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Abstract  

Plant breeding programs have used conventional breeding methods, such as hybridization, 

induced mutations, and other methods to manipulate the plant genome within the species' 

natural genetic boundaries to improve crop varieties. However, repeatedly using 

conventional breeding methods might lead to the erosion of the gene reservoir, thereby 

rendering crops vulnerable to environmental stresses and hampering future progress in crop 

production, food and nutritional security, and socio-economic benefits. Integrating 

innovative technologies in breeding programs to accelerate gene flow is critical for 

sustaining global plant production. Genomic prediction is a promising tool to assist the rapid 

selection of premiere genotypes and accelerate breeding gains for climate-resilient plant 

varieties. This review surveys the annals and principles of genomic-enabled prediction. 

Based on the problem that is investigated through the prediction, as well as several other 

factors, such as trait heritability, the relationship between the individuals to be predicted 

and those used to train the models for prediction, the number of markers, sample size, and 
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the interaction between genotype and environment, different levels of accuracy have been 

reported. Genomic prediction might play a decisive role and facilitate gene flow from gene 

bank accessions to elite lines in future breeding programs. 
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1. Introduction 

The selection of high-yielding plants to satisfy the continuously growing human population 

dates back to 10,000 years, although the process has been fundamentally modified over the last 

hundred years [1]. Most of the food products available to consumers are produced using modern 

and conventional breeding programs [2]. In conventional plant breeding programs, various 

methods are applied to the natural genetic structure of a species [3] for improving cultivars using 

genes from different plant species. The principles of conventional plant breeding programs are 

based on the development of new plant cultivars using old equipment and involving natural 

events [4]. Additionally, feeding the rapidly expanding world population requires the latest 

agricultural research. According to many researchers, in conventional plant breeding programs, 

desired traits in the plants are expressed without introducing a new gene in the plant [5, 6]. 

Progress in the fields of plant genetics and plant nutrition, as well as advances in the chemical 

industry, have significantly accelerated the advancement of agricultural innovation. The 

development of modified crops and the use of chemical fertilizers and other modern inputs 

significantly increased agricultural productivity in the United States and Europe in the second half 

of the twentieth century [6]. Given that the challenges of climatic change, human population 

growth, decrease in arable land, and pollution are expected to spread to many agricultural areas, 

innovative and cost-effective technologies might play a decisive role in dealing with the problem 

of crop adaptation, especially when global food production is severely limited by agricultural land, 

water, and energy shortages [1, 7, 8]. Successfully breeding conventional plants to improve or 

develop new crop varieties is highly time-consuming, as many phases of crossing, selection, and 

testing need to be performed. Also, traditional plant breeding cannot solve the problems caused 

by intense agriculture and climate change, e.g., improper use of chemical fertilizers along with 

unsustainable farming methods. Therefore, innovative molecular tools, marker-assisted selection 

(MAS), molecular marker-assisted-breeding (MAB), and gene-editing are needed for the rapid 

development of new cultivars to alleviate food scarcity and promote food security [10]. Due to 

several stages of crossing, selection, and testing required in the traditional production of new 

plant varieties, creating a new cultivar might take two decades [9]. Hence, novel molecular 

techniques, integrated with predictions based on the genome, might provide new strategies to 

breed plants more efficiently [10]. In this review, the tenets and privileges of genomic-enabled -

predictions, some of the complexities of applying such -predictions in crop breeding programs, and 

the problems that arise due to the interaction between the genotype and the environment have 

been discussed.  
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2. Plant Breeding Methods 

Plant breeders choose plant varieties with the highest edible quality, followed by cultivation, 

harvesting, and processing, along with the highest resistance to biotic and abiotic stressors [12]. 

Plant breeding approaches are divided into three parts. First, high-yielding and sustainable 

varieties, and those with high-quality oil, in case of rapeseed breeding [11, 12], are selected from 

the naturally occurring organic or conventional varieties. 

