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Abstract 

Rhodamine (RhB) adsorption was carried out on MCM-41 and MCM-41 calcined. The effect of 

parameters such as pH was investigated. The reusability potential of MCM-41 was also 

established and the mechanism of RhB adsorption was discussed. MCM-41 was synthesized 

and calcined, with all samples characterized by X-Ray Diffractometry, X-ray Fluorescence by 

Dispersive Energy, Infrared Spectroscopy, Scanning Electron Microscopy, and 

Thermogravimetric analysis. The results of the characterization techniques performed 

confirmed the formation of the MCM-41 structure. During the adsorption of the RhB dye, high 

removal percentages and rapid kinetics occur in an acid medium. The adsorption kinetics was 

evaluated by two models: pseudo-first order and pseudo-second order. The pseudo-first-

order kinetic model represented the interaction mechanism well during RhB adsorption by 

MCM-41. However, the pseudo-second-order model better represented the interaction 
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mechanism during RhB adsorption by MCM-41 calcined. The regeneration study found that 

the MCM-41 and MCM-41 calcined were maintained at 80 and 90% of their original condition 

after three successive regeneration cycles. The overall results show that the process could be 

used as a strategy for environmentally sustainable wastewater treatment.  
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1. Introduction 

Pollution from dye effluents has become a serious environmental problem during the last decade, 

due to the increasing use of dyes in various applications [1]. The worldwide textile industry is the 

main source of these effluents [2, 3]. Dyes are organic compounds used to color different substrates 

and are raw materials used in many manufacturing processes, such as: textiles, paper, plastic, 

leather, food, and pharmaceuticals [4, 5]. 

RhB is a basic, reddish dye in the Xanthene class, and is highly soluble in water [6]. Xanthene is 

an organic compound based on a class of dyes; such as fluorescein, eosins, and rhodamines derived 

from this structure. Xanthene dyes are among the oldest and most used synthetic dyes. Xanthene 

dyes tend to be fluorescent, giving bright colors, from pinkish yellows to bluish reds [7]. These dyes 

are similar in color and exist in wastewater effluents; therefore, their removal and determination 

are important [8]. RhB is widely used as a dye in textiles, food [1, 9], medicine (for animals), and in 

coloring biological samples [8]. It is also a fluorescent marker for water [6]. The improper disposal 

of this dye prevents sunlight from penetrating water, leading to serious environmental problems 

and being toxic and carcinogenic to living beings [10]. Therefore, its removal from aquatic 

wastewater is essential [11]. 

The adsorption method has been used in several ways and with different adsorbents to remove 

the RhB dye from an aqueous solution [1, 12, 13]. Adsorption is one of the superior processes due 

to its cheapness, ease of operation, high efficiency, and rapidity. The adsorption technique removes 

organic dyes from aqueous solution by employing efficient materials such as SBA-15, MOFs, MCM-

41, etc. [14]. The MCM-41 molecular sieve is a crystalline solid with a highly-defined hexagonal 

structure, a surface area greater than 700 m²/g, excellent thermal stability, and a structure that can 

be modified in several ways [15, 16]. These materials have many applications as adsorbents [17-20], 

especially about the adsorption of dyes [21-25]. 

The use of the adsorption process as a dye removal technology stands out especially due to the 

wide variety of adsorbent materials that can be applied. The effective separation of several 

contaminants by the adsorption process generally requires the porous structure of the adsorbents, 

which contributes to the improvement of their surface area and adsorption capacity [26]. 

This study is part of a line of research developed at the New Materials Development Laboratory 

(LABNOV) at the UFCG. This line of research covered a series of studies on the synthesis and 

characterization of molecular sieves, which could be used in various processes [27-40]. This work 

was carried out in two stages, the first stage presented the obtained results on the characterization 

of both MCM-41 and MCM-41 calcined. The second part investigated the effect of parameters such 
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as pH. The adsorption kinetics for RhB using MCM-41 and MCM-41 calcined were also studied. 

Furthermore, a regeneration study was carried out to investigate the reusability of the adsorbent. 

To our knowledge, there is no study about the adsorption of the RhB on MCM41. 

2. Materials and Methods 

2.1 Materials  

Cetyltrimethylammonium Bromide (CTAB, 98%), ammonium hydroxide (NH4OH, 29%) and 

tetraethylorthosilicate (TEOS, 98%) were purchased from Sigma-Aldrich (MERCK). The main 

properties of dye RhB are summarized in Table 1. 

