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Abstract 

In the era of renewable and sustainable energy, perovskite materials remain pioneers as 

energy harvesting materials, be it thermoelectric waste heat harvesting or photovoltaic solar 

cell application. Oxide perovskite material is an emerging thermoelectric material in solving 

energy shortage issues through waste heat recovery. The chemical and structural stabilities, 

oxidation resistance, and cost-effective and straightforward manufacturing process are a 

few advantages of the oxide-based thermoelectric materials. The perovskite thermoelectric 

materials and module thereof does not require any vacuum bagging for operation at high 

temperature, irrespective of the application environment. Perovskite CaMnO3 displays a 

high Seebeck coefficient (S~-350 μV/K) due to correlated electron structure and low thermal 

conductivity (3 W m-1 K-1) but high electrical resistivity simultaneously. The electrical 

resistivity of CaMnO3 can be tuned by electron doping at the Ca-site and Mn-site. Electron 

doping by substituting Mn3+ with trivalent rare-earth ions increases the carrier concentration 

in the CaMnO3 system by partially reducing Mn4+ to Mn3+, improving electrical conductivity 

without altering the Seebeck coefficient. The dual-doped Ca1-xYbx/2Lux/2MnO3-based n-type 

perovskite thermoelectric material showed a much higher power factor than undoped 

CaMnO3 and proved to be an efficient perovskite from the application point of view. The 

thermoelectric module, in combination with CaMnO3 as an n-type element and Ca3Co4O9 or 
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doped-Ca3Co4O9 as the p-type element, is the most efficient device reported to date. The 

lab-scale power generation experiment is carried out for 4-element and 36-element 

modules consisting of perovskite Ca1-xYbx/2Lux/2MnO3 as n-type elements and Ca3Co4O9 as p-

type elements. The results showed the challenges of up-scaling the perovskite module for 

high-temperature waste heat harvesting applications. 
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1. Introduction 

Thermoelectric, as the word explains, represents the direct conversion of heat energy, waste 

heat, to electrical energy [1-3]. In the present scenario of continuous depletion of natural energy 

sources and the alarming situation of environmental pollution and global warming, there is a need 

for alternative sources of eco-friendly energy. Reducing waste heat to electricity is an option, as 

any industrial process generates lots of heat energy, which eventually goes wasted. Conventional 

systems for heat energy conversion, such as Rankine engines, involve moving parts that make 

them bulky and unsuitable for use in remote locations as they require constant maintenance. On 

the other hand, thermoelectric energy conversion using thermoelectric materials does not involve 

moving parts and, thereby, zero maintenance [4-6]. The word thermoelectric is a generic term for 

three related effects, viz. Seebeck result denotes voltage built-up in certain materials upon 

exposure to a temperature gradient, the Peltier effect describes heat absorption or release rate at 

materials junction on applying electric current, and the Thompson effect denotes a change in heat 

flux density of a material in a temperature gradient allowing current density to flows [7]. 

Thermoelectric energy harvesting involves the Seebeck effect, the principle of which was followed 

in simple devices such as thermocouples. The most prerequisite phenomenon of efficient 

thermoelectric energy harvesting is the thermoelectric materials used in the machine. A 

dimensionless quantity called the figure-of-merit (ZT) defines the performance of thermoelectric 

materials [8, 9]. A considerable Seebeck coefficient (α), high electrical conductivity (ρ), and low 

thermal conductivity (κ) result in maximum ZT according to the following relationship [10]. 

𝑍𝑇 =
𝛼2𝜎

𝜅
𝑇 (1) 

Now all the physical parameters defining ZT of thermoelectric material are functions of the 

charge carrier concentration of the materials; while electrical and thermal conductivity increases 

with charge carrier concentration, the Seebeck coefficient decreases. It is reported that to achieve 

maximum figure-of-merit, the optimal carrier concentration of the materials should be 1018-1021 

cm-3, which falls under the category of heavily doped semiconductors [11, 12]. As Seebeck 

coefficient and thermal conductivity are temperature-dependent parameters, different materials 

have performance peaks at optimal temperature window, e.g., Bi-Te-based materials show ZT of 

0.8-1.1 around 200°C [13, 14], Pb-Te-based alloys realize ZT of 1.2 between 200-600°C [15-20] and 

Si-Ge based alloys reach ZT of 0.5-0.9 above 600°C [21-23]. Other intermetallic alloys, such as 
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skutterudites, clathrates, and Heusler alloys, are also reported to show ZT values up to 1 [24, 25]. 