Second, controlled pollination in selected plants is performed to recombine desirable genes 

from different parents. Third, molecular techniques are used to select the marker profiles or 

preferred genes to detect any alterations in the genome [12]. In the 1970s plant breeding 

demonstrated a major impact on the accessibility of enhanced varieties of plants for some traits 

such as high-yielding, semi-dwarf varieties worldwide [13]. However, conventional breeding is 

based on phenotypic selection and has less impact on low heritable -multi-genic quantitative 

attributes such as biotic and abiotic stresses, which are significantly affected by gene-environment 

interactions. It is time-consuming, laborious, requires a large area, expensive, has a large 

population size, is less precise, reliable, and requires an immediate, rapid, and more efficient 

selection system [14]. We have discussed important traditional breeding methods, including 

hybridization, doubled haploid breeding, pure line selection, mutation induction, and molecular 

marker-assisted breeding (MAB). 

2.1 Hybridization 

In hybridization programs, plant breeders produce new cultivars with desirable traits of 

different plants by crossing those plants that usually have traits close to that of the new cultivar 

[15]. Hybridization is performed by controlled pollination that might be influenced by artificial 

alternatives [16]. Numerous well-regulated pollination techniques are used to facilitate 

hybridization in five ways, which include the emasculation of bagged flowers and pollination of 

succeeding receptive stigmas, emasculation of the stigmas and instant pollination through induced 

receptivity that is followed by bagging (One Stop Pollination), and pollination using cut styles with 

no bagging and emasculation (Artificially Induced Protogyny) [3, 17]. Carputo et al. [18] reported 

that interspecific crosses with wild relatives resulted in the generation of variants with high 

genetic diversity and resistance against biotic or abiotic stress. For hybridization, significant 

diversity is present in existing combinations without the need for new genes. [3]. During artificial 

hybridization, pollen grains are collected from plants with desirable traits for pollination and 

fertilization, and subsequently, used in plant breeding programs [19] However, sexual 

incompatibility often occurs while producing hybrids and is a challenge that needs to be overcome 

by asexual propagation and in vitro methods, such as protoplast fusion, somatic cell hybridization, 

or embryo rescue [16]. A widely used technique, free from GMO, in crop breeding programs is 

somatic hybridization, which is performed for improving crop yield. Somatic hybridization can 

effectively induce hybrid vigor, through which the hybrid offspring displays greater size, fertility, 

biomass, and enhanced resistance to diseases. However, certain genomic shocks in progenies, e.g., 

chromosomal rearrangements, alterations in genome size, transpositions, and other chromatin 

results, might interfere with somatic hybridization [20]. Several plants, including citrus, benefit 

from the use of molecular markers during somatic hybridization [21]. Somatic hybrids were used 

as pollen parents in interploidy sexual crossing. As a result, high-quality triploid plants were 
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obtained using flow cytometry, embryo rescue, and SSR marker analysis [21]. According to Bashir 

et al. [20], hybridization could alter the somatic mutation rates in plants. 

2.2 Doubled Haploid Breeding 

Doubled haploid breeding involves the production of haploid plants by culturing anthers, 

microspores, ovaries, and interspecific hybridization, followed by doubling the chromosome 

numbers with colchicine treatment to obtain diploid plants, in which, consequently, every gene is 

homozygous [22]. Producing completely homozygous plants in the first generation is a very 

important step in plant breeding programs [23] since it reduces the breeding time and the cost of 

developing a new cultivar [24, 25]. Lolium perenne L. and other essential forage species have been 

effectively bred using double haploids [26]. However, when creating double haploids, cost 

efficiency, stabilization of rare and useful alleles, retention of genetic diversity in their lines, as 

well as distinctiveness, uniformity, and stability of new species must also be considered. Double 

haploids possess both negative and positive effects regarding the above-mentioned conditions 