Table 1 Overview of physicochemical properties of the RhB. 

Molecular Formula Chemical structure Molecular mass (g/mol) 

C28H31N2O3Cl 

 

479.01 

2.2 Synthesis of Silica MCM-41 

MCM-41 was prepared using the hydrothermal crystallization method. The proposed method 

was based on changes made to the procedure reported by the authors [41]. The method was as 

follows: (A) CTAB was dissolved in deionized water at 50°C under agitation for 30 min. The solution 

was cooled to approximately 25°C; (B) NH4OH was added into the solution with stirring for 15 min; 

(C) Then, the TEOS was introduced; (D) After 2 h, the reaction mixture was submitted to 

hydrothermal treatment at 30°C for 24 h; (E) The resulting product was filtered, washed with 

deionized water and then the material was dried at 60°C for 24 h; (F) Material was calcined in a 

muffle furnace from room temperature up to 550°C, using a 5°C/min heating ramp remaining at the 

final temperature (550°C) for 7 h. 

2.3 Characterization 

X-ray diffraction patterns were carried out on a Shimadzu XRD 6000 using Cu Kα radiation at 40 

kV/30 mA, with a goniometer velocity of 2°/min and step of 0.02° in the 2θ range from 3.0° to 10.0°.  

To obtain the infrared, IR VERTEX 70 equipment from BRUKER was used. The samples in the form 

of tablets were dried in an oven in advance and placed in the sample holder. The IR spectra were 

obtained at wavelengths in the 400-4000 cm-1 range with a resolution of 4 cm-1. To identify and 

quantify the chemical composition of the synthesized samples, an S2 Ranger Bruker dispersive 

energy X-ray spectrophotometer was used. A VEGA TESCAN scanning electron microscope was used 

to perform microscopy on the samples. The powder samples were covered with a thin layer of gold 

by a metallizer and fixed to support with carbon adhesive tape. Thermogravimetric analysis was 

performed in a Shimadzu DTG-60H Thermal Analyzer in a nitrogen atmosphere with a 50 mL/min 
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gas flow. The sample was heated from room temperature up to 1000°C, at a heating rate of 

10°C/min. 

2.4 Batch Adsorption Experiments 

2.4.1 Influence of pH  

The influence of the pH of the RhB dye solution on the adsorption capacity of each sample was 

tested with a concentration of 15 mg/L of dye, adjusted to different pH levels. For each sample, 30 

mL of dye was used with the mass of each sample being 0.3 g. Samples were prepared with a pH 

ranging from 1 to 14 in intervals of one unit, totaling 14 samples. The samples were acidified and 

made alkaline using 3 M hydrochloric acid and 1 M sodium hydroxide solutions. The pH of the dye 

solution is a parameter of significant influence in determining the adsorption capacity [42]. 

2.4.2 Adsorption Kinetics 

RhB adsorption kinetics were acquired in batch experiments. These experiments were performed 

at 25°C using a solution of 15 mg/L of RhB, which was put in contact with 0.3 g of samples. 

Adsorption experiments were conducted in conical flasks at controlled pH (1.0) and under a shaking 

table at 200 rpm. Aliquots from the solution were collected at time intervals (20 min) between 0 

and 180 min. Afterward, the solutions were centrifuged and analyzed for residual dye concentration 

with a UV-vis spectrophotometer. 

The concentration of RhB dye was determined using a UV-VIS 1600 spectrometer with a 

wavelength of 554 nm [43]. The removal percentage (R%) and the quantity of adsorbed RhB (q) 

were obtained using Equations 1 and 2, respectively. 

𝑅% = (
𝐶𝑖 − 𝐶

𝐶𝑖
) ∗ 100 (1) 

𝑞 =
𝑉

𝑚
(𝐶𝑖 − 𝐶) (2) 

where: R% = removal percentage; q = quantity of adsorbed RhB (mg of RhB/g of adsorbent); V = 

volume of dye solution (L); m = mass of adsorbent (g); Ci = initial concentration of dye solution (mg/L); 

and C = final concentration remaining after the batch process (mg/L). 

