

Figure S1 Photo reactor setup and CO_{2} photo reduction procedure.

Figure S2 GC-FID after 3 h reaction progress. am- $-\mathrm{TiO}_{2}-\mathrm{SiO}_{2}$ catalyst in water $+\mathrm{CO}_{2}$ (reactor headspace) lamp off. Peak 9 corresponds to CH_{4}.

The reported concentration is equivalent to $0.03 \mathrm{nmol} / \mathrm{mLH}_{2} \mathrm{Ogcat}:((((0.000007 * 12))) / 24.696)$ * $(1 / 0.5))$ * $(150 * 1000 / 100) *(1 / 0.3)=0.03$; where $0.000007 * 12=\mu \mathrm{LCH} 4$ from calibration curve; $24.696=\mu \mathrm{mol} \mathrm{CH} 4$ at $30^{\circ} \mathrm{C} ; 0.5=\mathrm{mL}$ of sample taking from the reactor headspace; $150=\mathrm{mL}$ of headspace; $1000=\mu \mathrm{mol}$ to $\mathrm{nmol} ; 100=\mathrm{mL} \mathrm{H} \mathbf{2}$ O into the reactor; $0.3=\mathrm{g}$ cat.

Figure S3 FT IR spectrum, top to bottom of am-P25, am-P25- SiO_{2}, am- TiO_{2} and am-$\mathrm{TiO}_{2}-\mathrm{SiO}_{2} \cdot \mathrm{O}-\mathrm{Si}-\mathrm{O}$ stretching signal at $1022-1080 \mathrm{~cm}^{-1}$ is present only in the $-\mathrm{SiO}_{2}$ catalysts.

Figure S4 $80000 \times$ and $200000 \times$ TEM images. Left: $\mathrm{am}-\mathrm{TiO}_{2}-\mathrm{SiO}_{2}$. Right: $\mathrm{P} 25-\mathrm{TiO}_{2}-\mathrm{SiO}_{2}$.

Figure $\mathbf{S 5}$-am- TiO_{2} Raman spectrum.

Figure S6 a and c Reactor headspace $\left[\mathrm{CH}_{4}\right]$ and $\left[\mathrm{H}_{2}\right.$] produced in water UV photo reduction of 100 mg of NaHCO_{3} using 0.3 g of $\mathrm{am}-\mathrm{TiO}_{2}-\mathrm{SiO}_{2}$ at different initial pH (without buffer); b and d Reactor headspace $\left[\mathrm{CH}_{4}\right]$ and $\left[\mathrm{H}_{2}\right]$ produced in water UV photo reduction of 100 mg of NaHCO_{3} using 0.3 g of am- $\mathrm{TiO}_{2}-\mathrm{SiO}_{2}$ using $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer.

Figure S7 Left: $\left[\mathrm{CH}_{4}\right] /\left[\mathrm{H}_{2}\right]$ ratio Vs . time at $\mathrm{pH}=3$. Right: $\left[\mathrm{H}_{2}\right] /\left[\mathrm{CH}_{4}\right]$ ratio Vs . time at pH $=7.4$.
a

b

Figure $\mathbf{S 8}$ a 8 ppm of MB photo oxidation using silicate surface-modified TiO_{2} catalysts. b $\ln (\mathrm{C} / \mathrm{Co})$ Vs. time plot of MB UV photo oxidation using $\mathrm{P} 25-\mathrm{SiO}_{2}$ and $\mathrm{am}-\mathrm{TiO}_{2}-\mathrm{SiO}_{2}$ catalysts. Pseudo-first order rate constants are found from the corresponding slopes and reported in Table 4.

Figure $\mathbf{S 9}$ am- $-\mathrm{TiO}_{2}-\mathrm{SiO}_{2}$ RedOx photo-activity. Si acts as an external intramolecular trap (EIT) promoted by the ($\mathrm{d}-\mathrm{p}$) π-bonding at the $\mathrm{Si}-\mathrm{O}$ bond. e/h recombination is then reduced. CH_{4} is produced 80 times faster than when P 25 is used and H_{2} is produced 8 times faster. Only O_{2} is produced at the valence band due to its relatively low potential with a value lower than the $\mathrm{OH} / \mathrm{H}_{2} \mathrm{O}$ one. However, when adding HCO_{3} - the negative surface charge increases promoting VB down-bending and some OH is produced that is quenched by MB.