[26]. Rare alleles, obtained by producing doubled haploids, might control various essential 

characteristics in plant breeding. The double haploid method assists while crossing for desirable 

genotypes, thus resulting in hybrids with chromosome sets from both parents. Recombination 

leads to the development of novel genomic amalgamations through the formation of gametes that 

could then be corrected during the induction of doubled haploids. Therefore, a reasonable level of 

genetic diversity is needed to preserve rare alleles for future breeding purposes [27, 28]. Doubled 

haploids could be used in conjunction with molecular breeding to enhance gene frequencies and 

strengthen qualitative traits. By adding markers to haploid plants, highly efficient molecular 

breeding can be achieved by developing doubled haploids [29, 30]. As an example, for haploid 

recognition, novel haploid inducers were obtained by combining novel molecular marker systems, 

such as the high oil marker and the red root marker, that were used to create a doubled haploid 

technique from germplasm [31]. 

2.3 Pure Line Selection 

Self-pollinated plant species are usually improved via pure line selection [1]. Due to self-

pollination, the genetic structures of pure line varieties (inbred lines) are homogeneous and 

homozygous [32]. They have a very narrow genetic base and are mostly used as parents while 

developing new cultivars [3, 15, 16]. Pure line selection is rapid and easy to perform, especially for 

selected genotypes obtained from a variable population [33]. Farmers perform pure line selection 

and then multiply the plants as a new cultivar under natural conditions [34]. To determine the 

performance of the selected plant, progeny testing is essential in pure line selection. If the 

selected line is superior, the population is released as a variety [34]. Pure line selection was used 

effectively to assess genetic and phenotypic components and select preferable genotypes that 

expressed traits of interest that performed well in a heterogeneous population of soybean 

cultivars [35].  
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2.4 Mutation Breeding 

Plant breeders have been using mutation breeding to improve plants since the 1920s [36]. 

Thereafter, most induced mutations were performed during the 1950s and the 1960s, and to date, 

a significant number of mutant plants have been developed for desired modified traits [37]. 

Induced mutations have been effectively used to improve plants. Several mutants have also been 

detected and reported in many countries such as China, India, the USA, Japan, the Netherlands, 

and Russia. Induced mutants are produced randomly; therefore, an accurate prediction of the 

desired outcome is relatively difficult [38-40]. However, the genomic aspects of mutations, from a 

molecular point of view, could be useful in selecting the appropriate mutation induction 

techniques for gene function analysis. Thus, creating plant mutant reservoirs could help basic and 

applied research, e.g., gene mapping and functional genomics [40].  

2.5 Problems While Breeding for Crop Improvement and Sustainability 

Scientists have focused on being able to feed the ever-growing global population for a long 

time, but in recent years, sustainable food production has received increased attention due to the 

impact of climate change [41, 42]. Fortunately, the development of improved cultivars has led to 

faster global food production, which has led to a steady decline in food prices. The continuous 

production of high levels of biomass to minimize external inputs of non-renewable resources such 

as water, fuel, agricultural land, and fertilizers, to potentially reduce greenhouse gas emissions 

during cultivation, along with the production of plants that have high resistance to biotic and 

abiotic stressors that are well-adapted to potential climate change, are some of the challenges for 

future plant growers [42, 44]. Plant breeding programs should be one of the highest priorities of 

the government to ensure the availability of high quality and quantity of food worldwide [43]. 

Hybridization using different parents, and the subsequent selection following consecutive 

generations, has several limitations, including a long period required to develop novel varieties 

and inadequacies in multifaceted traits with low heritability [44]. 

Thus, to overcome the limitations of conventional plant breeding methods, molecular marker-

assisted breeding techniques, which require less phenotypic information for indirectly selecting 

desirable traits in plants, can be used [45]. Performing whole-genome predictions is a good 

strategy to conduct phenotypic selection or marker-assisted breeding [46]. 

3. Molecular Marker-Assisted Breeding 

Plant breeders face two main challenges: efficient selection and accelerating the breeding 

phase. Jiang [47] proposed a new method for improving plants using molecular marker-assisted 

breeding (MAB). Molecular breeding was shown to greatly enhance selection efficacy, elevating 

genetic diversity, explaining the genetic architecture, and adjusting gene function [48]. Marker-

assisted selection (MAS) can be used in genotyping and choosing complementary parents for early 

crossing, and selecting superior genotypes. For this, tissue culture allows the production of 

disease-free stock plants with a high rate of multiplication, which plays a critical role in the crops’ 

yield and quality [49]. Marker-assisted selection could improve the efficacy of plant breeding [46]. 