2.5 Evaluation of Regenerated MCM-41  

The capacity of an adsorbent material to be regenerated and reused is key to its ability to be 

used in wastewater treatment. To check the ability to reuse MCM-41, repeated runs were 

performed at the optimum conditions found and adapted by other authors [44]. Each cycle 

consisted of a 1.0 g sample with 100 mL of dye at pH 1, stirred for 30 min. Regeneration was 

performed by washing each sample with 100 mL of deionized water and 50 mL of methyl alcohol 

(MeOH). After washing, the samples were filtered and dried at 60°C for 24 h.  
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3. Results 

3.1 Characterization  

Figure 1 shows the diffractogram of MCM-41 obtained from X-ray diffraction. Figure 2 presents 

the FTIR spectra of MCM-41 and MCM-41 calcined in the range 4000-500 cm-1 evaluated at room 

temperature. 

 

Figure 1 X-ray diffraction patterns of the MCM41. 

 

Figure 2 FTIR spectra of the MCM-41 and MCM-41 calcined. 

The XRD of the synthesized MCM-41 molecular sieve exhibits an intense peak at 2θ = 2.2° 

corresponding to the plane (1 0 0) and two to three small peaks between 3.5° and 6.0° due to the 

planes (1 1 0), (2 0 0) and (2 1 0) that show the presence of ordered mesoporous hexagonal MCM-

41 [41, 45-48].  

In Figure 2 (MCM-41 and MCM-41 calcined), the spectra show bands in 940 and 950 cm-1 

corresponding to angular vibrations of the Si-OH bond of the silanol groups existing in the MCM-41 

structure. The spectra of the synthesized and calcined samples show bands in the 500-4000 cm-1 

region characteristic of the fundamental vibrations of the functional groups present in the 

structures of the molecular sieves MCM-41 [46]. It is possible to observe the presence of a main 

band at 1050 and 1066 cm-1 composed of another secondary band, less developed at 1025 and 1190 

cm-1, which corresponds to asymmetric stretches of the Si-O-Si connection [47, 48]. The spectra also 

show vibrational bands at 1465 and 2920 cm-1 attributed to the stretches between CH of the CH2 

and CH3 groups, which correspond to the presence of the surfactant, cetyltrimethylammonium 
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bromide (CTAB) which is occluded in the pores of MCM-41 [49]. MCM-41 calcined shows a 

broadband without definition corresponding to the template's removal. 

Chemical composition percentage concentrations determined by Dispersive Energy X-Ray 

Fluorescence (ED-XRF) for MCM-41 showed a high silicon dioxide (SiO2) content, 99.85% and some 

impurities. 

Three mass loss events can be observed from the thermogravimetric curve of the synthesized 

MCM-41 shown in Figure 3. The first event below 150°C related to the desorption of physisorbed 

water in the pores of the material that corresponds to 4% of mass loss, the second in the range of 

150-320°C attributed to the decomposition of the driving ions (CTAB) where the greater mass loss 

of 31% and the third between 400-550°C due to the residual removal of CTAB, resulting from the 

secondary condensation process of the silanol groups corresponding to 13% of the total loss [48-

52].  

 

Figure 3 TG/DTG curves of the MCM-41. 

The Morphology of MCM-41 (Figure 4) is similar to those of authors [53] who synthesized the 

MCM-41 using NH4OH at different temperatures. The particles have spongy, irregular, and non-

uniform spherical clusters. 

 

Figure 4 Micrograph of the MCM-41. 

Figure 5 (a) shows the adsorption and desorption curves of N2 for MCM-41 calcined, and (b) 

shows the pore size distribution obtained through the BJH method. 
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Figure 5 N2 adsorption and desorption of the MCM-41 calcined isotherm and pore size 

distributions. 

According to the IUPAC classification, the samples exhibited type IV isotherms and different 

hysteresis loops [54]. According to IUPAC isotherms of this type are typical of mesoporous materials 

with multilayer adsorption cycles. Nitrogen adsorption occurs on the material surface at a relative 

pressure (P/P0) below 0.2. Then the monolayer is formed, and multi-layers develop over it. From 

(P/P0) 0.4 there is an increase in the capacity of adsorbed nitrogen, called hysteresis, associated with 

capillary nitrogen condensation in the mesopores [48]. This behavior is observed for both materials. 

In the final part of the isotherm, the pore is saturated after capillary condensation. A small amount 

of N2 was adsorbed on the outer walls, resulting in a maximum volume of adsorbed gas of 

approximately 450 cm³/g for MCM-41. 

The behavior of the MCM-41 isotherm exhibited H4-type hysteresis that corresponds to porous 

materials made up of narrow, slit-shaped pores. The pore diameter distribution showed a peak at 

around 2.70 nm attributed to the micropore region and a peak at 36 nm attributed to the 

mesoporous region of the MCM-41. 

