

Figure S1 Photo reactor setup and CO₂ photo reduction procedure.

		CALCUL. PKNO	ATION REPO TIME	ORT ** *₩ AREA	ARN I	NG* CALE HEIGHT	CRROR : MK		CONC		NAME
			TOTAL		0	6)		0		
			C/CALC ERF OMATOPAC C					A=1:@CHR	M1.C00	22/01/07	11:09:20
	-	0.0									
	-	2.0									
	-	4.0									
	-	6.0									
		CALCUL. PKNO	ATION REPO TIME	ORT ** *₩ AREA	ARN I	NG* CALE HEIGHT		1 IDNO	CONC		NAME
			TOTAL		0	()		0		
	C-R	8A CHR	OMATOPAC C	CH=1 Repo	ort N	lo.=19	DAT	A=1:@CHF	M1.C00	22/01/07	11:09:20
	-	0.0	0.003 0.0	021							
	-	2.0	2.760								
	-	4.0	3.3	323 3.331							
•	-	6.0									
		CALCUL. PKNO	ATION REPO TIME	ORT ** AREA		HEIGHT	MK	IDNO	CONC		NAME
	1	1	0.003	muln	1			10100	13	. 0952	TVI INILI
		3 7	0.021 2.76		4		5 V			. 8571 . 0476	
		9	3.323		1	3	3			. 9048	
		10	3.331		1	2	2 V		13	. 0952	
		а	TOTAL		8	15	5		100		

Figure S2 GC-FID after 3 h reaction progress. $am-TiO_2-SiO_2$ catalyst in water + CO_2 (reactor headspace) lamp off. Peak 9 corresponds to CH_4 .

The reported concentration is equivalent to 0.03 nmol/mLH₂Ogcat: (((((0.000007*12)))/24.696) * (1/0.5)) * (150*1000/100) * (1/0.3) = 0.03; where 0.000007 * 12 = μ L CH₄ from calibration curve; 24.696 = μ mol CH₄ at 30°C; 0.5 = mL of sample taking from the reactor headspace; 150 = mL of headspace; 1000 = μ mol to nmol; 100 = mL H₂0 into the reactor; 0.3 = g cat.

Figure S3 FT IR spectrum, top to bottom of am-P25, am-P25-SiO₂, am-TiO₂ and am-TiO₂-SiO₂·O-Si-O stretching signal at 1022-1080 cm⁻¹ is present only in the -SiO₂ catalysts.

Figure S4 80000 x and 200000 x TEM images. Left: am-TiO₂-SiO₂. Right: P25-TiO₂-SiO₂.

Figure S5 -am-TiO₂ Raman spectrum.

Figure S6 a and **c** Reactor headspace $[CH_4]$ and $[H_2]$ produced in water UV photo reduction of 100 mg of NaHCO₃ using 0.3 g of am-TiO₂-SiO₂ at different initial pH (without buffer); **b** and **d** Reactor headspace $[CH_4]$ and $[H_2]$ produced in water UV photo reduction of 100 mg of NaHCO₃ using 0.3 g of am-TiO₂-SiO₂ using NaH₂PO₄ buffer.

Figure S7 Left: $[CH_4]/[H_2]$ ratio Vs. time at pH = 3. Right: $[H_2]/[CH_4]$ ratio Vs. time at pH = 7.4.

Figure S8 a 8 ppm of MB photo oxidation using silicate surface-modified TiO₂ catalysts. **b** In (C/Co) Vs. time plot of MB UV photo oxidation using P25-SiO₂ and am-TiO₂-SiO₂ catalysts. Pseudo-first order rate constants are found from the corresponding slopes and reported in **Table 4**.

Figure S9 am-TiO₂-SiO₂ RedOx photo-activity. Si acts as an external intramolecular trap (**EIT**) promoted by the (d-p) π -bonding at the Si-O bond. e/h recombination is then reduced. CH₄ is produced 80 times faster than when P25 is used and H₂ is produced 8 times faster. Only O₂ is produced at the valence band due to its relatively low potential with a value lower than the OH/H₂O one. However, when adding HCO₃⁻ the negative surface charge increases promoting VB down-bending and some OH⁻ is produced that is quenched by MB.

	am-TiO₂	am-TiO2-SiO ₂
Surface Area		
Single point surface area at p/p° = 0.200350555	253.7107 m²/g	258.7982 m²/g
BET Surface Area	258.8039 m²/g	264.3750 m²/g
Langmuir Surface Area	358.8783 m²/g	358.8783 m²/g
t-Plot Micropore Area	64.5905 m²/g	59.7896 m²/g
t-Plot External Surface Area	194.2134 m²/g	204.5854 m²/g
BJH Adsorption cumulative surface area of pores between 17.000 Å and 3000.000 Å width	200.742 m²/g	142.225 m²/g
BJH Desorption cumulative surface area of pores between 17.000 Å and 3000.000 Å width	108.2672 m²/g	164.3499 m²/g
Pore Volume		
Single point adsorption total pore volume of pores less than 1235.454 Å width at p/p° = 0.984078269	0.133658 cm ³ /g	0.162290 cm ³ /g
Single point desorption total pore volume of pores less than 587.763 Å width at p/p° = 0.965980087	0.132743 cm ³ /g	0.160996 cm ³ /g
t-Plot micropore volume	0.028545 cm ³ /g	0.025989 cm ³ /g
BJH Adsorption cumulative volume of pores between 17.000 Å and 3000.000 Å width	0.109010 cm ³ /g	0.111161 cm³/g
BJH Desorption cumulative volume of pores between 17.000 Å and 3000.000 Å width	0.069848 cm ³ /g	0.120946 cm ³ /g
Pore Size		
Adsorption average pore width (4 V/A by BET)	20.6578 Å	24.5545 Å
Desorption average pore width (4 V/A by BET):	20.5164 Å	24.3587 Å
BJH Adsorption average pore width (4 V/A):	21.721 Å	31.263 Å
BJH Desorption average pore width (4 V/A):	25.806 Å	29.436 Å
Freundlich		
Qm·C	30.2841 ± 0.0921 cm³/g STP	30.8619 ± 0.1593 cm³/g STP
		CULTA PLA

Table S1 am-TiO₂ Vs. am-TiO₂-SiO₂ BET results.