Using F2 and backcross populations, recombinant inbred lines, and doubled haploids, molecular-

assisted breeding allows the selection of various characters of interest [50]. Genomic prediction 
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and selection are beneficial for the attributes that are governed by fewer quantitative trait loci 

(QTLs). Genomic prediction patterns compute the impact of all molecular markers at all loci and 

capture small QTL effects [46, 51]. The invention of various marker-QTL systems has improved the 

quantitative attributes of economic importance. Although QTLs can successfully detect simple 

traits, there are no reports of them improving complex quantitative attributes. Due to the 

interaction between QTL and the environment, finding the same QTL across multiple 

environments seems difficult. Due to low rates of recombination in chromosomes, linkage analysis 

for QTL mapping in parental populations has failed. As the cost of high-throughput SNP (single 

nucleotide polymorphism) genotyping for QTL is low, it is possible to use high-density SNP arrays 

to develop statistical models for predicting marker-trait associations, which depend on the genetic 

architecture of the predicted traits [52]. 

4. Benefits and Challenges of Genomic-Enabled Prediction in Plant Breeding 

The increase in crop productivity is due to both conventional and marker-assisted breeding 

(MAB) programs [11]. High-density single nucleotide polymorphism markers are used in genomic 

prediction across the whole genome to predict genetic values beneficial to plant breeding 

programs [46, 53-55]. They not only improve selection efficiency but also reduce breeding costs 

and unify breeding methods, biological discovery, as well as, tools and methods of selection [56]. 

This method, besides helping in identifying plants with complex traits, also makes plant breeding 

programs extremely efficient [14]. Meuwissen et al. [53] presented the idea of genomic selection 

as an efficient technique to predict complicated traits in plants and animals and has been widely 

used in breeding crops. The use of genetic prediction has allowed the selection of new genotypes 

in plant breeding programs based on genomic data without the need for phenotyping [52, 57]. 

However, it requires the construction of a prediction pattern by integrating marker information 

with a phenotypic database in a model training step [53] and has led to fundamental changes in 

plant breeding programs [58]. Genetic progression is improved by genomic selection in crop 

breeding programs via phenotypic predictions to select ideal phenotypes, based only on their 

genomic information [59]. 

The cost of genotyping, especially for next-generation sequencing, is usually much lower than 

phenotyping [46, 54]. Moreover, the use of genomic prediction does not acquit phenotyping but 

replaces many of the steps of selection that are associated with phenotyping, based on whole-

genome prediction [46, 54]. Most studies on genomic prediction have preferentially predicted the 

validation set using cross-validation to predict the validation complex [46, 54]. However, two 

factors, which include the cost of genotyping and the ambiguous protocols to efficiently apply 

genome selection restrict the use of genomic prediction in breeding programs. Genomic 

prediction focuses on two procedures, A) predicting additive impacts in the early generations of a 

breeding process for a fast selection cycle at a short interval and B) predicting the perfect genetic 

values of individuals, considering both additive and non-additive effects, to estimate the efficiency 

of the desired cultivars [52]. Generally, genetic gains are enhanced by increasing the selection 

intensity and boosting the breeding cycle using genomic prediction [60-62]. 
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5. Accuracy of Genomic Prediction and Genomic Selection-Assisted Genetic Gains 

Several genetic and statistical limitations make genomic prediction inefficient. These limiting 

factors arise from the size and diversity of the training population and the heritability of the 

attributes to be predicted. Statistical limitations arise due to the high dimensionality of marker 

data, where the number of markers is considerably more than the number of observations and 

due to the multicollinearity among markers, as adjacent markers are highly correlated [52]. 

