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Abstract 

In order to successfully recover from damage, skeletal muscle tissue requires proper 

activation of a tightly orchestrated repair program. Non-coding RNAs actively participate in 

this complex process of demolition and rebuilding. In this review, the contribution of 

dysregulated non-coding RNA expression to disease-associated pathological changes is 

explored in hereditary muscular dystrophies and idiopathic inflammatory myopathies. 

Disturbances in spatiotemporal expression of non-coding RNAs appear to be key factors in 

disease progression, functioning both in favor of and opposed to recovery. They regulate 

regeneration and survival of muscle fibers as well as codetermine the severity of tissue 

fibrosis and inflammation. Non-coding RNAs display individual or pleiotropic effects, and 

strongly influence each other’s activities. The described altered expression patterns can be 

exploited as biomarkers for diagnosis and to evaluate therapeutic success. In addition, 
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common signatures of these non-coding RNAs often present in different muscle disorders 

point to their manipulation as an approach for potentially broader therapeutic use. 
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1. Introduction 

In humans, dysfunction of the skeletal muscle system can cause progressive weakness, loss of 

muscle mass, and serious disability. Functional deficits can be the result of genetic defects, toxins, 

or idiopathic etiology. This review will focus on hereditary muscular dystrophies and acquired 

inflammatory myopathies.   

1.1 Muscular Dystrophies 

Muscular dystrophies are a group of conditions in which muscle dysfunction is either due to 

defective structural proteins or to genetic mutations affecting signaling molecules and enzymes. 

Defects in components of the large dystrophin-associated oligomeric complex of glycoproteins 

cause disruption of the linkage between the subsarcolemmal cytoskeleton and the extracellular 

matrix, which renders muscle cells vulnerable to contraction-induced damage. In Duchenne 

muscular dystrophy (DMD; OMIM 300677) and the milder Becker muscular dystrophy (BMD; 

OMIM 300376), mutations in the dystrophin gene itself are responsible [1]. An expansive and 

heterogeneous group of dystrophies comprise the limb-girdle muscular dystrophies (LGMDs), with 

a variety of mutations that cause weakness and wasting of the muscles in the arms and legs, of 

which proximal muscles are most severely affected. LGMDs are classified based on their 

inheritance pattern as either type 1 (autosomal dominant) or type 2 (autosomal recessive) and by 

their causal mutation (A to X). The severity, age of onset, and features of LGMD vary among the 

many subtypes and may be inconsistent even within the same family [2]. Facioscapulohumeral 

muscular dystrophy (FSHD; OMIM 158900) typically presents before age 20 with weakness of the 

facial muscles and the stabilizers of the scapula or the dorsiflexors of the foot. Weakness is slowly 

progressive and of variable severity [3]. Myotonic dystrophy (MD), the most common form of 

muscular dystrophy that begins in adulthood, is a chronic, slowly progressive, multi-system 

disease with symptoms including loss of muscle strength and fatigue [4]. There are two major 

types of the disease. Type 1 (OMIM 160900) and type 2 (OMIM 602668) are caused by mutations 

in dystrophia myotonica protein kinase and zinc finger protein-9, respectively. In muscular 

dystrophy, repeated cycles of muscle damage and regeneration deplete the tissue of its 

regenerative capacity. 

1.2 Inflammatory Myopathies 

Idiopathic inflammatory myopathy represents a heterogeneous group of rare diseases 

characterized by autoimmune reactions within the skeletal muscle tissue [5]. Dermatomyositis 
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(DM) presents with muscle weakness in the shoulders, upper arms, hips, thighs, and neck, often 

alongside typical skin lesions which include Gottron's sign (red scaly papules on finger joints), 

heliotrope rashes, and swelling around the eyes and on the upper chest or back (V-sign). Patients’ 

skeletal muscle biopsies display complement-mediated blood vessel destruction, perimysial 

inflammation, and perifascicular muscle fiber atrophy [6]. Sporadic inclusion body myositis (IBM) is 

a chronic, slowly progressive muscle disease. Patients develop distal asymmetric weakness 

affecting finger flexors and proximal lower extremity weakness of the quadriceps, which later 

progresses to other proximal and distal muscles. Patients are predominantly men over 50 years of 

age. Polymyositis (PM) is a rarer condition with female predominance, often presenting as 

corticoid-responsive acute or subacute symmetric proximal muscle weakness. DM and PM can be 

subclassified on the basis of the autoantibodies present; in anti-synthetase syndrome (ASS) for 

instance, antibodies directed against aminoacyl tRNA synthetases can be detected. PM and IBM 

biopsies are both characterized by the invasion of non-necrotic muscle fibers by auto-aggressive 

cytotoxic T-cells and macrophages, with inflammation building up mostly at endomysial sites [7]. 

Muscle fibers in IBM tissue additionally develop degenerative damage, with rimmed vacuoles and 

inclusions containing aggregates of ectopic proteins [8]. Immune-mediated necrotizing myopathy 

(IMNM) presents as acute or subacute proximal muscle weakness, displaying predominant 

necrosis of skeletal muscle fibers [9]. The inflammatory myopathies are generally characterized by 

persisting inflammatory reactions that damage the skeletal muscle tissue. 

