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Abstract 

A new chiral cyclopalladated ferrocenyl imine catalyst (called 4a2) was designed and 

synthesized, and its self-assembly catalytic polymeric brush supported on silicon (denoted as 

Si@PB4a2) was also fabricated by surface-initiated atom transfer radical polymerization 

(ATRP) and characterized. The catalytic properties of monomer 4a2 in homogeneous and 

Si@PB4a2 in heterogeneous in Heck and Suzuki cross-coupling were investigated, respectively. 

They exhibited higher catalytic activity in Heck, and Suzuki coupling reactions in homogeneous 

and heterogeneous using water as the solvent, and the catalytic activity of Si@PB4a2 with a 

turn of number (TON,11933 molproduct/molcat) in heterogeneous was 200 times more than that 

of 4a2 in homogeneous due to the ordered arrangement of the catalyst supported on silicon. 

Si@PB4a2 had high recyclability, i.e., at least eight runs and six runs, in Suzuki and Heck 

coupling reactions, respectively. 

Keywords  

Palladacycle; self-assembly; chiral catalyst; polymer brush; Suzuki; Heck coupling reaction 

http://creativecommons.org/licenses/by/4.0/
mailto:765304621@qq.com
mailto:liujie_88_1125@126.com
mailto:ljp-zd@zzu.edu.cn
mailto:lts34@zzu.edu.cn
mailto:lts34@zzu.edu.cn
https://www.lidsen.com/journals/cr/cr-special-issues/Palladium-Cataly


Catalysis Research 2022; 2(2), doi:10.21926/cr.2202010 
 

Page 2/9 

 

1. Introduction 

Heterogeneous catalyzed reactions play an important role not only in research but also in the 

chemical and pharmaceutical industry [1], where palladiumcatalyzed coupling reactions are one of 

the most powerful methods in organic synthesis [2]. Although coupling reactions catalyzed by a 

heterogeneous Pd catalyst have been well developed, there are still some problems to be solved, 

such as the relatively low activity, a high loading, high temperature, organic solvents, and difficulty 

in recycling [3]. Therefore, designing and preparing a novel heterogeneous catalyst are crucial for 

promoting activity and sustainable chemistry [4]. Catalytic activity highly depends on the structure 

of the ligands, and designing ligands properly is still a challenge [5]. Chiral ligands play an important 

role in material science and are the most powerful protocols for improving the catalytic activity [6-

10], indicating that combining the chiral moiety and certain functional groups in a ligand can 

increase the catalytic activity [11]. Also, the arrangement and orientation of catalysts on supports is 

another important factor to enhance the catalytic activity [12, 13].  

Arranging chiral catalysts on support by Langmuir-Blodgett films and Self-assembly (SAM) is an 

ideal way to investigate their catalytic properties at a molecular level [14-18]. Surface-initiated living 

radical polymerization (SI-LRP) has attracted much attention because of its excellent control of 

molecular weight and polydispersity [19, 20]. Schiff-base groups, which can coordinate many 

transition metals, are usually used to get organometallic catalysts, showing efficient catalytic 

properties due to their diversity and stability [21-24]. Cyclopalladated ferrocenylimine and its self-

assembly monolayer are the most efficient catalysts in Suzuki coupling reactions [25, 26]. Catalytic 

monolayers with different ligands with Schiff-base groups and their complexes are used to catalyze 

coupling reactions [13, 14, 27-37]. However, a few studies on chiral cyclopalladated brushes 

immobilized on supports in a coupling reaction in heterogeneous were reported [38-41].  

In this study, a new chiral planar cyclopalladated imine was synthesized, and its self-assembly 

catalytic polymeric brush anchored on silicon was fabricated by SAM and ATRP. Its catalytic 

performance was investigated by performing Heck and Suzuki coupling reactions as a template.  