Different levels of genomic prediction accuracy have been reported in crops, which depend on the 

evaluation of the prediction problem, character heritability, the correlation between the 

individuals to be anticipated and those applied to train the patterns for prediction, the number of 

markers, sample size, and the genotype-environment interaction [62]. Crossa et al. [62] performed 

genetic predictions for maize and wheat. They concluded that pedigree (population structure) 

accounted for a significant portion of prediction accuracy when the assessment for the global 

population demonstrated a predictive problem. The precision of genomic prediction might be 

enhanced by incorporating data from the associated environments while modeling the 

relationship between genotype and environment. 

Several studies have reported the usefulness of genomic prediction in plant breeding programs 

[63-65]. Genomic prediction can improve selection, lower costs, and provide a way to combine 

reproductive techniques and biological discovery [56]. Some important characters, including grain 

yield, biomass accumulation, resistance against diseases, and events that are involved in the 

flowering processes under various environmental conditions, have been predicted with various 

degrees of accuracy, which depend on the hereditability of the character, the size of the training 

population, the number of markers, the correlation between the training and testing cycles, and 

the interaction between genotype and environment [14, 46, 52, 60, 61, 66-73]. Windhausen et al. 

[60] applied marker effects, estimated in 255 diverse maize (Zea mays L.) hybrids, to anticipate 

grain yield, anthesis date, and anthesis-silking interval within the diversity panel and testcross 

progenies of 30 F2-derived lines from each of five populations. They reported that predictions 

were made based on the differences in the average performance of breeding populations and 

were less related to the relationship between training and accreditation sets or linkage 

disequilibrium, with causal variants underlying the predicted traits. Potential uses of genomic 

prediction in maize hybrid breeding include having a clear breeding event in which genomic 

prediction should be applied, a detailed analysis of the population structure before cross-

validation, and large training sets with a strong genetic relationship to the validation set [60]. In 

maize, up to three generations are conceivable per year, selection speed is high and, consequently, 

genomic selection is very promising for breeding programs [61]. As a cost-effective and efficient 

breeding approach, genomic selection and prediction can have small and large impacts on genetic 

factors, and therefore, achieve higher genetic gains for complex traits, such as the yield of the oil 

content in groundnut [73]. Integration of genomic prediction with rapid generation advancement 

technology, such as speed breeding, can significantly and positively impact breeding programs, 

including those for maize and wheat [62, 72], groundnut [73], sorghum [74], and apple [75]. Roth 

et al. [75] identified key genetic parameters to consider while performing genomic prediction for 

the texture of apples. Zhang et al. [76] provided beneficial information to maize breeders 

regarding genomic selection activities for future breeding programs. There are few reports on 

genomic prediction for some traits of soybean, including seed yield [77], seed weight [78], and 
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resistance to biotic stresses [79, 80]. Recently, Haikka [81] reported the applicability of genomic 

prediction in the breeding program of oat and barley. The study predicted that the yield of those 

crops was improved by using multi-trait prediction. Haikka [81] also estimated the benefits of 

trait-assisted prediction for oat and barley, and the prediction of grain yield was improved by 4% 

and 9%, respectively, with multi-trait prediction, and by 9-14% and 11-28% with trait-assisted 

prediction, compared to the prediction of grain yield alone. Batista et al. [82] developed and 

applied a methodology for genomic prediction for autotetraploids and even for higher (and mixed) 

ploidy levels. They used the models to build covariance matrices of both additive and digenic 

dominance effects that were subsequently applied in genomic prediction models.  

In general, for the analysis of genomic prediction in crop breeding, the incorporation of multi-

omics data, comprising epigenomics, genomics, proteomics, transcriptomics, and metabolomics, 

appears to be critical to predict complex traits using molecular genetic information (Figure 1). 

Many types of -omic data, such as transcriptomics, epigenomics, proteomics, and metabolomics, 

have become readily available. Therefore, evaluating the utility of this huge amount of 

information in predicting complex traits would be interesting [83]. 