1.3 Skeletal Muscle’s Damage Recovery System 

The skeletal muscle tissue has an impressive ability to regenerate after damage, accomplished 

through activation of the tissue’s satellite cell pool. In unharmed muscle, these cells lie quiescent 

underneath the basal lamina. In response to injury, immune cells are recruited to help clear the 

damaged muscle fibers, and satellite cells start to proliferate and differentiate to fuse with 

damaged fibers and form new fibers. Muscle regeneration is a highly coordinated process that 

resembles embryonic muscle development. This ingenious recovery mechanism gets compromised 

in muscle disorders, and a multitude of non-coding RNAs appear to be implicated [10]. The non-

coding RNAs are grouped based upon their length as small or long non-coding RNAs. Non-coding 

RNAs shorter than 200 nucleotides are termed miRNAs, and function downstream of transcription 

factors by repressing the target mRNA after it has been transcribed. miRNA–mRNA interactions 

lead to translational repression and/or mRNA destabilization. On the other hand, long non-coding 

RNAs (lncRNAs) can display diverse regulatory activities. They accomplish epigenetic modifications 

by recruiting chromatin-remodeling complexes to specific chromatin loci, act as co-factors, or 

modify the activity of transcriptional factors. The ability of lncRNA to identify complementary 

sequences also allows specific interactions with mRNA, regulating the latter’s post-transcriptional 

processing such as capping, splicing, and editing, which influences mRNA transportation, 

translation, degradation, and stability. In addition, miRNAs and lncRNAs do not behave as separate 

entities as they can complexly regulate each other's activities.  
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2. Non-Coding Changes in Muscular Dystrophy and Inflammatory Myopathy 

Table 1 summarizes main changes to the non-coding RNAome that have been reported in 

muscular dystrophy and inflammatory myopathy. For studies that carried out statistical analyses, 

only significant changes have been indicated.  

Certain aspects of the non-coding RNA regulation in muscle disease seem to represent an 

adequate response instated to minimize tissue damage and optimize tissue recovery. However, 

other changes appear to be an inappropriate response that aggravates muscle tissue damage. The 

impact of regulated non-coding RNA expression on muscle fiber regeneration, survival, tissue 

fibrosis, and inflammation is discussed under section 2. 

Table 1 Reported non-coding RNAs differentially expressed in muscular dystrophies 

and in idiopathic inflammatory myopathies, with upregulation (↑) and downregulation 

(↓) indicated. 

Non-coding 
RNA 

Molecular targets Muscular Dystrophies Inflammatory 
myopathies 

miRNAS    
miR-1 G6PD, FST, UTRN, CCND1, 

PAX3, PAX7 
↓ DMD [11,12] ↑ 
DMD [13,14,15,16] ↑ 
DMD, BMD, LGMD, 
FSHD [17] ↓ MD 
[18,19]  

↓ DM PM IBM [20] 

miR-7 EGFR ↓ MD [21] ↓ DM [22] 

miR-10 TIAM1 ↑ FSHD LGMD [23] ↓ 
MD [21] 

 

miR-15a RASSF5, MKK3, LRIG1 ↑ FSHD LGMD [23]  
miR-16 MAP7, CDS2 ↑ FSHD LGMD [23]  
miR-17 3/5p ERα, SRC3 ↑ FSHD LGMD [23]  
miR-18a/b HSF2, SOCS5 ↑ LGMD [23]  
miR-19a YB1, TRIAP1 ↑ LGMD [23] ↑ PM [23] 
miR-19b PP2A ↑ FSHD LGMD [23] ↑ PM [23] 
miR-20a/b SDC2, KIF26 ↑ FSHD LGMD [23]  
miR-21 MEF2C, TPM1, TGFBR2, 

PTEN, SMAD7, STAT3, PPARα 
↓ DMD [24] ↑ DMD 
[25] LMGD [26] ↑ 
DMD FSHD LGMD [23] 

↑ DM PM IBM 
[23,27] 

miR-22 HER3, MLCK2 ↑ DMD [13] ↓ DMD 
[23] 

 

miR-23 CCNG1 ↓ DMD [24]  

miR-26a EZH2, SMAD1, SMAD4 ↓ DMD [23]  

miR-26b PTEN ↑ LGMD [23]  

miR-27a PINK1, AFF1 ↑ LGMD [23]  

miR-28 NFE2L2 ↑ LGMD [23]  
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miR-29 COLs, ELN, Akt3 
YY1, Mfap5, ASB2, FBN, 
PDGFR 

↓ DMD [11,12,23,24] 
↓ mdx [28] ↓ MD 
[18,29] ↑ FSHD [23] 

 

miR-30 MTDH12, SMAD1, CCNE2, 
CELSR3, EGFR, MDM2, TIMP3 

↓ DMD [12,23]  

miR-31 MYF5 ↑ DMD [11,30] BMD 
[31] 

 

miR-33 CPT1, HADH, SIRT6, AMPKα1, 
PPARα 

↓ MD [18]  

miR-34a HMGB1, SIRT1, MMP2 ↑ DMD FSHD LGMD 
[23] 

↑ DM PM IBM [23] 

miR-92 PTEN ↓ DMD[23]  
miR-93 VEGF, IL8 ↑ FSHD LGMD [23]  
miR-95 SGPP1 ↓ DMD [23]   
miR-99a IGF1R, mTOR ↑ FSHD LGMD [23]  
miR-99b mTOR ↑ FSHD LGMD [23] ↑ DM PM [23] 
miR-100 SMARCA5 ↑ FSHD LGMD [23]  
miR-101 CREB1 ↓ DMD [23]  
miR-103 PTGS2, CCNE1 ↑ FSHD LGMD [23] ↑ IBM [23] 
miR-106 MMP2, ETS1 ↑ FSHD LGMD [23]  
miR-107 NF1, EP1 ↑ FSHD LGMD [23] ↑ IBM [23] 
miR-125a TNFAIP3 ↑ FSHD LGMD [23] ↑ IBM [23] 
miR-126 EGFL7 ↑ FSHD LGMD [23] ↓ DM [32] 
miR-127 BCL6 ↑ DMD [23] ↑ PM [23] 
miR-128 MAFG ↑ DMD [13]  
miR-130a SMAD4 ↑ DMD FSHD LGMD 