However, the aforesaid intermetallic alloys are primarily toxic and non-abundant, unstable in the 

open atmosphere, and thereby impact the cost and the durability of the thermoelectric module 

fabricated using intermetallic alloys. Unlike intermetallic alloys, transition metal oxide-based 

thermoelectric materials are more appropriate for high-temperature applications due to their 

inertness in chemical and oxidative environments [26-29]. However, metal oxides are considered 

inefficient entrants for thermoelectric applications because of high vibrational frequencies (high k) 

and low carrier mobility (high r) arising from highly polarized metal-oxygen ionic bonds with 

narrow orbital overlap and high bond energy. Only recently, the single crystal of NaxCoO2 has been 

reported with ZT close to unity, indicating oxide materials can be competitive with intermetallic 

alloys [30]. 

Waste heat recovery through thermoelectric materials requires the fabrication of a 

thermoelectric module device [31]. A thermoelectric module consists of n- and p-type materials in 

which electrons and holes participate in the conduction mechanism. Figure 1 shows the schematic 

of the thermoelectric module. Unlike traditional intermetallic alloys in which one material can be 

tuned to deliver both n- and p-type conduction, the conduction of metal oxides is uni-polar and 

arises mainly from an intrinsic defect. The n- and p-type elements are serially connected to flow 

electrically and vertically the heat from the hot zone to the cold zone to exhibit the conversion of 

heat energy to electricity in a thermoelectric module. The Seebeck voltage of individual legs gets 

added up, leading to the current flow through an external load resistance. The performance of the 

thermoelectric module depends on the hot (TH) and cold (TC) side temperatures it experiences, the 

temperature gradient (ΔT), and the ZT of the materials. Thus, the efficiency (η) of the 

thermoelectric module to convert heat (Q) into electrical power (P) can be represented as [10]: 

𝜂 =
Δ𝑇

𝑇𝐻
×

√1 + 𝑍𝑚𝑇 − 1

√1 + 𝑍𝑚𝑇 +
𝑇𝐶

𝑇𝐻
⁄

(2) 

where, ΔT = TH - TC and Zm is the figure-of-merit of the module 

𝑍𝑚 =
(𝑆𝑛 − 𝑆𝑝)

(𝜌𝑛 + 𝜌𝑝)(𝜅𝑛 + 𝜅𝑝)
(3) 

 

Figure 1 Single module configuration. 
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Therefore, the increased temperature gradient corresponds to the increased available heat for 

conversion following the Carnot efficiency. The literature has reported that a ZT ~ 1 is required for 

sufficient energy conversion (10%). To compete with the conventional heat pump, ZT ~ 3 is 

needed. As a rule of thumb, a thermocouple fabricated from thermoelectric materials with an 

average ZT of 1.5 would have an efficiency of 20% when operated at a temperature gradient of 

500 K [8]. 

Thermoelectric can become competitive for small applications requiring less than 100 W 

because it is simple, compact, inexpensive, and easily scalable [32, 33]. There is an enormous 

demand for power harvesting at high temperatures to enable remote sensing technologies. 

Standalone wireless sensor systems operating at a high temperature require power supplies that 

can provide adequate power (at a level of 300-500 mW) for operation at a temperature of 500°C 

in an oxidizing environment. These systems do not exist presently. Therefore, this milestone is a 

stepping-stone towards developing higher power (1 W) systems with an ambient heat sink. This 

article summarizes an overview of recent progress on peroxide-based thermoelectric modules 

with an inclination towards the application in natural environments. An example module has been 

fabricated and tested to understand the future of perovskite-based thermoelectric modules.  

2. Perovskite Oxide Thermoelectric Materials as n-Type Elements 

Perovskite-oxides [34] is described by the general formula ABO3, where 'A' can be rare earth, 

alkaline earth, alkali, and other large ions such as Pb2+ and Bi3+ and 'B' ions can be 3d, 4d, and 5d 

transitional metal ions. The perovskite SrTiO3 and CaMnO3 are the most promising n-type 

thermoelectric oxides.  