 

Figure 1 Multi-omics data integration in the genomic prediction analysis of breeding 

programs. 

5.1 Comparison between Single- and Multiple-Trait Genomic Models in Genomic Prediction 

Multiple-character models for genomic prediction were recently reported [84-88]. A multiple-

character genomic model (MTGM) had higher accuracy of prediction than a single-trait genomic 

model (STGM) [89, 90]. Comparing the results of the single-character genomic model (STGM) with 

those of the multiple-character genomic model (MTGM) for genomic prediction of high and low 

heritability traits demonstrated that both MTGM and STGM had similar validity for the genomic 

predictions for the high heritability traits, while for the low heritability traits, MTGM was more 

efficient than STGM [89].  
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5.2 Genomic Prediction for Interaction between Genotype and Environment 

The interaction between genotype and environment ( ⁠G × E⁠) strongly affects the yield of crop 

plants. In genomic prediction models, G × E can boost the accuracy of prediction and assist the 

selection of lines across target environments [91-94]. Genomic predictions have sufficiently 

improved the yield and other important traits in different crops when applied during breeding 

programs [51, 60, 95]. However, G × E complicates the screening of fixed pure lines and negatively 

affects the heritability of the characters. It is represented as a change in the plant line's 

performance from one environmental condition to another. Hence modeling for G × E during 

genomic prediction could be beneficial for breeders to select the lines with optimal overall 

performance across environments, as well as in specific target environments [92]. One of the 

models can link genotypes in different locations, even in cases where plant lines are not present in 

all locations. This model has the advantage of applying genetic covariance matrices in G × E mixed 

models [96]. In all genomic prediction models that incorporated G × E, the accuracy of single-

environment analyses was reported to be higher than the models without the G x E factor in bread 

wheat, maize, barley, and legumes [91, 93, 96-100]. The main patterns applied to evaluate 

genomic prediction accuracy by incorporating G × E are as follows:  

Burgueno et al. [91] were the first to report the application of marker-based and pedigree-

based linear models of genomic prediction for investigating G × E. Crop-modeling data was also 

incorporated to investigate G × E by Heslot et al. [101]. Several models, possessing the main 

effects of environment and lines, were coordinated to determine prediction accuracies in chickpea. 

The results demonstrated that accurate and precise prediction depends on improving genomic 

prediction models and applying various genotyping platforms, which leads to the selection of 

valuable candidates [92]. Bohlouli et al. [102] assessed the accuracy of genomic prediction across 

several scenarios applying single-character and multiple-character genomic models to detect G × E. 

They concluded that G × E contributes to perceptual variability in quantitative characters and 

enhances the accuracy of genomic prediction. Hence, the interaction must be considered while 

selecting different genotypes. With the appearance of molecular markers, linear mixed models, 

associated with the differential sensitivity of genotypes to environments to particular regions of 

the plant genome and specific biological mechanisms, were used in new procedures of G × E 

analysis [103, 104]. Hassen et al. [105] reported the first study that explored the feasibility of 

breeding rice, adapted to alternate wetting and drying, using genomic prediction methods that 

accounted for genotype by environment interactions. Mageto et al. [106] evaluated genomic 

prediction with G × E analysis for the level of Zn in the kernel of tropical maize germplasm and 

demonstrated the capability of genomic prediction  to boost the breeding of plants for enhanced 

Zn levels in the kernel of the selected superior genotypes. Multi-environment analysis can 

influence G × E by applying genetic and remaining covariance roles, markers and environmental 

covariates, or marker with G × E [91, 97, 107]. Keller et al. [57] demonstrated the potential of 

genomic selection to enhance the genetic gain in agronomic traits of common bean (Phaseolus 

vulgaris l.) bred under environmental stress. However, change in the responses of each cultivar 

with climatic conditions is a major challenge for breeders and can have a stronger effect on 

heritability and genotype ranking compared to the effect of the different environments [96].  
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6. Prediction Methods for Additive Genetic Effects 