[23] 
↑ DM PM [23] 

miR-130b PTEN ↑ FSHD LGMD [23] ↑ PM [23] 
miR-132 AChE ↑ FSHD LGMD [23] ↑ DM PM [23] 
miR-133 MAML1, MEF2C, COLs ↓ DMD [12] ↑ DMD 

[14,15,16] ↑ DMD 
BMD [17] 

↓ DM PM IBM [20] 

miR-134 ITGB1, FBM1 ↑ DMD LGMD [23]  
miR-135a JAK2, MAML1, MEF2C ↓ DMD [11]  
miR-140 SOX4, PDL1 ↑ FSHD LGMD [23]  
miR-142 SOCS1 ↑ mdx [33] ↑ LGMD 

[23] 
 

miR-143 AR2B ↑ FSHD LGMD [23] ↑ PM IBM [23] 
miR-145 MUC1 ↑ FSHD LGMD [23] ↑ IBM [23] 
miR-146a Camk2D, PPP3R2 ↑ FSHD LGMD [23]  ↑ PM IBM [23] 
miR-146b IRF6 ↑ BMD [31] ↑ mdx 

[33] ↑ DMD BMD 
FSHD LGMD [23] 

↑ DM PM IBM 
[20,23,27] ↑ DM PM 
[34] 

miR-148a HER3 ↑ DMD LGMD [23] ↑ DM [23] 
miR-148b  ↑ LGMD [23]  
miR-149 Oct-2 ↑ DMD [13]  
miR-150 Notch3 ↑ FSHD [23] ↑ IBM [23] 
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miR-151 TWIST1 ↑ FSHD LGMD [23]  
miR-152 WNT1, MMP3 ↑ FSHD LGMD [23]  
miR-154  ↑ DMD FSHD LGMD 

[23] 
↑ DM PM [23] 

miR-155 MEF2A, SOCS1, TSPAN13, 
LRP1B 

↑ mdx [33,35] ↑ 
DMD FSHD LGMD [23]
  

↑ DM PM IBM 
[20,23,27] 

miR-181 a/b SRCIN1, HOXA11 ↑ LGMD [23]  
miR-181d CRY2, FBXL3 ↑ DMD [23]  
miR-186 AKAP12, FOXK1, HIF1α ↑ LGMD [23]  
miR-191 EGFR1, NFκB ↑ LGMD [23] ↑ PM [23] 
miR-192 DLG5, ALCAM ↑ FSHD LGMD [23]  
miR-193b ERα, IGFBP5 ↓ DMD [23]  
miR-195 EGFR ↑ FSHD LGMD [23] ↑ IBM [23] 
miR-197 PMAIP1 ↓ DMD LGMD [23] ↓ IBM [23] 
miR-199a FZD4, JAG1, WNT2, CAV1, 

DYRK1A 
↑ DMD FSHD LGMD 
[23] ↑ mdx [36] 

↑ DM PM [23] 

miR-206 Pax3, Pax7; Notch3; IGFBP5, 
FST, UTRN, CNND1 

↑ DMD [11,13,15,16] 
↑ DMD, BMD [14,17] 
↑ MD [37] 

↓ DM PM IBM [20] ↓ 
DM [38] ↑ PM [23] 

miR-208b CDKN1A ↑ DMD [15]  
miR-210 HIF1α ↑ DMD FSHD LGMD 

[23] 
↑ DM PM [23] 

miR-214 TRAF, EZH2, N-ras, CTGF ↑ DMD FSHD LGMD 
[23] 

↑ DM PM IBM [23] 

miR-221 SNTB1, Kip1, TSPAN13 ↑ DMD BMD FSHD 
LGMD [23] 

↑ DM PM IBM [23] 

miR-222 MyoD ↑ DMD FSHD LGMD 
[23] 

↑ DM PM IBM [23] 

miR-223 TNFR1, DR6 ↑ DMD [11] ↑ BMD 
[31] ↑ LGMD [23] 

↑ DM IBM [23] ↓ 
DM [39] 

miR-224 HOXD10, SMAD4 ↑ LGMD [23]  
miR-279 Notch ↑ FSHD LGMD [23]  
miR-299 3p SHOC2 ↑ DMD [23]  
miR-299 5p SHOC2 ↑ DMD LGMD [23] ↑ DM [23] 
miR-301 NFRF ↑ LGMD [23]  
miR-320 SOX4 ↑ LGMD [23] ↑ PM IBM [23] 
miR-331 RALA, ELF1 ↓ DMD [23]  
miR-324 NFĸB ↑ mdx [33] ↑ LGMD 

[23] 
↑ PM [23] 

miR-335 ICAM1 ↑ DMD [11] ↑ MD 
[18] ↑ DMD FSHD 
LGMD [23] 

↑ DM [23] 

miR-342 DNMT1  ↑ PM [23] 
miR-361 STAT6, SH2B1 ↓ DMD [23]  
miR-362 GADD45α ↑ LGMD [23] ↑ DM PM [23] 
miR-369 5p TNFα ↑ DMD FSHD [23] ↑ DM [23] 
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miR-376a Ago2, CDK2 ↑ DMD LGMD [23]  
miR-376c CCND1 ↑ DMD FSHD LGMD 

