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Abstract 

The knowledge of landscape dynamics aids in evolving strategies for the prudent management 

of natural resources to sustain ecosystem services. The availability of spatiotemporal remote 

sensing data with advancements in artificial intelligence (AI) and machine learning (ML) 

algorithms has aided in assessing the ecological status in urban environments, markedly 

revealing complex patterns and interactions. The current communication presents landscape 

dynamics in the Bengaluru Urban district from 1973 to 2022 using a supervised machine 

learning technique based on the Random Forest algorithm with temporal Landsat data, which 

showed a 51.86% increase in the built-up area and a 26.28% decrease in the green cover. 

Rapid unplanned urbanization after globalization and the opening up of Indian markets (in 
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Bengaluru city) has witnessed erosion in the natural surface (waterbodies and green cover) in 

the neighborhood, which has been impacting the health of the environment and people. 

Computation of fragmentation indices showed a decline of the native green cover by 177.2 sq. 

km. in the southern part of the district. Likely land use changes are predicted using the Cellular 

Automata Markov model considering the base case scenario. The analyses revealed a further 

possible increase in built-up to 1536.08 sq. km, a decrease in green cover by 14.32 sq. km by 

2038, and the disappearance of water bodies, which highlights the need to mitigate the 

adverse impacts of land use changes through planned urbanization considering the 

environment and livelihood of local communities. The decline of heat sinks such as water 

bodies and green cover would contribute to an increase in the land surface temperature (LST), 

which would affect the microclimate of Bengaluru, highlighting the need to sustain ecosystem 

services to support the livelihood of local communities. Understanding the ecological 

significance of diverse habitat characteristics of the urban region and the prediction of likely 

changes in a high degree of spatial heterogeneity would assist the decision-makers in framing 

appropriate policies. 

Keywords  

Urbanization; land use and land cover (LULC); machine learning; landscape modelling; 

fragmentation analysis 

 

1. Introduction 

Landscape comprises heterogeneous interacting ecosystem elements with diverse ecological, 

biological, geological, hydrological, social, economic, and environmental characteristics [1]. The 

structure of a landscape decides the functional capabilities reflected through bio-geo-socio-

economic variables and the resources associated with them [2]. Assessment of landscape dynamics 

aids in understanding the structure through insights into the spatial pattern and change trend 

associated with the landscape [3]. Insights into landscape dynamics are crucial for the sustainable 

management and security of natural resources [4]. Landscape dynamics have been evaluated using 

temporal-spatial data (remote sensing data) through land cover (LC) and land use quantifications, 

which help evolve natural resources management policies [5, 6]. Quantitative analyses of land use 

and land cover would aid in ascertaining alterations in landscape spatial patterns [7] due to 

anthropogenic activities and natural processes. 

Unplanned economic and industrial activities leading to rapid urbanization, industrialization, 

infrastructure development, and consequent population increase have been eroding green natural 

resources of forest cover, water bodies, and agricultural lands [8]. Rapid land use changes are 

dynamic and unsustainable, making it essential to analyze quantitative changes in spatial patterns 

of landscape dynamics [9] to plan interventions for mitigating impacts on ecosystems, including 

alterations in climate patterns, hydrologic and bio-geochemical cycles, affecting the livelihood of 

people [10, 11]. Land use and land cover information are derived accurately using temporal remote 

sensing data through machine learning techniques of the Random Forest (RF) classifier [12], which 

is an ensemble-based Machine Learning (ML) algorithm incorporating bagging and boosting 
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techniques [13]. RF is a non-parametric technique that generates a set of decision trees from a 

randomly selected subset of the training set and consolidates their decisions to determine the final 

class. 

Forest ecosystems are crucial in maintaining ecological balance and supporting economic 

development [14]. However, unplanned developmental activities leading to land degradation and 

deforestation have increased land surface temperatures [15], and the process was accentuated 

after globalization in the 1990s, causing large-scale forest land transitions [16]. LULC changes alter 

the structure of the landscape, inducing fragmentation of contiguous forests into smaller patches, 

which is detrimental to the sustenance of biodiversity, carbon sequestration potential, and other 

ecological services at local and global scales [17]. 