Stoichiometric SrTiO3 is isotropic cubic perovskite in which the 3d t2g orbital of TiO6 octahedron 

lies in the conduction band. The stoichiometric SrTiO3 exhibits an insulating character with a band 

gap of 3.2 eV due to the d0 configuration of Ti4+. The semiconductor behavior of SrTiO3 is 

experienced by doping at A and B-site as follows, where Ln and M represent the rare earth ions 

and transition metal ions, respectively [35]: 

A-site: 

𝐿𝑛2𝑂3 + 2𝐵𝑂2 → 2𝐿𝑛𝐴 + 2𝐵𝐵
𝑥 + 2𝑒 ′ + 6𝑂𝑂

𝑥 +
1

2
𝑂2 ↑ (4) 

B-site: 

2𝐴𝑂 + 𝑀2𝑂5 → 2𝑀𝐵 + 2𝐴𝐴
𝑥 + 2𝑒 ′ + 6𝑂𝑂

𝑥 +
1

2
𝑂2 ↑ (5) 

Electron doping shifts the Fermi energy from the forbidden band to the conduction band, 

making the system conductive through polaron formation. A-site substitution by La and B-site 

substitution by Nb are widely studied for SrTiO3. A ZT of 0.27 at 1073 K is reported by Ohta et al. 

for La-doped SrTiO3 single crystal [36]. The power factor of La-doped SrTiO3 (28-36 mW cm-1 K-1) is 

comparable to Bi2Te3; however, the high thermal conductivity of 9-12 W m-1 K-1 causes a low 

figure-of-merit in the system. Wang et al. reported suppression of thermal conductivity in 

mesoporous silica (MS)-SrNb0.15Ti0.85O3 composites and Nb-doped SrTiO3 with yttria (Y2O3) 

stabilized zirconia (YSZ) nano-precipitates through the formation of thermally insulating second 
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phase at grain boundaries [37]. The ZT values achieved were 0.165 and 0.2 at 900 K, respectively. 

Similarly, a high ZT of 0.33 at 900 K was reported for Nb-doped polycrystalline SrTiO3 coated with 

surface-modified nano-sized titania (TiO2) [38]. Park et al. carried out chemical colloidal synthesis 

accompanied by the SPS process to develop La-doped SrTiO3 with nano-grain that resulted in a ZT 

of 0.37 at 973 K [39]. Dehkordi et al. adopted a solid-state reaction and SPS technique to prepare 

Sr0.85Pr0.15TiO3, resulting in a ZT of 0.35 [40]. Dy and La co-doped SrTiO3 (La0.08Dy0.12Sr0.8TiO3) with 

nano-sized second phases lowered the thermal conductivity to 2.3 W m K−1 at 1074 K and showed 

ZT of 0.36 at 1048 K [41]. Zhang et al. reported a ZT of 0.40 in Nb-doped SrTiO3, where oxygen 

vacancies are responsible for high electrical conductivity and low ZT [42]. However, the stability of 

the SrTiO3-based compound is a concern due to the oxidation of TI to Ti4+ above 700 K in air, which 

results in insulating behavior [43]. 

On the other hand, CaMnO3 is an orthorhombic perovskite-type structure that shows G-type 

anti-ferromagnetism and giant magnetoresistance. CaMnO3 displays a high Seebeck coefficient 

(S~-350 mV/K) due to correlated electron structure and low thermal conductivity (3 W m-1 K-1) but 

high electrical resistivity simultaneously [44-46]. Mn4+ (3d3) in MnO6 octahedron (t2g
3eg

0) with 

negligible Jahn-Teller distortion primarily exhibits insulating character due to its eg
0 state. Mn 3d 

states and O p states are accountable for electrical conductivity in the system. Electron doping at 

Ca-site and Mn-site increases the carrier concentration in the CaMnO3 system by partially reducing 

Mn4+ to Mn3+, improving electrical conductivity by a few orders of magnitude. Moreover, oxygen 

vacancies can also reduce Mn4+ to Mn3+, occupying eg
0 state partially occupied. Electron-lattice 

interaction in the system creates a small polaron responsible for polaron hopping conduction for 

CaMnO3. Further, formations of Mn3+ introduce Jahn-Teller distortion in the design, thereby 

reducing the thermal conductivity. The electron doping is experienced at Ca-site by rare-earth ions 

and Bi3+ and Mn-site Nb5+, Ta5+, Mo6+, W6+, etc [47-51]. Yb-doped CaMnO3 shows a ZT of 0.16 at 