[23] 
↑ DM [23] 

miR-378 MyoR, CASP9, PDK1 ↑ DMD [13] ↓ DMD 
BMD [40] 

↓ DM PM IBM [20] 

miR-379 IL18 ↑ DMD FSHD LGMD 
[23] 

↑ DM PM [23] 

miR-381 LRP1B ↑ DMD LGMD [23,41] ↑ DM IBM [23] 
miR-382 GOLM1, MMP10 ↑ DMD LGMD [23] ↑ DM PM [23] 
miR-409 3p RSU1, STAG2 ↑ DMD [23] ↑ DM [23] 
miR-423 RFVT3 ↓ DMD [23]  
miR-432 KEAP1 ↑ DMD LGMD [23] ↑ DM PM IBM [27] 
miR-452 WWP1 ↑ DMD LGMD [23] ↑ DM [23] 
miR-455 ROCK2 ↑ mdx [33] LGMD 

[23] 
 

miR-483 Notch3, MAPK3 ↑ DMD [13]  
miR-485 3p PGC1α ↑ LGMD [23]   
miR-485 5p PGC1α ↑ DMD [23]  
miR-486 ICAM1, PAX3, PAX7, PTEN, 

DOCK3 
↓ DMD [23] mdx [42]  

miR-487b IRS1 ↑ DMD LGMD [23] ↑ DM [23] 
miR-491 WNT3a ↑ LGMD [23]  
miR-493 3p TSPAN1, WNT3a ↑ DMD [23]  
miR-495 PBX3 ↑ DMD LGMD [23] ↑ DM [23] 
miR-497 IKKβ ↑ mdx [33] ↑ FSHD 

LGMD [23] 
↑ PM [23] 

miR-499 SOX6 ↑ DMD [11] ↑ DMD, 
BMD [15] 

 

miR-500 LRP1B ↑ LGMD [23] ↑ PM [23] 
miR-501 GAN ↑ LGMD [23] ↑ DM PM [23] 
miR-502 SET ↑ LGMD [23]  
miR-510 PRDX1 ↓ LGMD [23]   
miR-517 Pyk2 ↑ FSHD [23]  
miR-518a NFĸB ↑ DMD LGMD [23]  
miR-518c PTEN, TP53 ↑ LGMD [23]  
miR-542 5p BMP7 ↑ LGMD [23]  
miR-562 HGFR ↑ LGMD [23]  
miR-652 Lgl1 ↑ mdx [33]  
miR-693  ↓ LGMD [23]  
miR-2537  ↑ DMD LGMD [23] ↑ DM [23] 
miR-2837  ↑ LGMD [23]  
miR-4442   ↑ DM PM [43] 
miR-4983  ↑ DMD LGMD [23] ↑ DM PM [23] 
miR-5021  ↑ DMD LGMD [23]  
miR-7058  ↑ FSHD [23]  
miR-7070  ↑ LGMD [23]  
miR-7075  ↓ DMD [23]  
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miR-7083  ↑ LGMD [23]  
miR-7089  ↓ LGMD [23]  
miR-7105  ↑ FSHD [23]  
miR-10617  ↓ LGMD [23]  
miR-11040  ↓ DMD LGMD [23] ↓ DM IBM [23] 
miR-13145  ↑ DMD FSHD LGMD 

[23] 
↑ DM [23] 

miR-13156  ↓ DMD [23]  
miR-13190  ↑ LGMD [23]  
miR-13205  ↑ LGMD [23]  
miR-13232  ↑ FSHD LGMD [23] ↑ DM [23] 
miR-13258  ↑ DMD LGMD [23] ↑ PM [23] 
miR-13268  ↑ FSHD LGMD [23] ↑ PM [23] 
Let-7b/c/e/i  ↑ FSHD LGMD [23]  
Let-7g  ↑ LGMD [23]  
lncRNAs 
H19 let-7  ↑ ASS IBM [44] 
Linc- MD1 MAML1, MEF2C  ↓ DMD [45]  
Lnc-MyoD IMP2  ↑ ASS IBM [44] 
MALAT-1 MYBL2, MyoD  ↑ ASS IBM [44] 

Abbreviations: acetylcholinesterase (AChE); AF4/FMR2 family member 1 (AFF1); argonaute 2 (Ago2); A-

kinase anchor protein 12 (AKAP12); protein kinase B 3 (Akt3); activated leukocyte cell adhesion molecule 

(ALCAM); AMP kinase subunit α (AMPKα1); autophagy-related 2B (AR2B); ankyrin repeat and SOCS box 

containing 2 (ASB2); antisynthetase syndrome (ASS); B-cell lymphoma 6 (BCL6); Becker muscular dystrophy 

(BMD); bone morphogenetic protein 7 (BMP7); calcium/calmodulin-dependent protein kinase II delta 

(Camk2d); caspase 9 (CASP9); caveolin 1 (CAV1); cyclin (CCN); cyclin-dependent kinase 2 (CDK2); cyclin-

dependent kinase inhibitor 1A (CDKN1A); CDP-diacylglycerol synthase 2 (CDS2); cadherin EGF LAG seven-

pass G-type receptor 3 (CELSR3); collagen (COL); carnitine palmitoyltransferase 1A (CPT1); cAMP responsive 

element binding protein 1 (CREB1); connective tissue growth factor (CTGF); cryptochrome 2 (CRY2); discs 

large homolog 5 (DLG5); dermatomyositis (DM); Duchenne muscular dystrophy (DMD); DNA 

methyltransferase 1 (DNMT1); dedicator of cytokinesis 3 (DOCK3); death receptor 6 (DR6); dual specificity 

tyrosine-phosphorylation-regulated kinase 1A (DYRK1A); epidermal growth factor like-7 (EGFL7); epidermal 

growth factor receptor (EGFR); E74-like factor 1 (ELF1); elastin (ELN); endophilin 1 (EP1); estrogen receptor 