Table 2 shows the values obtained for the network parameter a0 (nm) which can be calculated in 

a simplified way using the formula a0 = 2d100.(31/2)-1, where d100 corresponds to the interplanar 

distance in the (1 0 0) diffraction plane. The surface area, SBET (m²/g), was obtained using the BET 

method and the average pore diameter, Dp (nm), was obtained using the BJH method. Vp (cm³/g) 

corresponds to the pore volume of the samples and Wt corresponds to the nanometer thickness of 

the structural wall, calculated as the difference between the network parameter a0 and the pore 

diameter, Dp [55, 56]. 

Table 2 Synthesis parameters and characterization of the MCM-41 calcined. 

 SBET (m²/g) Dp BJH (nm) Vp (cm³/g) a0 (nm) Wt (nm) 

MCM-41 726 3.53 0.64 4.87 1.34 



Catalysis Research 2023; 3(1), doi:10.21926/cr.2301010 
 

Page 8/18 

According to Table 2, the BET surface area of MCM-41 calcined is 726 m²/g, a value relative as 

shown in the literature [57, 58]. The wall thickness of the MCM-41 calcined is by the authors 

exhibiting a value between 1 and 1.5 nm [16]. This thin wall takes the material to low chemical and 

hydrothermal stability. 

3.2 Batch Adsorption Experiments 

3.2.1 Influence of pH 

The pH of the aqueous medium is an important factor that can modify RhB adsorption. The 

chemical characteristics of both adsorbent and adsorbate can vary depending on the pH. The pH of 

the solution affects the degree of ionization and speciation of various dyes, which subsequently 

changes the reaction kinetics and equilibrium characteristics of the adsorption process [20, 59]. 

Experiments were performed to study the influence of the pH on the adsorption capacity of 

materials, varying the pH from 1 to 13. The experimental results for the RhB adsorption on both 

samples (MCM-41 and MCM-41 calcined) are shown in Figure 6. 

 

Figure 6 Effect of pH on the adsorption of RhB by MCM-41 and MCM-41 calcined. 

For the MCM-41 (Figure 6), the internal pore region is obstructed by the template, meaning that 

the adsorption of the dye can be effective only on the structure's external surface. MCM-41 showed 

a low adsorption removal, mainly at pH 7, 9, and 11. It was noted that the most favorable adsorption 

of RhB dye occurs at acidic pH levels, according to the literature [23, 59, 60]. 

Results for the MCM-41 calcined (Figure 6) indicate that the effect of pH was not so prominent. 

As can be seen, the MCM-41 calcined adsorbs and removes high percentages of RhB dye at almost 

all pH levels, from acidic to basic. This can be attributed to the fact that the adsorption occurred 

both on the surface of the MCM-41 calcined and in the internal pore region, due to the greater 

number of active sites on the MCM-41 calcined. 

Figure 6 clearly shows that the adsorption of RhB onto the MCM-41 is quite different from the 

adsorption of the dye onto the MCM-41 calcined.  
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3.2.2 Dye Adsorption 

It must be noted that the surface of the adsorbent changes its polarization according to the pH 

value of the solution and the isoelectric point (IEP) of the solid [61]. The pH chosen for the tests was 

lower than the isoelectric point pHiep of MCM-41, which was 1. When the pH of the solution is lower 

than pHiep, a material surface is positively charged, and the sorption of anionic species to a positively 

charged sorbent occurs through the Coulomb force of attraction. The opposite occurs at higher pH 

values [25], when decreasing dye adsorption levels may be attributed to the competition of OH- 

with the dye ions for the adsorption sites on the material. The increased number of hydroxyl groups 

decreases the number of positively charged sites and reduces the attraction between the dye and 

the adsorbent surface [24]. As described in the literature [20], the complex structure of some dyes 

causes multiple possible interactions among dye molecules and adsorbents. 

3.2.3 Adsorption Kinetics 

Adsorption kinetics of the RhB dye was determined from batch experiments with constant 

agitation. Kinetic studies for the adsorption of RhB dye were performed at a 15 mg/L concentration. 

The pH was adjusted to 1 and 0.3 g of MCM-41 was used in each batch. Figure 7 and Figure 8 show 

the kinetic curves obtained from the RhB dye adsorption tests for samples (MCM-41 and MCM-41 

calcined), that fit the pseudo-first-order and pseudo-second-order models. 