Genomic prediction using marker and phenotype information from observed populations is 

useful to make connections between markers and phenotypes. Genomic prediction applies 

genome-wide markers to measure the impacts of all loci and ultimately predicts the genetic values 

of untested populations to perform more inclusive and reliable selection and to accelerate genetic 

progress in crop breeding. However, genomic prediction models might have a problem when the 

number of markers is much higher than phenotypic observations. To solve this problem and 

increase the accuracy of genomic prediction, many models, such as parametric procedures, as well 

as non-parametric methods such as machine learning algorithms, including gradient boosting 

machine (GBM) and extreme gradient boosting method (XgBoost), reproducing kernel Hilbert 

space (RKHS), random forest (RF), and radial basis function neural network (RBFNN), have been 

used for genomic prediction in breeding programs [108]. 

In genomic best linear-unbiased prediction (GBLUP) method, the impacts of all the loci possess 

a joint discrepancy that makes these loci more fit for characters affected by many minor genes 

[108, 109]. The Bayesian method is efficacious and pliable for phenotypic prediction and breeding 

value estimation. In the Bayesian method, variance components are calculated with genomic 

breeding values. It is based on differences calculated from data, and therefore, are novel and 

specific to the analyzed character, allowing skepticism of the variance components to be included 

in the breeding values [110, 111]. Several Bayesian methods of phenotype and genomic prediction, 

according to multi-locus aggregation patterns, have been considered [111]. The least absolute 

shrinkage and selection operator (LASSO) is a regression model presented by Tibshirani [112]. This 

method is a constrained version of the usual least squares. It is slightly ineffective for the strongly 

correlated markers and tends to pick one trait and ignore the others [108]. Machine learning, as a 

non-parametric method, has also been successfully adopted in genomic prediction [108, 113]. 

Machine learning methods have been recently adopted in genome-wide association studies for 

detecting candidate genes and epistasis, analysis of the gene network pathway, and genomic 

prediction of phenotypic values [114]. Non-parametric methods are more efficient than 

parametric methods when the underlying genetic architecture is quiet because of epistasis. The 

non-parametric methods have smaller genomic prediction errors and enhanced prediction 

accuracy of phenotypic values [115]. Among machine learning methods, RF is a commonly used 

tree-based ensemble procedure for regressing multiple variables [116-118]. Gradient boosting 

machine (GBM) is an efficacious method that can refine SNPs and reduce complex models in the 

analyses of multivariate phenotype genome-wide association studies [114, 119]. Another machine 

learning method known as extreme gradient boosting (XgBoost), introduced by Chen and He [120], 

is based on a similar principle as GBM, but applies a more regularized model than GBM to control 

over fitting.  

Analysis of genome-wide loci and their interaction involves many variables [95], for which, the 

above-mentioned statistical methods of omics data analysis have been associated with benefits in 

genomic prediction. However, using an inappropriate model in breeding practices might obscure 

some genetic variances, resulting in a biased and unreliable genomic prediction. Accurately 

analyzing the interactions among many genes and examining the intensity of their effects is an 

issue that needs to be addressed in the future [108]. 
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7. Factors Affecting the Accuracy of Genomic Prediction for Agricultural Economic Traits 

The accuracy of predicting attributes that possess complex genetic architecture can be 

improved by enhancing the marker density [121]. In cases where simple attributes are governed 

by one or several genes with large effects, higher marker density might lower the accuracy of the 

prediction if the quantitative trait nucleotide (QTN) is included but lead to a higher prediction 

accuracy if the QTN is excluded [121]. Some important agents, including marker density, statistical 

method, minor allele frequency (MAF), trait heritability, training population size, and genetic 

architecture, have a significant impact on the accuracy of genomic prediction [76, 121, 122]. The 

accuracy of genomic prediction for agricultural economic traits is enhanced with marker density, 

although, in some cases, it may be accompanied by a decrease [121].  

In agriculture science, an outlier may be generated because of wrong data imputation. 

Although statistical procedures are reported in the literature for the identification of outliers [123], 

the identification of true outliers is still a challenge, especially for high-dimensional genomic data. 

