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Abstract: 
Autism spectrum disorder is a clinically heterogeneous condition, characterized by social 
deficits, language impairment, repetitive behaviors, and restricted interest. Autism displays 
significant genetic heterogeneity. In the past one and a half decades, next generation 
sequencing has enabled identification of many variants that predispose to autism. These 
discoveries have improved understanding of the disease etiology of autism spectrum 
disorder. In this review article, we will address how development of next generation 
sequencing has helped answer the following questions: 1. What are the modes of 
transmission/inheritance of autism? 2. What is the nature of genetic risk factors that 
contribute to autism? 3. Why is there a higher prevalence of autism in males than females? 
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1. Introduction 

The first cases of autism spectrum disorder (ASD) were reported by Leo Kanner in 1943, 
characterized by social disconnection and impaired language skills beginning from early childhood. 
In subsequent years, more individuals with autism were identified, with the number of males 
being about four times that of females [1]. In the late 1970s, twin studies estimated the 
heritability of autism spectrum disorder to be greater than 80% [2]. From these early encounters, 
several questions arose that have puzzled us for decades: 1. What are the modes of 
transmission/inheritance of autism? 2. What is the nature of genetic risk factors that contribute to 
autism? 3. Why is there a male bias in autism?  

During early years, genetic linkage analysis and cytogenetic tools were leveraged to identify 
genes involved in the pathophysiology of autism. A few autism risk loci were initially identified, 
namely regions 2q, 7q31-q33, 15q11-q13, 16p, 19p, and Xp [3-5]. While they struggled with 
inconsistent genetic association findings [6-9] and low prevalence of mutations in autism 
individuals [10], scientists quickly recognized the huge genetic heterogeneity of autism [11]. The 
power of genetic loci detection at the time was limited by both the capacity to manipulate large 
sample sizes and resolution of detection tools. With the advent of next generation sequencing in 
the 2000s, we witnessed a blossom of gene discovery, achieved unprecedented resolution to the 
level of the single nucleotide, and revolutionized our understanding of the etiology of autism. In 
this review article, we will present a timeline for the identification of autism risk loci (Figure 1), 
discuss how next generation sequencing helped us to approach the previously raised questions, 
and present challenges and future directions. Since many review articles have summarized earlier 
findings, we will mainly focus on findings from the past five years. 

 

 

Figure 1 Timeline of important findings and methods used in the discovery of autism 
risk loci. Years are denoted on the black line. Findings are denoted at the top while 
methods are indicated at the bottom. 

2. From Linkage Disequilibrium Analysis to Genome Wide Association Studies 

In the 1980s and 1990s, linkage studies were used to tackle the mode of inheritance in autism, 
using familial cases of autism, and with most results coming out consistent with an autosomal 
recessive inheritance model [12]. Human leukocyte antigen (HLA) genes and a few neuronal genes 
were tested as candidates. The genes tested included the HLA loci [13], fragile-X syndrome gene 
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FMR1 [14], serotonin transporter gene HTT [7, 9], GABA receptor subunit gene GABRB3 [9, 15], 
among others. However, association of these genes with ASD was either insignificant or 
inconsistent among different studies. Genome-wide screens with genetic markers, typically using a 
collection of 50-100 autism families, identified several autism susceptibility regions [3, 4, 16, 17], 
scattered across different chromosomes. Direct sequencing of genes that had been reported in 
autism probands in follow-up studies using larger cohorts usually led to conclusions that 
mutations in these genes were uncommon to autism [10]. No study was able to narrow the 
candidate regions to single genes, except for those known to cause syndromic autism. In the late 
1990s, a consensus was reached that a fairly large number of genes may be involved in ASD, and 
that each individual gene may have a small effect [11].  

