TY - JOUR AU - Caldararo, Niccolo PY - 2022 DA - 2022/01/11 TI - Anatomical Variation, Hominins, Species, and Self-Domestication JO - OBM Genetics SP - 145 VL - 06 IS - 01 AB - The evolution of hominins, members of the zoological tribe Hominini, has been a much-studied topic, and the construction of phylogenetic trees has been the key method in molecular evolutionary studies. How scientists determine the phylogenetic trees are governed by the assumptions they place on the construction of similarities and differences in morphological traits, the differences in the number of base pairs in the genomes, and the number of similar gene clusters that code for traits (haplotypes) or are error sequences (SNPs). Among the several methods employed for the construction of a phylogenetic tree, mathematical methods (utilized for sorting data, including fabrication of algorithms) are the most significant ones; also, the nature of population structuring plays an important role in the evolutionary process. In this paper, I will not only describe the drawbacks of current assumptions in hominin evolution during the Middle Pleistocene era (based on fossil evidence) but also the aspects of brain evolution and the self-domestication of our species. The evolution of the brain is usually associated with an increase in neurons and other types of cells associated with signal processing (connectivity) and memory. Assessing actual neuron counts in fossils is challenging; moreover, new research has shown decreased neuron numbers in the neocortex and demonstrated large counts in the cerebellum, leading to a decreased focus on brain size. The idea of increased brain size in the Pleistocene era without a substantial increase in the evidence of cognitive activity in complex behavior residues might be explained by increased myelination to provide additional insulation in Ice Age conditions and faster transition of signals due to increased competition for reduced food supplies. Other cold-adaptation features can also be noted. Such a model can provide a new approach to assess the apparent brain size reduction in the Upper Paleolithic period. SN - 2577-5790 UR - https://doi.org/10.21926/obm.genet.2201145 DO - 10.21926/obm.genet.2201145 ID - Caldararo2022 ER -