α (ERα); enhancer of zeste homologue 2 (EZH2);  forkhead box M1 (FBM1); fibronectin (FBN); F-box and 

leucine-rich repeat protein 3 (FBXL3); forkhead box protein K1 (FOXK1); facioscapulohumeral muscular 

dystrophy (FSHD); follistatin (FST); frizzled 4 (FZD4); glucose-6-phosphate dehydrogenase (G6PD); growth 

arrest- and DNA damage-inducible gene 45α (GADD45α); gigaxonin (GAN); Golgi membrane protein 1 

(GOLM1); Hydroxyacyl-Coenzyme A dehydrogenase (HADH); human epidermal growth factor receptor 3 

(HE R3); Hepatocyte growth factor receptor (HGFR); hypoxia-inducible factor 1α (HIF1α); high-mobility 

group box 1 (HMGB1); homeobox (HOX); heat shock factor 2 (HSF2); sporadic inclusion body myositis (IBM); 

intercellular adhesion molecule 1 (ICAM1); insulin-like growth factor-binding protein-5 (IGFBP5); insulin-like 

growth factor 1 receptor (IGF1R); inhibitor κB kinase β (IKKβ); interleukin (IL); IGF2-mRNA-binding protein 2 

(IMP2); interferon regulatory factor 6 (IRF6); insulin receptor substrate 1 (IRS1); integrin beta 1 (ITGB1); 

jagged 1 (JAG1); janus kinase (JAK); Kelch-like ECH-associated protein 1 (KEAP1); lethal giant larvae 1 (Lgl1); 

kinesin family member 26B (KIF26B); kinesin-like protein 1 (Kip1); lethal (Let); limb girdle muscular 
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dystrophy (LGMD); leucine-rich repeats and immunoglobulin-like domains 1 (LRIG1); low-density 

lipoprotein receptor-related protein (LRP1B); v-Maf avian musculoaponeurotic fibrosarcoma oncogene 

homolog G (MAFG); metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1); mastermind-like 1 

(MAML1); microtubule-associated protein 7 (MAP7); metadherin (MTDH); microfibrillar-associated protein 

5 (Mfap5); mitogen-activated protein kinase (MAPK); myotonic dystrophy (MD); mouse double minute 2 

homolog (MDM2); muscle differentiation 1 (MD1); mitogen-activated protein kinase kinase 3 (MKK3); 

matrix metalloproteinase (MMP); mammalian target of rapamycin (mTOR); Myb-related protein B2 

(MYBL2); myocyte enhancer factor (MEF); myogenic differentiation D (MyoD); myogenic differentiation 

repressor (MyoR); myogenic factor 5 (MYF5); myosin light chain kinase 2 (MLCK2); metadherin 12 

(MTDH12); mucin (MUC); nuclear factor 1 (NF1); nuclear factor (erythroid-derived 2)-like 2 (NFE2L2); 

nuclear factor ĸB (NFĸB); nuclear factor ĸB repressing factor (NFRF); octamer-binding protein 2 (Oct-2); 

paired box protein (PAX); pre-B-cell leukemia homeobox 3 (PBX3); phosphoinoside-dependent protein 

kinase 1 (PDK1); programmed death-ligand 1 (PDL1); platelet derived growth factor receptor (PDGFR); 

peroxisome proliferator-activated receptor co-activator 1α (PGC1α); PTEN-induced putative kinase 1 

(PINK1); polymyositis (PM); phorbol-12-myristate-13-acetate-induced protein 1 (PMAIP1); protein 

phosphatase 2A (PP2A); peroxisome proliferator-activated receptor (PPAR); protein phosphatase 3 

regulatory subunit B beta isoform (PPP3R2); peroxiredoxin 1 (PRDX1); phosphatase and tensin homolog 

deleted on chromosome  10 (PTEN); prostaglandin-endoperoxide synthase 2  (PTGS2); proline-rich tyrosine 

kinase 2 (Pyk2); RAS Like proto-oncogene A (RALA); Ras association domain-containing protein 5 (RASSF5); 

riboflavin transporter 3 (RFVT3); rho-associated protein kinase 2 (ROCK2); Ras suppressor 1 (RSU1); 

syndecan 2 (SDC2); sphingosine-1-phosphate phosphatase 1 (SGPP1); suppressor of clear C. elegans 

Homolog 2 (SHOC2); SWI/SNF-related matrix-associated actin-dependent regulator of chromatin subfamily 

A member 5 (SMARCA5); sex-determining region Y-box (SOX); Src-homology2(SH2)B  (SH2B1); sirtuin (SIRT); 

small mothers against decapentaplegic (SMAD); syntrophin B1 (SNTB1); suppressor of cytokine signaling 

(SOCS); steroid receptor coactivator 3 (SRC3); SRC kinase signalling inhibitor 1 (SRCIN1); stromal antigen 2 

(STAG2); signal transducer and activator of transcription (STAT);; tissue inhibitor of metalloproteinases-3 

(TIMP3); transforming growth factor β receptor 2 (TGFBR2); T lymphoma invasion and metastasis 1 

(TIAM1)tumor necrosis factor α (TNF α); tumor necrosis factor α -induced protein 3 (TNFAIP3); tropomyosin 

1 (TPM1); Tumor necrosis factor receptor associated factor (TRAF), tetraspanin (TSPAN); tumor necrosis 

factor receptor 1 (TNFR1); tumor protein p53 (TP53); TP53 regulated inhibitor of apoptosis 1 (TRIAP1); 

twist-related protein 1 (TWIST1); utrophin (UTRN); vascular endothelial growth factor (VEGF); wingless-type 

(WNT); WW domain containing E3 ubiquitin protein ligase 1 (WWP1); Y-box binding protein 1 (YB1); Yin 

Yang 1 (YY1). 