With the implementation of next generation sequencing and accomplishment of the human 
genome project, scientists gained access to a larger number of tightly-spaced genetic markers, or 
single nucleotide polymorphisms (SNPs). The hope was to identify common variants underlying 
common disease, such as ASD, through regional or genome-wide association studies (GWAS) with 
collection of 1000-3000 patients and an unaffected control group. A handful of loci were reported 
as plausible risk loci for ASD [18-21], however, only SNPs near CDH10 and CDH9 and SNPs at 
1p13.2 region were reproduced using independent cohorts [22-24]. Other studies found no 
association signal that met statistical significance [25-27]. Stratifying the samples by sex or 
subphenotypes helped to identify new candidate loci [28, 29], albeit this strategy met the same 
bottleneck of reproducibility. These findings highlighted the genetic heterogeneity of autism, and 
implicated that ASD may be largely attributed to rare variants.  

3. Impact of Single Nucleotide Variants in Genes 

With advancement of next generation sequencing technology, we were eventually capable of 
reading the genome at single nucleotide resolution. Studying families with shared ancestry greatly 
enhanced identification of risk loci with a recessive mode of inheritance [30-32], which included 
UBE3B, CLTCL1, NCKAP5L, ZNF18, PCDH10, DIA1, NHE9, AMT, PEX7, SYNE1, and others. 

In 2012, three articles published back-to-back in Nature, highlighted the impact of de novo 
single nucleotide variants (SNVs) [33-35] on autism spectrum disorder. They performed whole 
exome sequencing (WES) on 500-1000 individuals respectively, and reported a significantly 
increased rate of gene-disrupting or loss-of-function de novo SNVs in subjects with ASD. The 
prevalence of these de novo changes was positively correlated with paternal age. Several autism 
risk genes with dominant effects were identified by these and other groups, including SCN1A, 
SCN2A, CHD2, CHD8, KATNAL2, NTNG1, GRIN2B, LAMC3, DYRK1A, DAT1, SHANK1, SHANK3, 
SYNGAP1, TRIP12, PAX5, TCF20 [33-41]. Many of these genes are involved in FMRP-associated 
pathways or in the β-catenin/chromatin-remodeling protein network [34, 42]. Taken together, de 
novo SNVs may account for around 5-20% of ASD cases [43]. 

SFARI database is an involving database for genes implicated in autism susceptibility. We 
carefully curated all the SFARI genes associated with autism for their modes of inheritance, and 
found 432 dominant genes, 48 recessive ones, and 44 X-linked, with 357 genes showing 
insufficient evidence for a disease-driving effect (Figure 2, Supplementary Table 1).  Beyond what 
was mentioned above, somatic mutations [44, 45], human-specific regions and developmental 
programs [46, 47], and increased burden of deleterious mutations in essential genes [48] have also 
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been implicated in ASD. Clinically and functionally validated autism risk genes have been reviewed 
in the following reference [49].  

 

Figure 2 Pie chart of inheritance patterns of SFARI genes. 

4. New Cytogenetic Findings 

Cytogenetic analysis represents another important means of uncovering the genetic cause of 
ASD. Next generation sequencing and the human genome project provided a reference genome 
for implementation of comparative genomic hybridization microarray (aCGH), which has a much 
higher resolution than traditional techniques. Such improvements led to identification of many 
inherited copy number variations (CNVs) that are associated with autism, including 1p34.2-p34.3, 
2q23.1, 3q29, 7q11.23, 15q13.3, 16p11.2, 16q24.3, and 17q12-13 deletions or duplications [50]. 
Similarly, de novo CNVs present substantial risk for ASD, explaining approximately 2-7% of 
idiopathic autism cases [51-56]. Exonic CNVs and whole gene deletions or duplications that were 
present only in affected individuals overlapped with known ASD candidate genes and identified 
previously unreported loci [57, 58]. Notably, in the majority of autism families that harbor 
inherited or de novo CNVs, not all affected individuals carry the mutation, indicating that there are 
other risk factors that contribute to the disease manifestation [55]. 

Balanced chromosomal abnormalities (BCA) are powerful in pinpointing specific genes as well, 
in that the breakpoints usually disrupt expression of one to two genes. Next generation 
sequencing largely improved the resolution of breakpoint localization, and several potential 
candidate genes were implicated by de novo translocations and inversions, such as TRIP8 [59], 
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REEP3 [59], NRXN1 [60], CSMD3 [61], and RAB11FIP5 [62]. Association of these genes with ASD 
will be better supported by additional evidence of variants within the genes and functional studies. 