Table $\mathrm{S1} \mathrm{am}-\mathrm{TiO}_{2} \mathrm{Vs}$. am- $-\mathrm{TiO}_{2}-\mathrm{SiO}_{2} \mathrm{BET}$ results.

	$\mathrm{am}-\mathrm{TiO}_{2}$	am-TiO2-SiO ${ }_{2}$
Surface Area		
Single point surface area at $\mathrm{p} / \mathrm{p}^{\circ}=0.200350555$	$253.7107 \mathrm{~m}^{2} / \mathrm{g}$	$258.7982 \mathrm{~m}^{2} / \mathrm{g}$
BET Surface Area	$258.8039 \mathrm{~m}^{2} / \mathrm{g}$	$264.3750 \mathrm{~m}^{2} / \mathrm{g}$
Langmuir Surface Area	$358.8783 \mathrm{~m}^{2} / \mathrm{g}$	$358.8783 \mathrm{~m}^{2} / \mathrm{g}$
t-Plot Micropore Area	$64.5905 \mathrm{~m}^{2} / \mathrm{g}$	$59.7896 \mathrm{~m}^{2} / \mathrm{g}$
t-Plot External Surface Area	$194.2134 \mathrm{~m}^{2} / \mathrm{g}$	$204.5854 \mathrm{~m}^{2} / \mathrm{g}$
BJH Adsorption cumulative surface area of pores between 17.000 Å and $3000.000 \AA$ Aidth	$200.742 \mathrm{~m}^{2} / \mathrm{g}$	$142.225 \mathrm{~m}^{2} / \mathrm{g}$
BJH Desorption cumulative surface area of pores between $17.000 \AA ̊$ and $3000.000 \AA$ idth	$108.2672 \mathrm{~m}^{2} / \mathrm{g}$	$164.3499 \mathrm{~m}^{2} / \mathrm{g}$
Pore Volume		
Single point adsorption total pore volume of pores less than $1235.454 \AA$ idth at $\mathrm{p} / \mathrm{p}^{\circ}=0.984078269$	$0.133658 \mathrm{~cm}^{3} / \mathrm{g}$	$0.162290 \mathrm{~cm}^{3} / \mathrm{g}$
Single point desorption total pore volume of pores less than 587.763 Å width at $\mathrm{p} / \mathrm{p}^{\circ}=0.965980087$	$0.132743 \mathrm{~cm}^{3} / \mathrm{g}$	$0.160996 \mathrm{~cm}^{3} / \mathrm{g}$
t-Plot micropore volume	$0.028545 \mathrm{~cm}^{3} / \mathrm{g}$	$0.025989 \mathrm{~cm}^{3} / \mathrm{g}$
BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å width	$0.109010 \mathrm{~cm}^{3} / \mathrm{g}$	$0.111161 \mathrm{~cm}^{3} / \mathrm{g}$
BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å width	$0.069848 \mathrm{~cm}^{3} / \mathrm{g}$	$0.120946 \mathrm{~cm}^{3} / \mathrm{g}$
Pore Size		
Adsorption average pore width (4 V/A by BET)	20.6578 Å	24.5545 Å
Desorption average pore width ($4 \mathrm{~V} / \mathrm{A}$ by BET):	20.5164 Å	24.3587 Å
BJH Adsorption average pore width (4 V/A):	21.721 Å	31.263 Å
BJH Desorption average pore width ($4 \mathrm{~V} / \mathrm{A}$):	25.806 Å	29.436 Å
Freundlich		
Qm.C	$\begin{aligned} & 30.2841 \pm 0.0921 \\ & \mathrm{~cm}^{3} / \mathrm{g} \mathrm{STP} \end{aligned}$	$\begin{aligned} & 30.8619 \pm 0.1593 \\ & \mathrm{~cm}^{3} / \mathrm{g} \text { STP } \end{aligned}$
m	5.7133 ± 0.0508	5.7317 ± 0.0875