2.1 Changes Linked to Muscle Fiber Regeneration 

Skeletal muscle regeneration is marked by satellite cell activation and expansion, which 

requires regulated temporal and spatial expression of muscle-specific transcription factors termed 

myogenic regulatory factors (MRFs). This system allows undifferentiated muscle precursor cells to 

transform to fully functional multinucleate muscle fibers [46]. Transcription factors MRF4, 

myogenin, MyoD, and myogenic factor 5 (Myf5) cooperatively establish this phenotypic transition 

through their regulation of proliferation, cell cycle arrest, and regulated activation of sarcomeric 

and muscle-specific genes. Spatiotemporal expression of non-coding RNAs cooperates with these 

processes [10], with sequential non-coding RNA systems aiding progression through the 
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differentiation stages that transform progenitor muscle cells to fully functional terminally 

differentiated muscle fibers.  For instance, skeletal muscle-specific miR-206 is strongly connected 

with muscle regeneration. miR-206 functions as a stress-induced suppressor of tissue destruction 

through its ability to activate compensatory mechanisms that promote the formation of new 

muscle fibers, an activity it accomplishes by suppressing expression of PAX7, NOTCH3, and histone 

deacetylase 4. Deletion of miR-206 delays regeneration after cardiotoxin injury in mice [47]. 

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) prevents differentiation of 

myoblasts to myotubes. Its expression is dynamically regulated during skeletal muscle 

differentiation. It is highly abundant in proliferating myoblasts, in which it represses MyoD 

expression. MALAT-1 recruits Suv39h1 to MyoD-binding loci, subsequently allowing formation and 

stabilization of the Suv39h1/HDAC1/HP1β complex and the trimethylation of Histone 3 lysine 9, 

leading to the repression of target genes. At the onset of differentiation, miR-181a expression is 

induced, causing MALAT-1 degradation through direct interactions and by the Ago2-dependent 

RNA-induced silencing complex machinery in the nucleus. The repressive complex destabilizes and 

gets replaced by the Set7-containing activating complex, allowing MyoD trans-activation [48]. On 

the other hand, lnc-MyoD is required for terminal muscle differentiation. At a certain moment, 

MyoD blocks proliferation to create a state permissive to differentiation, engaging lnc-MyoD to 

interact with IGF-2-mRNA binding protein 2, preventing it from inducing proliferative genes [49]. 

Reduced muscle fiber maturation can be observed in muscular dystrophies, and is associated 

with changes in miRNA and lncRNA expression patterns. While miR-31 is highly expressed at the 

early stages of differentiation of satellite cells in vitro, the levels in satellite cells derived from the 

standard DMD model, the mdx mouse, remain high, delaying muscle differentiation [30]. Muscle 

regeneration-associated miR-31 appears to exhibit a specific role in DMD, and miR-31 expression 

is more abundant in DMD biopsies than in those from healthy controls and from BMD patients. 

While miR-31 levels decrease during healthy muscle differentiation, levels remain high in 

differentiation-induced DMD myoblasts. Locked nucleic acid oligonucleotides against miR-31 are 

able to rescue dystrophin protein expression in human DMD myoblasts [30], indicating that the 

increased miR-31 observed in muscular dystrophy aggravates the pathology. Downregulation of 

linc-MD1 in DMD coincides with the reduced ability of myoblasts to undergo terminal 

differentiation [45]. Muscle recovery-associated miR-206 is strongly upregulated in regenerating 

muscle fibers in DMD in an attempt to restore muscle fiber damage. In this respect, ectopic miR-

206 was shown to rescue deficient myogenesis in an MD1 cell model, likely by promoting MyoD 

expression [50]. In DM, decreased miR-206 levels have been described [20,38], which might 

compromise skeletal muscle regeneration. 

Dystrophin is a protein required for sarcolemmal integrity and functions as an epigenetic 

modulator through its effects on the neuronal nitric oxide synthase/histone deacetylase 2 

pathway. In muscular dystrophy, several miRNAs that inhibit dystrophin translation in vitro are 

upregulated, which includes miR-31, miR-146, and miR-223. For instance, miR-31 levels are 

increased 50-fold in muscle from mdx mice compared to the control strain [30]. Chronic activation 

of this system presumably accelerates disease progression, and expression of dystrophin-inhibiting 

miRNAs inversely correlates with exon skipping success in the mdx model [31]. However, this 

process is complexly regulated, with certain non-coding RNAs such as miR-133b and miR-206 

repressing the dystrophin compensatory protein utrophin [51], while others including miR-195 and 

miR-758 enhance dystrophin protein expression [31]. 
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2.2 Changes Influencing Muscle Fiber Survival 

Muscle mass is dependent upon the relative balance between muscle fiber biosynthesis and 

degradation; in muscle disorders the scales often tip towards the latter. Muscle atrophy develops 

through downregulation of protein synthesis and activation of the ATP-dependent ubiquitin–

proteasome pathway. Proteins become poly-ubiquitinated, which sentences them to destruction 

by the proteasome. Damaged muscle fibers that are beyond repair become necrotic and are 

cleared by tissue-infiltrating immune cells. In addition, apoptotic cell death mechanisms 

contribute to muscle fiber loss in a wide spectrum of neuromuscular disorders [52]. 