Compared with aCGH, whole genome sequencing (WGS) provides more detailed information 
about chromosomal rearrangements, albeit it has proven quite challenging to obtain copy number 
information. Recent progress involves identification of novel autism risk loci [63] and discovery of 
complex structural variations, in which different types of chromosomal rearrangements were 
generated at a single loci [64]. Application of de novo assembly of sequenced genomes uncovered 
previously undetectable mutations [65]. However the “gap” between read lengths of NGS (100 bp) 
and resolution of aCGH (5 kb) needs to be covered and will likely reveal many more variants. 

To have a better idea of which autism risk loci were subject to copy number variation versus 
single nucleotide change, we curated all SFARI genes for evidence of SNV, CNV, and BCA. Our 
results show a substantial overlap between genes affected by SNV and CNV (Figure 3, 
Supplementary Table 1). In the future, it will be interesting to identify SNVs in genes that were 
initially associated with in CNVs alone. 

 

Figure 3 Venn diagram showing the overlap of autism risk genes with evidence of copy 
number variation (CNV), single nucleotide variation (SNV), or balanced chromosomal 
abnormality (BCA). 

5. Non-coding Variants and Chromosome Conformation 

CNVs and SNVs that affect specific genes have been established as risk factors for autism 
spectrum disorder, which in total account for approximately 20% of ASD individuals [66]. Little 
effort had been invested into the vast intergenic regions of the genome until 2013, when rare 
inherited CNVs affecting only intergenic regions were reported to affect 3% of ASD cases [66]. 
Subsequently whole genome sequencing on ASD families, in which no CNV or SNV had been 
implicated, showed that probands had a significant enrichment of de novo loss-of-function 
mutations in DNase1 hypersensitive sites, which are putative regulatory regions [67]. MicroRNAs, 
long non-coding RNAs, and regions close to splicing sites have all been implicated in association 
with ASD through WGS and RNA profiling [68-71]. Dysregulation of the epigenome and 
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chromosome conformation may complement DNA mutations in the pathogenesis of autism [72-
74], studies of which were enabled by ChIP-seq (Chromatin immunoprecipitation sequencing) and 
other techniques.  

6. Rethinking Common Variants 

Notably, some of the regulatory regions are enriched for genetic variants from GWAS studies 
[75]. Furthermore, 3D chromatin interaction map in the developing human brain showed that 
some GWAS loci regulate putative neuropsychiatric disease gene expression [74]. These findings 
urge us to rethink about common variants and their contribution to ASD and other 
neuropsychiatric disorders. In fact, some studies found that combinatorial effects of hypomorphic 
or common variants account for a major part of ASD heritability, yet rare variation contributes to 
variance in liability [76, 77].  

Years of experience have taught us that such common variations scatter across the entire 
genome, with an impressive total number and a small individual impact. Machine learning 
emerged as a potential means of detecting the pattern of variation, dissecting genetic components 
and subphenotypes, as well as improving clinical diagnosis. Pioneering studies have applied 
machine learning to develop an observation-based diagnostic classifier of autism [78], and to 
predict new candidate genes based on features of the known ones [79]. We foresee 
unprecedented findings from machine learning of patient and unaffected individuals at a multi-
dimensional level. 

7. Possible Explanations for Male Bias 

Autism has been consistently reported to affect more males than females, with the commonly 
referenced male-to-female ratio being 4:1. This cannot be explained simply by X-linked autism, 
due to the fact that there are more autosomal genes associated with autism than genes on the sex 
chromosome, and the prevalence of the X-linked genes alone does not account for the substantial 
difference between male and female cases. A female protective model has been proposed and 
supported by higher mutational load of de novo CNVs, de novo SNVs, and inherited variants in 
affected females compared to males [1, 49, 80]. Sex chromosomal genes, other sex related risk 
loci, hormone factors, and innate sex differences in neurodevelopmental and immune systems 
that may contribute to the sex bias of ASD have been identified [1, 81, 82]. While they cannot fully 
explain the sex-skewed prevalence of autism, one of the most convincing explanations emerged 
from an RNA-seq study, which discovered that genes highly expressed in males were significantly 
enriched for those that were upregulated in postmortem ASD brains [83]. Further investigations 
into naturally occurring sexual dimorphism and gene-environment interactions will help elucidate 
the mechanism of male bias in autism. 