1000 K, the highest among rare-earth doped CaMnO3 [52]. Kabir et al. reported ZT of 0.25 at 973 K 

in Bi-doped CaMnO3, where incorporating Bi improves electrical conductivity with marginal 

reduction of the Seebeck coefficient [53]. The highest ZT value reported for A-site doping is for 

dual-doped Ca0.96Dy0.02Yb0.02MnO3 with a ZT of 0.27 [54]. Among the B-site doped CaMnO3, W-

doped CaMn0.96W0.04O3 exhibit ZT of 0.25 at 1225 K [55]. However, the highest ZT reported in the 

n-type CaMnO3 system so far is Nb-doped CaMn0.98Nb0.02O3 with a ZT of 0.3 [56]. 

Double perovskite-based oxide (A2B'B "O6) materials caught attention recently as 

thermoelectric (TE) materials due to their environment-friendly nature, high-temperature stability, 

better oxidation resistance, and lower processing cost compared to conventional chalcogenides 

and intermetallics with Ba2CoNiO6 results in a ZT around 0.8 at room temperature [57-61]. 

3. p-Type Element Ca3Co4O9 

Ca3Co4O9 is "misfit layered” cobalt oxide with a modulated layered structure. The structure of 

Ca3Co4O9 ([Ca2CoO3]RS[CoO2]1.62) consists of a single CdI2 type CoO2 layer having CoO6 octahedra 

interleaved with rock-salt- (RS-) type [Ca2CoO3] layers [62]. The rock-salt layer controls the lattice 

thermal conductivity i.e., the in-plane thermal conductivity reduces with increasing rock-salt layers, 

keeping the electronic properties of the CoO2 block unperturbed [63, 64]. The thermoelectric 

properties of misfit-layered oxide single crystals showed the most significant ZT = 1.2-2.7 for 

Ca3Co4O9 at 873 K, and ZT ≥ 1.1 for Bi2Sr2Co2O9 at 1000 K [65, 66]. However, the strong anisotropy 
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in the thermoelectric parameters and the non-uniform crystal growth prevent the performance of 

the bulk compositions, resulting in a maximum ZT of 0.5 [67-70]. 

4. Perovskite Oxide-Based Thermoelectric Module 

Perovskite CaMnO3 is one the most widely explored n-type thermoelectric materials, and 

several researchers have investigated the power generation capabilities of CaMnO3-based 

modules. Several groups have reported CaMnO3-based oxide thermoelectric modules where 

doped and un-doped CaMnO3 were used as n-type elements. Table 1 summarizes the perovskite 

CaMnO3-based thermoelectric module reported in the literature based on power output [71-82]. 

The thermoelectric module, in combination with CaMnO3 as an n-type element and Ca3Co4O9 or 

doped-Ca3Co4O9 as the p-type element, is the most efficient device reported to date. We have 

established that dual-doped Ca1-xLux/2Ybx/2MnO3 is one of the efficient n-type elements in the 

perovskite CaMnO3 series. Similarly, Ca3Co4O9 without any doping stands for efficient p-type 

material. 
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Table 1 The perovskite CaMnO3-based thermoelectric module based on power output as reported in the literature. 

Modules elements p-n couples (pairs) Elements Dimensions (mm3) Pmax (mW) Vout (V) TH (K) ΔT (K) Reference 

n-CaMnO3/p-Ca3Co4O9 12 0.5 × 5 × 3 1.98 0.8 473 200 [71] 

n-Ca0.8Dy0.2MnO3/p-Ca2.76Cu0.24Co4O9 4 (π-shaped) 7 × 9 × 25 31.12 0.28 937 321 [72] 

n-Ca0.92La0.08MnO3/p-Ca2.75Gd0.25Co4O9 8 (fin type) 3 × 3 × 25 63.5 0.98 1046 390 [73] 

n-Ca0.9Yb0.1MnO3/p-Ca2.7Bi0.3Co4O9 1 3.5 × 3.5 × 5 137 0.226 1095 705 [74] 

n-Ca0.95Sm0.05MnO3/p-Ca3Co4O9 
2 4 × 4 × 5-10 31.5 0.4 1000 925 [75] 