The predictive efficiency of genomic prediction techniques might be negatively affected in the 

presence of outliers. [124]. Budhlakoti et al. [124] efficiently detected outliers in high-dimensional 

genomic data and observed a significant improvement in genomic prediction. Zhu et al. [125] 

measured the estimated values of genomic reproduction by providing different subsets of 

mononucleotide polymorphisms (SNPs) based on different marker densities and MAF to evaluate 

the effect of marker density and MAF on predictability. They concluded that a low-density chip, by 

adapting low-frequency markers with large SNP effect sizes, should be designed for genomic 

prediction. It works better for traits with high heritability than for traits with low heritability [121]. 

The size and composition of the training population affect the efficacy of genomic prediction in 

breeding programs. By comparing optimization techniques to select individuals from the training 

population with higher predictive ability, Berro et al. [126] demonstrated benefits in considering 

the training population when designing an optimal training population for genomic prediction. 

Furthermore, they found that a weighted relationship matrix with stratified sampling was the best 

procedure for submitting quantitative character predictions in different populations several 

generations apart. The accuracy of prediction for characters possessing a complex genetic 

architecture can be enhanced by the density of a specific marker. For simple characters that are 

governed by one or several genes with large effects, higher marker density can also increase the 

prediction accuracy if the QTN is unspecified and not included [121]. Thus, it can be concluded 

that a combination of all the above-mentioned factors that affect prediction accuracy will always 

generate a high and fixed prediction accuracy with acceptable breeding and computational costs. 

8. Perspectives of Genomic Prediction in Plant Breeding 

Advancement in plant breeding programs is essential to boost genomic prediction. In addition 

to reducing the cost of creating new variability, the combined application of genomic prediction 

associated with high-throughput phenotype in plant breeding must be determined. Furthermore, 

the use of genomic prediction in germplasm enhancement, and the ability to anticipate the 

performance of a line in an unobserved environment is very important in breeding programs and 

needs to be addressed in future plant breeding plans [52]. Omics data have indicated the role of 

genomic prediction in future plant breeding programs. Therefore, aligning genomic predictions for 

targeted plant breeding programs in the era of climate resilience, where predictions are also 
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based on historical weather data available at the time of prediction, significantly improves 

predictive accuracy; moreover, the inclusion of G × E causes selection for stress-tolerant lines to 

maintain food security under changing climatic conditions. However, regardless of the interaction 

of environmental factors with the genotype (G × E), the accuracy of genomic predictions for low 

heritability attributes and characters with only a small amount of phenotype data could be 

improved by MTGM. The estimated response variables for the breeding values obtained from the 

multiple-character and single-trait models insignificantly affected the reliability of the estimated 

breeding values for characters with no missing genomic data. However, for traits with missing data, 

the response variable obtained from the multiple-trait model gave better genomic predictions 

than the response variable obtained from the single-trait model. Furthermore, the use of various 

genomic prediction models seems promising for genomic prediction in populations, although 

choosing a suitable model significantly affected genomic prediction in the ongoing plant breeding 

programs.  

9. Conclusion and Future Prospects 

The successful implementation of genomic prediction to establish an effective plant breeding 

program requires a strategic approach in designing breeding programs for sustainable production, 

better cooperation, a new association between the public and private sectors, and acquiring new 

skills. Furthermore, the effect of genomic prediction must be extended beyond the creation of 

new crop varieties and follow an integrative framework. Adjusting genomic prediction to mitigate 

the risks of genetic losses in breeding programs might represent the biggest incentive for the 

enhanced coordination of funding to support modern plant breeding programs globally.  

Studies to determine the implementation of genomic prediction for the selection of future 

phenotypes are inadequate. Hence, predictions for the whole genome must be further highlighted 

in plant breeding. Detailed studies to integrate G × E into proper models might determine whether 

genomic prediction could be a good strategy to determine efficiency under changing climatic 

conditions to feed the ever-growing global population. 
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