2. Results and Discussion 

2.1 Subtitle 1  

Chiral cyclopalladated imine monomer (4a2) was prepared (Scheme 1) [15] and characterized (SI, 

1. Experimental Section; Crystal structure of 3a2 is presented in Table S1 and Table S2). Si@PB4a2 

was fabricated (Scheme 2) [38, 39]. (SI, 1. Experimental section) 
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Scheme 1 The synthesis route of chiral cyclopalladated imine (R, p 4a2). 

 

Scheme 2 The fabrication route of chiral cyclopalladated imine polymer brush on a 

silicon wafer (Si@PB4a2).  

The water contact angle (WCA) of the hydrophilic substrate (Si@OH) was 7.0°and changed to 

53.0°aftersalinization (Si@APTES) [42], and then increased to 87.8°when the hydrophilic moiety of 

the initiator was added to the surface of silicon (Si@APTES/I) (Figure S1). Finally, the WCA was 68.0° 

after 4a2 was added due to polymer brush formation (Si@PB4a2) by ATRP. The results showed that 

the properties of the surface varied during the fabrication of the catalytic polymer brush. AFM 

images of hydrophilic silicon showed a flat morphology with ca. Ra 0.690 nm (Figure 1A). Ordered 

surface images with a ca. Ra 1.101 (Figure 1B) was observed after salinization [43]. The AFM images 

obtained after initiator addition also exhibited a homogeneous surface with a higher Ra 1.919 nm 

(Figure 1C), which increased to Ra 2.156 nm after 4a2 was added (Figure 1D). The results of AFM 

suggested that the self-assembly step of Si@PB4a2 occurred, resulting in morphological changes. 

 

Figure 1 The AFM images for the fabrication process. A: Si@OH; B: Si@APTES; C: 

Si@APTES/I; D: Si@PB4a2.  
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UV spectra in the fabricating steps of Si@PB4a2 were measured (Figure S3). No absorption 

occurred for Si@OH (black line). Absorption was observed at about 220-230 nm designed to the 

amine for Si@APTES (red line). The peak at about 230 nm appeared (green line) after modification 

by the initiator (Si@APTES/I). The characteristic absorption peak of the ferrocenyl group in 

Si@PB4a2 (blue line) appeared after 4a2 was added. The electrochemical properties at different 

steps of ITO@PB4a2 were also measured (Figure S4). An oxidative wave at about -0.15 V denoted 

to amine appeared after grafted APTES (red line) and disappeared when grafted with the initiator 

(blue line). The redox waves of ferrocene appeared, indicating that ATRP occurred on the surface of 

the substrate (green line) [38]. These results showed that a polymer brush was prepared. The 

content of palladium was 8.38 × 10-6 mmol/cm2, measured by ICP-AES. The molecular weight was 

recorded (Mn = 6,518; Mw/Mn = 1.19). 

The optimized reaction conditions in the Suzuki coupling reaction catalyzed by 4a2 in 

homogeneous were determined (Table S3) and were: Na2CO3, H2O, 80 °C, and 12 h. Under optimized 

reaction conditions, substrate screening was evaluated in Suzuki coupling reactions (Table S4). 

Higher and moderate yields were obtained for aryl bromide with electron repulsion or withdrawing 

groups (Table S4, entries 1-10) but lower TON values. Catalytic properties of 4a2 in Heck coupling 

reaction in homogeneous was also investigated (Table S5), and the optimized reaction conditions 

were: Na2CO3, H2O, 100 °C, and 12 h. Under optimized conditions, substrate screening was 

conducted (Table S6). Higher yields could be achieved with benzyl bromides bearing withdrawing 

groups at p-or m-substitute (Table S6, entries 1-3,5), except for o-substitute, due to the steric effect 

(entries 4,6). However, when benzyl bromides had an electron repulsion group, lower yields of the 

corresponding products were obtained due to the electronic effect (Table S6, entries 7-9).  