Modeling and geo-visualization help visualize likely land cover transitions in advance and hence 

emerged as indispensable tools to ensure effective landscape management [18]. The endeavor 

helps identify areas likely to undergo changes, which helps in understanding potential 

environmental impacts [19-22].  

Insights of land use dynamics with bio, geo, climatic, ecological, and social parameters aided in 

delineating ecologically sensitive zones, with inherent spatial patterns of land use for prudent 

management to sustain natural resources [23] and serve as spatial decision support systems for 

regional planners and decision-makers, These tools provide empirical interpretations of spatial 

transformations, which helps to recommend strategies that are essential for landscape conservation 

through protection of fragile ecosystems and mitigation of ecological impacts [24]. There have been 

significant efforts to understand urban dynamics using temporal and spatial data acquired at regular 

intervals since the 1970s through space-borne sensors (Remote sensing data). Most of the studies 

assessed urban growth and sprawl [4, 7-11, 14-16, 18-36], but the information on the environmental 

impacts of rapid urbanization is scanty. In this context, the novelty of the research is to assess the 

environmental impacts of the rapidly urbanizing landscape using spatial big data through machine 

learning algorithms, which aided in assessing the extent of urbanization and condition of 

ecosystems (through fragmentation of forests) and geo-visualizing likely land use changes in the 

neighborhood with the current path of rapid urbanization. 

Understanding landscape dynamics is crucial for achieving sustainable land resource 

management with information on spatiotemporal alterations in land use and land cover. Modeling 

and geo-visualization of landscape dynamics are essential for effective landscape management as 

they help identify areas likely to undergo changes and delineate ecologically sensitive zones for 

regional planning. A comprehensive understanding of the quantitative changes in spatial patterns 

and their impacts on ecosystems and people's livelihoods is necessary to plan interventions for 

mitigating the adverse effects. Objectives of the current research are [i] to analyze temporal-spatial 

data quantitatively to understand land use and land cover dynamics from 1973 to 2022, [ii] to assess 

the condition of forests through fragmentation metrics, and [iii] to predict/geo-visualize likely land 

use changes in the neighborhood with the current path of rapid urbanization through land use 

modeling. 
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2. Materials and Methods 

2.1 Study Area: Bangalore Urban District, Karnataka State, India  

Bangalore Urban district (Figure 1) is situated at 12°39’32” and 13°14’13” N and 77°19’44” and 

77°50’13” E in the southeastern part of Karnataka with a total area of 2201 sq. km. The district is 

divided into 3 Taluks: Bangalore North, Bangalore South, and Anekal. The hilly terrain of the Anekal 

range in the southern part of Bangalore urban district is home to the Bannerghatta National Park, 

which covers an area of 260.51 sq. km and is situated approximately 22 km south of Bangalore. The 

National Park, with an elevation ranging from 1245-1634 m, has moist deciduous forests in the 

valley and scrubland in higher elevated regions [37]. 

 

Figure 1 (a) Location of Bangalore Urban district (with administrative divisions), 

Karnataka State, India; (b) Dense Urban area in core Bangalore city; and (c) Sprawl in 

peri-urban regions (Source: Author). 

Bangalore urban district experiences a typical monsoonal climate, with the southwest monsoon 

contributing to a significant portion of the rainfall. Pre-humid to semi-arid climatic conditions can 

be observed in the district, with an average temperature of 23.1°C. The Cauvery River drains most 

of the district. In terms of physiography, the district comprises rocky upland, plateau, and flat-

topped hills with an elevation of approximately 900 m above mean sea level. The region is 

undulating, with mostly slopes towards the south and southeast, forming pedi-plains interspersed 

with hills throughout the western part. The district is mainly covered with red loamy soil and lateritic 

soil [28].  