8. Overlap with Other Neuropsychiatric Disorders 

Individuals with ASD show high rates of comorbidity with other neuropsychiatric disorders, 
including intellectual disability (ID, 45%), attention deficit hyperactivity disorder (ADHD, 28-44%), 
clinical depression (12-70%), epilepsy (8-30%), schizophrenia (SCZ), and bipolar disorder [84]. A 
number of CNVs and specific genes are associated with multiple neuropsychiatric conditions [85, 
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86], suggesting genetic correlation between these different neuropsychiatric disorders. 
Identification of specific risk loci allowed us to further investigate what genetic factors may be 
shared or distinct. Studies demonstrate that few genes are specific to ASD. Risk loci of autism and 
intellectual disability have extensive overlap [87], and schizophrenia risk genes overlap with genes 
implicated in autism and ID [88]. On the other hand, ADHD may be genetically different from 
autism [89, 90]. 

9. Clinical Diagnosis 

Diagnosis of autism spectrum disorder can be difficult, given the variation in clinical 
manifestations and the absence of medical tests or strong, measurable biomarkers. Currently, 
individuals with autism are diagnosed based on the DSM-5 criteria (American Psychiatric 
Association, 2013). With mounting knowledge of autism susceptibility loci, next generation 
sequencing has great potential to facilitate clinical diagnosis of ASD, to refine clinical features of 
related syndromes, and may suggest specific interventions to modify phenotype, the power of 
which has been demonstrated by a few groups [91, 92]. However, autism is and will continue to be 
a clinical diagnosis. No single genetic test will make a diagnosis of autism, in part because of 
incomplete penetrance, pleiotropy, and variable expressivity. 

10. Challenges and Future Directions 

With an overwhelming, accelerating number of new variants being identified in individuals with 
autism, one of the challenges is to prevent false-positive reports of causality. A guideline has been 
put forward to regulate the process from study design to both gene-level and variant-level 
assessments of evidence [93]. During variant interpretation, it is always helpful to refer to the 
allele frequency in the ExAC database, which contains exomes from approximately 60,000 
individuals, who had no clinical manifestations and various ethnic backgrounds 
(exac.broadinstitute.org). There also exist databases that can help determine whether a specific 
gene/variant is linked to ASD, for example the SFARI gene (https://sfari.org/resources/sfari-gene), 
the Geisinger Developmental Brain Disorder Genes database (http://geisingeradmi.org/care-
innovation/studies/dbd-genes/), and ClinGen (https://www.clinicalgenome.org). 

Pipelines for analysis of variants in gene-coding regions have been maturing in the past decade. 
However, non-coding variants were commonly filtered out, with a lack of appreciation of their 
potential consequence. Development in computational algorithms and functional assays for these 
non-coding regions promise to open new avenues of understanding the genetics of autism. 

11. Conclusions 

We started this review by asking the following questions: 1. What are the modes of 
transmission/inheritance of autism? 2. What is the nature of genetic risk factors that contribute to 
autism? 3. Why is there a male bias in autism? Obviously, there are no easy answers to these 
questions. Copy number variations, X-linked inheritance, autosomal recessive or dominant 
inheritance, de novo mutations, and common variants, all play a role in autism susceptibility. 
There is tremendous genetic heterogeneity in autism with several hundred genes contributing to 
the overall prevalence. Many of the well-established genes and proteins are involved in synaptic 
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and chromatin remodeling pathways. Sexual dimorphism of gene expression contributes to the 
female protective effect of autism. Other innate differences in neurodevelopmental and immune 
systems are waiting to be uncovered.  With more large-scale sequencing projects, unprecedented 
advances in single-cell sequencing, chromosome conformation capture, and human in vitro 
models, we foresee a better understanding of the etiology of autism at multiple levels.  
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