Non-coding RNA expression is regulated in the active phase of muscle fiber necrosis and 

degeneration that develops at 4 to 6 weeks of age in the mdx mouse model. These processes 

involve linc-MD1, miR-1, and miR-133a, displaying complex expression patterns that change over 

time [53]. The decreased levels of miR-378 in DMD and BMD lead to increased levels of its targets 

phosphoinositide-dependent kinase-1 and caspase 9, which results in excessive apoptosis [40]. 

miR-455, an inducer of muscle wasting and atrophy, is also increased in muscular dystrophy 

[23,33]. For miR-21, which is associated with resistance to apoptosis [54], mixed results have been 

obtained in the study of muscular dystrophy, with studies reporting both up- [25, 26] and down- 

[24] regulation. 

In regard to IBM, decreased levels of miR-206 have implications for the muscle tissue’s  

interactions with the RNA-binding protein TAR DNA binding protein 43 (TDP-43). TDP-43 is a 

component of the protein aggregates present in IBM muscle fibers [55], and has been linked with 

neurodegeneration [56]. Reduced miR-206 levels potentially dampen TDP-43 activity, 

compromising its role as a maintenance factor of the autophagy system [57], which could 

contribute to the characteristic disturbed clearance of damaged muscle proteins in IBM muscle 

fibers. 

2.3 Changes Linked to Muscle Tissue Fibrosis 

If damaged fibers cannot be replaced by new ones, the void is filled by extracellular matrix 

components and fatty tissue. This is a reparative process, yet yields no functional benefit to the 

skeletal muscle tissue. Transforming growth factor-β, the key regulator driving fibrosis, regulates 

miRNA expression and steers the activation of intracellular pro-fibrotic signalling cascades.  Many 

miRNAs are pro-fibrotic, but miR-29 in particular has surfaced as a major player. Downregulation 

of miRNA-29a and the resulting de-repression of its pro-fibrotic targets appears in multiple organs 

when they develop fibrosis.  

The progressive muscle damage associated with muscular dystrophy leads to accumulated 

deposition of excessive fibrous connective tissue, and many have described reduction of miR-29 

expression levels in muscular dystrophy [11, 12, 18, 28, 29]. In MD, decreased miR-29 leads to 

increased levels of the pro-fibrotic protein ankyrin repeat and suppressor of cytokine signaling 

box-containing 2 (ASB2) [24]. ASB2, a subunit of the E3 ubiquitin-ligase complex, is a negative 

regulator of muscle mass. Supplementation by intramuscular injection of miR-29 in mdx muscle 

downregulates the expression of fibrotic markers, including collagens 1 and 3 and vimentin [28]. In 

addition, miR-29 expression levels return to normal in mdx mice treated with exon skipping [12, 

13]. 
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For the pro-fibrotic mediator miR-21, mixed results have been obtained.  Upregulation was 

observed in the DMD mdx mouse model [25] while significant downregulation in the urine of non-

ambulant DMD patients was detected [24]. Treatment with antagomirs leads to improvement of 

the mdx disease phenotype, and vice versa, overexpression leads to more severe muscle 

pathology [58]. However, knocking out miR-21 in a mouse model for laminin-deficient congenital 

muscular dystrophy does not improve the muscular phenotype [59]. In inflammatory myopathies, 

increased pro-fibrotic miR-21 has been reported [23, 27]. 

2.4 Changes Influencing Muscle Tissue Inflammation 

Muscle injury causes muscle fiber membrane damage, releasing cellular content and 

chemotactic factors to the extracellular space. This process induces infiltration by specific 

subtypes of immune cells, aimed to clear the tissue of damaged material and make room for fresh 

fibers. Consecutive waves of immune cells infiltrate the muscle tissue, composed first of mast cells 

and neutrophils followed by macrophages and T-cells. At an early stage, cytotoxic M1 

macrophages remove the muscle debris generated by the trauma. Later on, T cells are recruited 

and monocytes differentiate to M2 macrophages. This way, the pro-inflammatory 

microenvironment at the muscle lesion gradually transforms to an anti-inflammatory 

microenvironment, allowing muscle tissue remodeling. However, in many muscle diseases, 

inflammation persists beyond its protective use. An expansive list of miRNAs display pro-

inflammatory activities and many are implicated in chronic muscle inflammation. They are either 

directly regulated by the transcription factor nuclear factor ĸB (NFĸB), or target other factors 

within the NFĸB signaling pathway.  

In muscular dystrophies, inflammation develops secondary to the primary genetic defect. 

Nonetheless, chronic inflammation represents an important aspect of these diseases, and 

immunosuppressive treatment is still the mainstay of therapy for DMD today. Pro-inflammatory 

miR-222 and miR-223 are expressed in the damaged muscle tissue areas, strongly correlating with 

inflammatory cell infiltration [11]. miR-155, a non-coding RNA that facilitates appropriate 

activation of macrophages by regulating transition and balance of M1 and M2 macrophage 

phenotypes, is upregulated in mdx muscle, illustrating the tissue’s attempt to regenerate [33, 35]. 