2 4 × 4 × 35 31.5  990 630 [76] 

n-Ca0.98Sm0.02MnO3/p-Ca3Co4-xAgxO9 2 3 × 6 × 6 36.8 0.32 973 523 [77] 

n-Ca0.98Nb0.02MnO3/p-La1.98Sr0.02CuO4 2 4.5 × 4.5 × 4-10 88.8   622 [78] 

n-CaMn0.98Nb0.02O3/p-GdCo0.95Ni0.05O3 2 4 × 4 × 5 40 0.35 800 500 [79] 

n-CaMn0.98Mo0.02O3/p-Ca2.7Bi0.3Co4O9 8 5 × 5 × 4.5 34 0.7 1273 975 [80] 

n-CaMnO3-δ-CaMn2O4/p-Ca3Co4-xO9+δ unicouple Variable with hybrid junction 7.2 0.35 1173 650 [81] 

n-Ca0.99Dy0.005Lu0.005MnO3/p-Ca3Co4O9 7 5 × 5 × 5 7 0.34 773 200 [82] 
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5. Development of Materials 

The powder sample of dual-doped n-Ca1-xLux/2Ybx/2MnO3 and p-Ca3Co4O9 were prepared by the 

sol-gel methodology. The n-Ca1-xLux/2Ybx/2MnO3 powder samples were pressed in rectangular 

blocks and sintered at 1200°C for 5 h. Conversely, p-Ca3Co4O9 powders were sintered through a 

hot-press technique at 1098 K and a pressure 25 MPa. The n and p-type rectangular blocks were 

diced into 3 mm × 3 mm × 5 mm cuboids to fabricate the thermoelectric module. 

6. Fabrication of Thermoelectric Module 

4-elements and 36-element thermoelectric modules were fabricated to study heat to electrical 

energy conversion in the lab level. The n-Ca0.99Lu0.005Yb0.005MnO3 and p-Ca3Co4O9 elements were 

sandwiched alternately between insulating alumina plates of thickness 6 mm. The n and p 

connections were built between protecting alumina plates with silver plates and silver paint. One 

side of the alumina plate acted as a hot end, and the other side was the cold end. The hot end was 

attached to the heat source, and the output voltage was recorded from the cold end. The heat 

sink can be attached to the cold end. However, the lab scale experiment was carried out on a 

standalone module without attaching any heat sink. 

7. Thermoelectric Power Generation [8] 

The Seebeck, Peltier, Thompson, and Joule effects are the four basic physical phenomena 

governing thermoelectric generator operation. Mathematically, the energy flow through a unit 

volume under steady-state conditions is expressed as follows: 

𝑇𝐽
𝑑𝑆

𝑑𝑥
+ 𝜏𝐽

𝑑𝑇

𝑑𝑥
− 𝜌𝐽2 −

𝑑

𝑑𝑥
(𝜅

𝑑𝑇

𝑑𝑥
) = 0 (6) 

where T = Temperature, J = electrical current density, S = Seebeck coefficient, τ = Thompson 

coefficient, ρ = electrical resistivity, and κ = thermal conductivity of the materials. Considering the 

negligible Thompson effect (as explained in Ref. 8, Chapter 2), the heat flow at the hot side is 

(where I is the current flow) can be represented as: 

𝑄ℎ = [𝑆𝑇𝐸𝐺𝑇𝐻𝐼 + 𝐾𝑇𝐸𝐺(𝑇𝐻 − 𝑇𝐶) −
1

2
𝐼2𝑅𝑇𝐸𝐺]

= [(𝑆𝑝 + 𝑆𝑛)𝑇𝐻𝐼 + (𝐾𝑝 + 𝐾𝑛)(𝑇𝐻 − 𝑇𝐶) −
1

2
𝐼2(𝑅𝑝 + 𝑅𝑛 +  𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡)] (7)

 

Similarly, the heat flow from the cold side can be represented as:  

𝑄𝑐 = [𝑆𝑇𝐸𝐺𝑇𝐻𝐼 + 𝐾𝑇𝐸𝐺(𝑇𝐻 − 𝑇𝐶) +
1

2
𝐼2𝑅𝑇𝐸𝐺]

= [(𝑆𝑝 + 𝑆𝑛)𝑇𝐻𝐼 + (𝐾𝑝 + 𝐾𝑛)(𝑇𝐻 − 𝑇𝐶) +
1

2
𝐼2(𝑅𝑝 + 𝑅𝑛 + 𝑅𝑐𝑜𝑛𝑡𝑎𝑐𝑡)] (8)