Bangalore urban district is located in the eastern dry zone, the agroclimatic area. The district 

accounts for 70% of rose exports from India and is a hub for floriculture industries. Most Micro, 

Small, and Medium enterprises (MSME) (around 10%) are engaged in Agro and Food Processing. As 

per the 2011 Census, Bangalore district is the most populous district in Karnataka, with a total 

population of 96,21,551 and the highest population density of 4,381 per sq. km. It also has the 

highest decadal growth rate of 47.2% in the state. The district is predominantly urbanized, with 90.9% 
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of the population residing in urban areas, and boasts a literacy rate of 87.7%, the second-highest in 

the state. Additionally, the district's Gross District Domestic Product (GDDP) was estimated to be Rs. 

99,325 Crore during 2012-13, contributing 33.30% to the state's economy. The district's average per 

capita annual income, according to the report of the Economic Survey of Karnataka (2022–23), is Rs. 

621131 [38, 39]. This district is the main administrative center of Karnataka, with the municipality 

Bruhat Bangalore Mahanagara Palike (BBMP) located at the center of the district. The landscape is 

predominantly urban (built-up or paved surfaces), with agricultural and horticultural lands in the 

peri-urban areas [28]. 

2.2 Data 

Spatial data with spectral and spatial resolutions used for assessing landscape dynamics are listed 

in Table 1. 

Table 1 Spatial data used for the study. 

Data and source Bands  
Spatial 

Resolution 
Purpose 

Landsat Multispectral Scanner (MSS)  

US Geological Survey 

https://earthexplorer.usgs.gov/  

B6, B5, B4 60 m LULC analysis 

Landsat Thematic Mapper (TM) 

US Geological Survey 

https://earthexplorer.usgs.gov/  

B2, B3, B4, 

B5, B6, B7 
30 m LULC analysis 

Landsat Operational Land Imager (OLI) 

US Geological Survey 

https://earthexplorer.usgs.gov/  

B2, B3, B4, 

B5, B6, B7 
30 m LULC analysis 

Vegetation map of South India (1986)  

by D. De Franceschi, B.R. Ramesh and J.-P. Pascal 

Institut Français de Pondichéry [40] 

- 1:250000 
Forest cover 

mapping 

Bhuvan LULC data 

https://bhuvan.nrsc.gov.in/home/index.php  
- 1:50000 LULC referencing 

SRTM DEM 

US Geological Survey 

https://earthexplorer.usgs.gov/  

- - 
Hydrology and 

elevation 

2.3 Method 

Land cover analyses: Temporal Landsat data from 1973 to 2022 have been analyzed for landscape 

dynamics through the Normalized Difference Vegetation Index (NDVI) to comprehend the 

proportion of areas covered by vegetation and non-vegetation [3, 7, 11, 15, 18, 24, 29, 35].  

Land use analyses: Temporal remote sensing data were classified through a machine learning-

based supervised classifier based on the Random Forest (RF) algorithm, which was chosen based on 

the recent work assessing the relative performance of machine learning algorithms (Random Forest 

(RF), Support Vector Machine (SVM), and Maximum Likelihood classifier (MLC)) for land use 

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://bhuvan.nrsc.gov.in/home/index.php
https://earthexplorer.usgs.gov/
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classification, and RF performed better with higher overall accuracy and Kappa statistics [35]. 

Random Forest classifier [12] is the most widely used ML algorithm based on ensemble methods 

like bagging and boosting [13]. RF, as presented in Figure 2, uses a set of decision trees selected 

randomly from the training set to aggregate decisions for determining the final class and provides a 

higher level of accuracy for land use classification in a diverse landscape. Training polygons 

corresponding to heterogenous patches in FCC were digitized, covering all categories, which are 

uniformly distributed and cover 15% of the study region. Attribute information for these polygons 

were collected from (i) the field using a pre-calibrated Global Positioning System (GPS) and (ii) online 

portals - Google Earth (https://earth.google.com) and Bhuvan (https://bhuvan.nrsc.gov.in). 70% of 

the training data were used for classification, and the remaining were used for accuracy assessment. 