Catalytic performances of Si@PB4a2 in Suzuki and Heck coupling reactions in heterogeneous 

were investigated. Considering that catalytic activity might be influenced by the orientation of 

catalytic monolayer, catalytic properties of Si@PB4a2 in Suzuki and Heck coupling reactions of p-

bromotoluene with phenylboronic acid or styrene were investigated. Under the optimized 

conditions (Table S7, entry 7; Table S9, entry 7), similar results were also obtained in Suzuki coupling 

reactions (Table S8) and Heck coupling reactions (Table S10), in which higher TON values were 

obtained compared to those of 4a2. The catalytic activity of Si@PB4a2 was 200 times more than 

that of 4a2, which showed that proper arrangement in self-assembly film could improve the 

catalytic activity. Reusability of Si@PB4a2 was also investigated [24], showing that eight recycles 

and six recycles could be achieved without significant loss of activity in the Suzuki coupling reaction 

and Heck coupling reaction, respectively (Figure S5 and Figure S6).  

The orientation of the catalyst was related to its catalytic activity. The orientation of catalyst in 

the self-assembly film made the substrate easier to approach the active site of catalyst (Scheme 3). 

Interestingly, the ligand having much bulk was a crucial factor for the coupling reactions, which was 

due to the electron-richness and the steric of the triphenylphosphine ligands and chiral structure 

[10].  

mailto:S1.Si@Fc-Pd
mailto:S1.Si@Fc-Pd
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Scheme 3 The proposed orientation of Si@PB4a2 (inset: AFM image of the polymer 

brush).  

3. Conclusions 

The catalytic activity of Si@PB4a2 in Suzuki and Heck coupling reactions in homogeneous and 

heterogeneous with water as the solvent was investigated. Si@PB4a2 exhibited higher activity in 

heterogeneous than 4a2 in homogeneous. Recyclability of Si@PB4a2 was at least eight times and 

six times in Suzuki and Heck coupling reactions, respectively. These results demonstrated that the 

advantages of the ordered chiral catalytic monolayer can enhance the activity by a combination of 

orientation and proper chiral groups. 
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1. Figure S1: WDCAs at different preparation steps in the fabrication of the polymer brush 

(Si@PB4a2). 

2. Figure S2: The coordination environment of the Pd(II) atom in 1. (b) The 3D structure of 3a2. 

(c) An infinite inorganic chain. 

3. Figure S3: The UV-vis absorption spectra for the preparation of Si@PB4a2. 

4. Figure S4: Cyclic voltammograms of polymer brush. Black line: ITO@OH; Red line: ITO@ APTES; 

Blue line: ITO@APTES/I; Green line: ITO@PB 4a2. 

5. Figure S5: Recycling of the Si@PB 4a2 polymer brush in the Suzuki coupling reaction. 
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6. Figure S6: Recycling of the Si@PB 4a2 polymer brush in the Heck reaction. 

7. Table S1: Crystal data and structure refinement of complex 3a2.  

8. Table S2: The selected bond lengths (Å) and angles (deg) of 3a2.  

9. Table S3: The effect of the base, temperature, and time on the Suzuki-Miyaura reaction 

conditions a.  

10. Table S4: Suzuki coupling of aryl bromides with phenylboronic acid a.  

11. Table S5: The effect of the base, temperature, and reaction time on Heck coupling a. 

12. Table S6: Heck coupling of aryl halides with styrene a. 

13. Table S7: The effect of the base, temperature, and reaction time on the Suzuki-Miyaura 

reaction conditions a. 

14. Table S8: Suzuki coupling of aryl bromides with phenylboronic acid a.  

15. Table S9: The effect of the base, temperature, and reaction time on Heck coupling a.  

16. Table S10: Heck coupling of aryl halides with styrene a.  

Appendix A Supplementary Data 

Crystallographic data for the structures reported in this paper have been submitted to the 

Cambridge Crystallographic Data Centre as a supplementary publication with the CCDC number 

1899877 (1). Copies of the data can be obtained free of charge on application to CCDC, 12 Union 

Road, Cambridge CB2 1EZ, UK (fax: (44) 1223 336-033; e-mail: deposit@ccdc.cam.ac.uk). 
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