

BC tissues ↑ In BC (grade III) than ER-/PR- BC or benign BC [69]. 

BC tissues 
↑ In BC than normal, especially in cases of lymph 

node metastasis [70]. 

BC tissue 

↑ In primary BC tissue with advanced tumor stage and 

lymph node metastasis. It has been proposed as a 

prognostic marker [71]. 

Serum 
↑ In BC and benign BC compared to healthy subjects 

[72]. 

miRNA-155 

Serum 
↑ Can distinguish M0- and M1-patients from normal 

women [73]. 

plasma 
PR+ve tumors have higher expression than PR-ve 

tumors [74]. 

miRNA-195 Whole blood ↑ From stage I to IV [75]. 
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Whole blood 

↑ then ↓ in BC patients post-operatively, levels 

comparable with healthy women following curative 

tumor removal [76]. 

BC tissue and 

cell lines 

↓ works as important inhibitory roles in BC 

malignancy [76]. 

Let-7a BC tissue 

↑ then ↓ in BC patients post-operatively, levels 

comparable with healthy women following curative 

tumor resection [77]. 

Let-7c plasma ↓ In BC in its early stages [78]. 

Let-7d plasma ↓ In the early stages of BC [79]. 

miRNA-589 plasma ↑ In BC at an early stage [80]. 

miRNA-425 plasma ↑ In BC's early stage [81]. 

miRNA-34a Serum 
↑ Can distinguish M1 patients from normal subjects 

[82]. 

miRNA-106a Serum ↑ [83]. 

miRNA-126 Serum ↓ [84]. 

miRNA-199a Serum ↓ [85]. 

miRNA-335 Serum ↓ [86]. 

miRNA-202 Whole blood ↑ Early stage in BC [87]. 

miRNA-148b Plasma ↑ In BC in its early stages [88]. 

miRNA-801 Plasma ↑ Early stage in BC [89]. 

miRNA-9 Plasma  ↑ Linked with ER+ and local recurrence [90]. 

miRNA-375 Serum ↑ Linked with ER+ [91]. 

miRNA-16 Serum ↑ It has been proposed as a marker for prediction [92]. 

miRNA-222 Serum ↑ It has been suggested as a predictive biomarker [93]. 

Let-7b Plasma 
↑ Then, significantly reduced after-surgery removed 

BC [94]. 

Let-7g Plasma ↑ Then ↓, after- surgically removing BC [94]. 

miRNA-20a Serum ↑ In BC or benign BC patients [95]. 

miRNA-125b Serum ↑ Linked to resistance to chemotherapeutics [96]. 

miRNA-195-5p Plasma 
↓ When comparing pretreated BC patients to normal 

women [97]. 

miRNA-96-5p Plasma 
↑ Pretreated BC patients were compared with normal 

women [97]. 

miRNA-505-5p Plasma 
↑ When comparing pretreated BC patients to normal 

women [98]. 

miRNA-125-5p Plasma 
↑ When pretreated, BC patients were compared to 

healthy subjects [99]. 

miRNA-21-5p Plasma 
↑ When pretreated, BC patients were compared to 

normal women [100]. 

miRNA-27a Plasma ↑ In BC patients before chemotherapy [101]. 

miRNA-132 Plasma 
↑ In BC, patients who have already been treated are 

compared with normal women [102, 103]. 
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miRNA-106-5p Plasma 
↑ Compared to normal women, BC patients have 

already been treated [83, 104]. 

miRNA-376c Plasma ↑ In the BC preliminary stage [105, 106]. 

miRNA-495 Plasma 
↓ When comparing BC patients already treated to 

normal women [107]. 

miRNA-27a Plasma ↑ In BC patients before chemotherapy [108, 109]. 

5. MicroRNAs and BC Drug Resistance 

MiRNAs play a critical role in medication resistance. Several miRNAs, including miR-451, miR-

200c, miR-298, and miR-27a, have been found to affect doxorubicin in BC cell lines. Few studies, 

however, have found a link between drug resistance in patients and miRNAs. A recent study, for 

example, discovered that miR-200c was upregulated in chemoresistant patients' BC tissues 

compared to responders [110]. In contrast, other studies using breast cancer tissues found a link 

between low miR-200c expression and poor response to neoadjuvant chemotherapeutics [111]. In 

these cases, the exact mechanism underlying the drug resistance is unknown; however, some clues 

can be identified through cell line studies. Other pathways can influence drug resistance and, as a 

result, be miRNA targets. For example, down-regulation of miR-15a/16 causes an increase in the 

anti-apoptotic protein BCL2 and, as a result, tamoxifen resistance. This occurs due to oncogenic 

HER216's alternative regulation of the miR-15a/16 cluster, found in more than 30% of ER+ tumors 

[112, 113]. As a result, this could explain some patients' poor treatment outcomes. MiR221/222 

cluster, on the other hand, targets the cell cycle inhibitor p27Kip1 to act as an oncogenic miRNA. 