 

The resistance of the module (RTEG) is collected form of the resistance of n-element (Rn), p-

element (Rp), and the contact resistance (Rcontact). 
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Together, the power produced by the module (PTEG) can be represented as: 

𝑃𝑇𝐸𝐺 = 𝑄𝐻 − 𝑄𝐶 = 𝑆𝑇𝐸𝐺(𝑇𝐻 − 𝑇𝐶)𝐼 − 𝐼2𝑅𝑇𝐸𝐺 (9) 

A voltage of the module: 

𝑉𝑇𝐸𝐺 = 𝑆𝑇𝐸𝐺(𝑇𝐻 − 𝑇𝐶) − 𝐼𝑅𝑇𝐸𝐺 (10) 

8. Power Output Analyses of Fabricated 4-Elements TE Module 

The lab-scale testing was initially undertaken on the fabricated 4-element TE module. A hot 

plate was used for this purpose. The hot side of the module was kept on a hot plate, and the 

temperature of the hot-plate was raised to 773 K with a uniform heating rate. Open-circuit voltage 

was measured on the module's cold side during the heating-up process. To measure the output 

voltage, the Pt-lead wires were attached to the module's cold side. The output voltage was 

recorded by a digital multimeter-data acquisition system in the open air without any coolant to 

understand the module's performance in standalone conditions. The four-probe Delta mode 

technique measured the module resistance, including internal and contact resistance. The voltage 

terminals were attached to the same position behind the current airports to measure the 

resistance. Figure 2 shows the power generation properties of the 4-element module. The I-V 

characteristics showed a maximum intercept at 0.212 V with the hot-side temperature (TH) of 773 

K at open air (Figure 2a). The P-V plot showed that the full power achieved was 11 mW (Figure 2b). 

Figures 2c and 2d show the variation of open circuit voltage, closed circuit voltage (I = 20 mA), and 

powder output with varying temperatures. The power obtained under a closed circuit is 4 mW at 

500°C. 

 

Figure 2 Calculated (a) module voltage and (b) module power output of fabricated 4-

element thermoelectric module under various hot-source temperatures. (c) Open 

circuit voltage and output voltage calculated at 20 mA current flow and (d) power 

output with temperature variation. 
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9. Power Output Analyses of Fabricated 36-Elements TE Module 

To understand how scaling up affects the power generation characteristics of the 

thermoelectric module, the 36-elements module was fabricated similarly with each element 

dimension of 3 mm × 3 mm × 5 mm. The module was tested under the same conditions as of 4-

elements module. Figure 3 shows the power generation properties of a 36-elements module with 

hot-side temperatures up to 500°C. The I-V plot conducted a maximum intercept at 0.85 Volt with 

a hot-side temperature (TH) of 500°C where the other side has been experiencing the open-air 

atmosphere (Figure 3a). The P-V characteristics showed that the maximum power obtained under 

this condition is up to 18 mW (Figure 3b). Figures 3c and 3d showed the variation of open circuit 

voltage, closed circuit voltage (I = 20 mA), and powder output with varying temperatures. The 

power obtained under a closed circuit is 13 mW at 500°C. 

 

Figure 3 Calculated (a) module voltage and (b) module power output of fabricated 4-

element thermoelectric module under various hot-source temperatures. (c) Open 

circuit voltage and output voltage calculated at 20 mA current flow and (d) power 

output with temperature variation. 

10. Challenges and Future Directions 

There were a lot of challenges on thermoelectric modules that need to be addressed for 

efficient transformation of heat to electricity. The significant advantage is that the figure-of-merit 

of thermoelectric materials gets halved in the module figure-of-merit due to parasitic losses such 

as thermal and electrical resistance at the contact points and thermal losses from the side of the 

thermoelectric elements. Therefore, the fabrication of the module to reduce the heat losses on 

the one hand and overcome the contact resistance on the other are the daunting tasks to achieve 
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the maximum performance from the thermoelectric module. Thus, the materials development to 

obtain high ZT alone cannot solve the practical problem of applying thermoelectric materials. 

Engineering thermoelectric modules with nominal heat loss and contact resistance is one of the 

aspects of futuristic device technology. 
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