However, a set of miRNAs involved in pro-inflammatory signaling gets strongly upregulated in 

DMD. miR-142, miR-146, miR-301, miR-324, miR-455, miR-497, and miR-652 levels are significantly 

increased in the mdx mouse model. Levels normalize when mice are treated with vamorolone and 

prednisone [33]. The resultant activities of these miRNAs, however, need to be regarded as a 

dynamic balance effect. For instance, miR-146a initially dampens inflammation, but exacerbates 

inflammation after prolonged induction [60].  

In inflammatory myopathies, infiltration by auto-aggressive immune cells that target muscle 

constituents is a primary disease mechanism. miR-146 is especially associated with inflammatory 

myopathies and becomes induced in immune cells and in muscle fibers [34]. miR-146a has been 

observed to negatively regulate the type 1 interferon pathway [61]. Marked overproduction of 

type 1 interferon-inducible transcripts and proteins is characteristic of DM with perifascicular 

atrophy [62]. The expression of several interferon-stimulated genes, such as myxovirus resistance 

protein 1, interferon-stimulated gene 15, and retinoic acid-inducible gene I, has been confirmed at 

the protein level in perifascicular regions and on the capillaries of the muscle biopsies [63, 64, 65]. 
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DM patients also have high levels of circulating type 1 interferon cytokines [66, 67], and disease 

activity correlates with interferon-stimulated gene transcript levels in the blood [68]. Type 1 

interferon pathway blockade is therefore a therapeutic route worth exploring, and strategies that 

are able to increase levels of miR-146 could be of benefit in DM by attenuating type 1 interferon-

induced reactions. 

3. Discussion 

Genome transcripts that do not code for protein represent the vast majority of the mammalian 

transcriptome, and the time they were put aside as useless now lies long behind us. Highly 

deregulated expression patterns in muscular dystrophy and inflammatory myopathy contribute to 

disease progression. Their up- or downregulation represents the tissue’s response, which can 

either be good or bad for the muscle tissue’s integrity: an appropriate response accelerating tissue 

damage recovery or a misplaced response leading to increased muscle damage. Muscle non-

coding RNAs are involved in many aspects relevant to muscle pathology through regulation of the 

muscle tissue’s regenerative capacities, muscle fiber survival, and the build-up of inflammation 

within the skeletal muscle tissue. Many studies describe miRNA levels, but, as is obvious from 

table 1, the lncRNAs remain under-represented. Also, it appears that most research has focused 

on muscular dystrophy, and that, in comparison, other muscle diseases have not yet received due 

attention.  

From what we know now, one can conclude that non-coding RNAs are plausible disease 

markers. They could represent useful diagnostic markers which could potentially replace invasive 

muscle biopsy. The miR-483 increase, for instance, is equally detectable in muscle tissue and in 

serum samples from DMD patients [13]. miRNA profiling appears a useful strategy to monitor 

DMD disease progression [14,69]. However, caution is warranted as dysregulation of non-coding 

RNAs may represent a common signature of diseased muscle. Yet, distinctive expression patterns 

could still be associated with individual muscle disorders. In this respect, miR-208b levels have 

been put forward as a potent biomarker to distinguish DMD from BMD [15]. miRNA typing could 

speed up differential diagnosis in patients that carry a dystrophin variant with yet unknown 

pathological repercussions. In addition, non-coding RNAs could be exploited as objective markers 

to evaluate therapeutic responses in clinical trials. miR-1, miR-29, and miR-149 expression levels 

have been described to return to normal in mdx mice successfully treated with exon skipping [12, 

13]. 

Non-coding RNAs could be an amenable therapeutic target in muscle disease, regardless of 

whether the changed expression patterns are causal to the disease or merely reflecting secondary 

degeneration/regeneration responses of the muscle tissue. Their precise involvement would, in 

this respect, appear of secondary importance to their universal potential for therapeutic 

innovation. Many muscle disorders display common signatures of non-coding changes, allowing 

selection of potential targets with broader therapeutic use. Strategies for interventions targeting 

miRNAs are to administer oligonucleotides that inhibit miRNA activity (antagomirs) or regulate the 

biological function of its target genes (agomirs). Many muscle diseases remain non-treatable to 

this day, and subgroups of inflammatory myopathy patients are refractory to immunosuppressive 

treatment. For IBM in particular, no satisfactory treatment option is available at the moment. As 

miRNAs are important regulators of inflammatory reactions, therapeutics in the form of miRNA 
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mimics of antagonists would be able to control the rampant progress of inflammation in 

inflammatory myopathies [70]. Also, targeting non-coding RNAs could be developed as ancillary 

therapeutics in support of molecular therapies. In DMD, where exon skipping techniques have not 

lead to the hoped-for improvements, combination therapies might boost the therapeutic outcome.  

4. Conclusions  

The dysregulated non-coding RNA profile of muscular dystrophy and inflammatory myopathy 

has both beneficial and detrimental potential. Altered expression levels can represent an 

appropriate response accelerating tissue damage recovery, or a misplaced response leading to 

increased muscle damage. The ever-increasing number of reports describing the complex 

involvement of non-coding RNAs in muscle disease mechanisms aid us to distinguish friend from 

foe. In addition, studies describing the RNAome have substantially increased our knowledge of 

muscle disease mechanisms, and can provide us with useful biomarkers for further development 

for diagnostic purposes or to monitor experimental therapy effectiveness in clinical trials. Also, 

they represent attractive ancillary therapeutic targets. 
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