 

Figure 7 Adsorption kinetics of RhB dye onto MCM-41 and non-linear fits: pseudo-first 

order and pseudo-second order. 
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Figure 8 Adsorption kinetics of RhB dye onto MCM-41 calcined and non-linear fits: 

pseudo-first order and pseudo-second order. 

Rapid adsorption was observed in the first 20 minutes of contact time between the RhB dye 

solution and the material, after which the adsorption equilibrium was established, with few 

variations in the adsorption capacity until the final contact time of 180 minutes (Figure 7). MCM-41 

showed a maximum adsorption capacity of 1.50 (mg/g) in 20 min. The pseudo-first-order was the 

kinetic adsorption model that best fit the MCM-41 behavior, presenting a good coefficient of 

determination values. In contrast, the second-order model showed a lower determination 

coefficient (R2) due to the low interaction between the chemical species adsorbed on the surface of 

the adsorbent and the amount adsorbed at steady state [62, 63]. 

According to the data presented in Figure 8, excellent adsorption was observed for the calcined 

samples. It is possible to state that, in the first 15 minutes of contact time between the RhB dye 

solution and the material, the adsorption equilibrium was established, as few variations were seen 

in the adsorption capacity until the final contact time of 180 minutes. MCM-41 calcined had a 

maximum adsorption capacity of 1.59 (mg/g) in 80 minutes of contact. kinetic model that best fit, 

and obtained the best value for the coefficient of determination for the MCM-41 calcined, was the 

pseudo-second-order model, due to the greater adsorbate-adsorbent interaction characteristic of 

the chemisorption that occurs in this model [64]. 

Table 3 shows the kinetic parameters of the pseudo-first order and pseudo-second order models 

obtained from the non-linear model generated by the Origin 8.0® software. 

Table 3 Kinetic model parameters for RhB dye adsorption onto MCM-41 and MCM-41 

calcined. 

Models Equations 
Parameters 

MCM-41 Calcined MCM-41 

Pseudo-first order 𝑞 = 𝑞𝑒𝑞 . 𝑒𝑥𝑝
(−𝐾1𝑡) 

R2 = 0.691 

K = 1.095 

qe = 1.583 

R2 = 0.847 

K = 0.222 

qe = 1.481 
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Pseudo-second 

order 
𝑞 =

𝐾. 𝑞𝑒𝑞
2 . 𝑡

(1 + 𝑡. 𝐾2. 𝑞𝑒𝑞)
 

R2 = 0.926 

K = 4.999 

qe = 1.590 

R2 = 0.578 

K = 0.625 

qe = 1.500 

3.2.4 Evaluation of Regenerated MCM-41 and MCM-41 Calcined 

Reusing the adsorbents (MCM-41 and MCM-41 calcined) was investigated under optimized 

conditions. Figure 9 shows the data on the removal percentage in each adsorption cycle. 

 

Figure 9 Recyclability tests adsorbed with RhB. 

Results in Figure 9, for the reuse of each sample in three consecutive cycles of adsorption of the 

RhB dye at a pH of 1, showed that the adsorption capacity decreased considerably from the first to 

the second cycle and from the second to the third cycle, for both samples. MCM-41 calcined had a 

higher adsorption capacity than the as-synthesized MCM-41, for the three reuse cycles. The 

molecular structure of RhB (dimension ~ 1.20 nm) [65] compared to the pore diameter (3.5 nm) of 

the MCM-41 calcined, provides a favorable condition for the entry of this dye molecule into the 

pores of the adsorbent. Therefore, washing MCM-41 calcined with methanol does not compromise 

the structure of the mesoporous silica, making this material suitable for reuse up to 3 times after 

regeneration. 

The data obtained in this study on the adsorption capacity of the materials from the adsorption 

of the RhB dye are shown in Table 4 along with other data from the literature.  

Table 4 Various types of adsorbents for the removal of RhB and their maximum 

adsorption capacity. 

Material 
Adsorbate dye 

C0 (mg/L) 

Regeneration/ 

N° of cycles 

Adsorption 

capacity (mg/g) 
Reference 

MCM-41 C0 = 15 pH = 1 
Methanol/ 

n = 3 
1.56 This work 
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MCM-41 Calcined C0 = 15 pH = 1 
Methanol/ 

n = 3 
1.74 This work 

3A zeolite C0 = 10 pH = 9 - 0.74 [66] 

MCM-22 zeolite 
C0 = 1.10 × 10-4 

mol/g 
- 1.11 [67] 

Reusability experiments were carried out to investigate the performance of the MCM-41. At the 

end of the adsorption process, the saturated sorbent was separated by filtration, and then 

regenerated using methanol, followed by drying at 60°C for 24 h. The regenerated adsorbent was 

reused in a subsequent run under the same conditions. 