Tamoxifen resistance was linked to low levels of p27Kip1 [114]. Interestingly, The presence of the 

miR-221/222 cluster influences fulvestrant resistance, most likely by targeting the previously 

mentioned protein. MiR221/222 can act as a tumor suppressor and an oncogenic miRNA in this case 

[115, 116]. 

MiR-221/222 levels rise in response to fulvestrant treatment, and it suppresses the growth of 

tumors by targeting the ER. On the other hand, long periods of estradiol deprivation can result in 

constitutively increased expression of miR-221/222, which becomes oncogenic by targeting cell 

cycle inhibitors like p27Kip1 [117, 118]. 

MiR-128a is another hormone-responsive miRNA that is overexpressed in letrozole-resistant cell 

lines and can enhance cell growth and resistance to letrozole by targeting TGF. Inhibition of miR-

128a restores TGF inhibition, leading to increased sensitivity of cells to letrozole. Because miR-128a 

is highly expressed in cells with high hormone levels [119]. In a drug-resistant cell line, MiR-125b is 

indeed upregulated. MiR-125b, in particular, is overexpressed in taxol-resistant cell lines, inhibiting 

taxol's apoptotic effect. Most likely, miR-125b causes this resistance by targeting BAK1, a pro-

apoptotic protein [120, 121]. Concurrent administration of a miR-21 inhibitor and taxol improved 

chemotherapeutic agent toxicity and, as a result, apoptosis in the MCF-7 cell line. This study shows 

that using miRNA inhibitors in some tumors is feasible. However, caution is advised, as is additional 

research into the potential side effects of using miRNAs/anti-miRNAs as a therapy [122, 123]. 

Trastuzumab appears to be influenced by miR-21 in HER2/3 targeted therapy, whereas lapatinib 

and gefitinib appear to be influenced by miR-205 [124, 125]. 
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6. The Future Aspects Concerning Developing Therapeutic Targets of BC 

The role of microRNAs (miRNAs) in developing therapeutic targets for breast cancer is expected 

to evolve, as these small non-coding RNAs play a crucial role in regulating gene expression at the 

post-transcriptional level. miRNAs are involved in the main biological behaviors of tumors, making 

them attractive targets for anticancer drug development [126-128]. Some key aspects of the future 

vision for miRNA-based therapeutics in breast cancer include: 

6.1 Nanotechnology-Mediated Delivery 

Nanoparticles (NPs) loaded with miRNAs have shown promise in precisely targeting and silencing 

oncogenic miRNAs, which could help improve the efficacy of cancer chemotherapy and mitigate its 

associated unwanted side effects [129, 130]. 

6.2 Clinical Trials 

Clinical trials examining the clinical potential of miRNAs as biomarkers for cancer therapy 

diagnosis and prognostication are underway, with some trials focusing on diagnostic miRNAs in 

blood or tissue samples from cancer patients [131]. 

6.3 Improved Drug Strategies 

Ongoing clinical trials are exploring advanced delivery technologies and synthetic RNA molecules 

to enhance the efficacy of miRNA-based therapies [132, 133]. 

6.4 Combination Therapies 

miRNAs could be combined with other therapeutic agents, such as chemotherapy drugs, to 

enhance their effectiveness in treating BC [134, 135]. 

Despite the progress made in miRNA-based therapeutics, there are still challenges to overcome, 

such as the limitations of current detection methods and the need for more efficient and cost-

effective approaches. Overcoming these challenges could pave the way for miRNA detection and 

treatment to enter the clinic smoothly and become a new target for BC treatment [136, 137]. 

7. Conclusion 

MicroRNAs demonstrate a dual role in BC development and progression depending on the 

specific miRNA and context. Both increases and decreases in miRNA expression can promote breast 

tumorigenesis, so targeting specific oncogenic or tumor-suppressive miRNAs holds promise as a 

therapeutic strategy, either by inhibiting oncogenic miRNAs or restoring loss of tumor-suppressive 

miRNA function through supplementation. 
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MRI Magnetic Resonance Imaging 
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