Based on the adsorption RhB, MCM-41 and MCM-41 calcined were efficient, removing up to 80% 

of the RhB. The results of adsorption capacity for RhB were 1.35 and 1.52 mg/g for MCM-41 and 

MCM-41 calcined, respectively. 

Lower results were found in the literature [66, 67]. However, it was noted that the MCM-41 and 

MCM-41 calcined (present study) removed more than the zeolites. Two factors can explain this fact: 

i) different structures; and ii) different experimental conditions. Compared with the results found in 

the literature, the MCM-41 and MCM-41 calcined results produced in this study were satisfactory 

[66, 67]. 

3.3 Possible Adsorption Mechanisms 

The adsorption of RhB dye onto the MCM-41 and MCM-41 calcined was studied to understand 

the influence of surfactant CTAB on the adsorption behavior. It was observed that several factors 

significantly influence the adsorption of dyes on mesoporous structures, such as the dye structure 

itself, the textural and chemical properties of the adsorbent surface, and the specific interaction 

between the adsorbent surface and the adsorbate [68]. The structure of the MCM-41 consists of 

SiO2 tetrahedra ending in siloxane (Si–O–Si) or silanol (Si–OH) groups on the surface [18].  

Therefore, it is understood that the adsorption of RhB dye on MCM-41 calcined was higher than 

that obtained on MCM-41 due to the CTAB chain affecting the adsorption behavior. It was shown 

that mesoporous materials containing surfactant could limit and restrict the diffusion of molecules 

within the phase of the materials [69]. Another way to interpret the above results may be with the 

difference existing in the interactions between basic dyes and surface hydroxyl groups of MCM-41. 

RhB possesses polar atoms (N), so the interaction between RhB and MCM-41 may be stronger. This 

may induce a collapse in the pore structure of MCM-41, and then create a sharp decrease in the 

adsorption capacity. On the other hand, the free silanol groups, after calcination, found on the 

surface of mesoporous silica, can interact with the nitrogen and hydrogen groups of the dye through 

hydrogen bonding [70].  

After drying, the regenerated samples from the third RhB adsorption cycle were analyzed 

through FTIR. Figures 10 (a) and (b) show the FTIR spectra in the range 4000-500 cm-1 evaluated at 

room temperature. 

Figure 10 (a) shows the well-known vibration mode of the -CH2 and -CH3 groups of the CTAB 

surfactant of MCM-41 (2935 cm-1). In Figure 10 (a) and (b), the spectra in the range between 3409-

1635 cm-1, corresponding to the axial deformation of the C-H bond and the aromatic bonds of RhB 

[68]. In other bands, at 1190-1205 and 940-950 cm-1, the RhB functional groups are located in the 
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same regions as those that characterize the groups of MCM-41, indicating a possible interaction of 

the dye with the silanol groups [71, 72]. 

 

Figure 10 FTIR spectra of the MCM-41 (a) calcined (b) after adsorption of RhB. 

4. Conclusions 

According to the XRD, ED-XRF, FTIR, and nitrogen adsorption isotherm results, MCM-41 and 

MCM-41 calcined were effectively synthesized and produced a mesoporous material. This study 

showed that the MCM-41 and MCM-41 calcined are effective adsorbents for removing RhB dye from 

an aqueous solution. The results indicate that the template played an important role in adsorption 

due to its strong hydrophobic properties. The effect of parameters such as pH was studied, finding 

that acidic conditions favored the RhB dye removal process. MCM-41 showed a greater adsorption 

capacity at acidic pH levels in all tests performed. Pseudo-first-order and pseudo-second-order 

kinetic models were fitted to the experimental data. For the MCM-41 system (RhB), The pseudo-

first-order model was a bit better for the MCM-41 system (RhB), but for the MCM-41 calcined 

system (RhB), the pseudo-second-order model fit better. The regeneration of MCM-41 and MCM-

41 calcined performed well with RhB after three successive processes. Therefore, MCM-41 and 

MCM-41 calcined can be used as effective adsorbents for RhB, and also demonstrated favorable 

regeneration capacity, which is relevant when considering their potential use for industrial sector 

applications, as well as being an important strategy for environmental sustainability.  
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