The classifier's accuracy is evaluated through kappa statistics, which provide impartial error 

estimates. RF is implemented through the online cloud utility Google Earth Engine 

[https://earthengine.google.com/]. Spatial statistics of land uses were generated using QGIS 

[https://www.qgis.org/] and GRASS [https://wgbis.ces.iisc.ac.in/grass/]. Figure 3 summarises 

methods adopted for the analyses of land cover, and Figure 4 summarises the method adopted for 

land use modeling. 

 

Figure 2 Random Forest classifier (Source: Author, 42). 

 

Figure 3 Schematic representation of the method for the analysis (Source: Author). 

https://earth.google.com/
https://bhuvan.nrsc.gov.in/
https://earthengine.google.com/
https://www.qgis.org/
https://wgbis.ces.iisc.ac.in/grass/
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Figure 4 Method for modeling the likely land-use scenario (Source: Author). 

Validation of land use classification: Validation of land use information was done through 

computation of overall accuracies and kappa statistics considering field data (for the latest period) 

and collateral data (published literature). 

Assessment of conditions of forests through forest fragmentation metrics using GRASS 

[https://wgbis.ces.iisc.ac.in/grass/]: Using 3 × 3 kernel, fragmentation metrics Pf (the proportion of 

forest pixels to the total non-water pixels) and Pff (ratio of the number of forest pixel pairs to the 

total number of adjacent pairs of at least a forest pixel in the cardinal direction) were computed 

iteratively for the entire study region to understand the condition of forest ecosystems (Figure 3). 

Based on Pf and Pff, pixels are categorized as intact or contiguous (Pf = 1), patch (Pf < 0.4), transitional 

(Pf < 0.6 and Pf > 0.4), edge (Pf > 0.6 and (Pf-Pff) > 0), perforated (Pf > 0.6 and (Pf – Pff) < 0) and non-

forest (contain anthropogenic land uses) pixels [4, 17]. 

Land use modeling: Cellular Automata Markov model is implemented to visualize likely land uses 

(Figure 4) using IDRISI software [https://clarklabs.org/] to simulate the potential land use in 2030 

and 2038. Integrated CA-Markov [18-22] is significant as it can accurately simulate and predict 

future conditions by its dynamic explicit simulation efficiency.  

The transition probability spatial information is obtained based on the Markov process. The 

future state of change (St+1, probable land use at time t + 1) is calculated as the product of St (land 

use at time t) and transition probability Pij [18-22]. 

Cellular Automata [18, 20] is used to simulate and predict future LU based on transition potential 

(equation 1). The CA model consists of state, cell and cell space, neighborhood, rule, and time, and 

in the case of land use transformation, the cell represents the cells of the LULC class, and the class 

represents itself as a state. A discrete dynamic function of CA consists of four elements expressed 

by the following formula.  

𝐶𝐴 = (𝑙, 𝛴, 𝜂, 𝛿) (1) 

Where, 𝑙  = physical environment and discrete lattice, Σ = the set of possible states, η = the 

neighborhood of a cellular automaton, δ = local transition rule. 

Von Neumann's 5 × 5 filter was used for modeling, and waterbodies were considered a constraint 

for simulation. Validation was carried out by comparing simulated land uses with actual land uses 

through Kappa Statistics. Higher accuracy was achieved through calibration by fine-tuning the input 

variables. A validated model was then used in the business-as-usual scenario to predict and visualize 

likely land uses in 2030 and 2038. 

https://wgbis.ces.iisc.ac.in/grass/
https://clarklabs.org/
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3. Results 

Land use and land cover (LULC) assessment was done considering the availability of cloud-free 

data, which were available for the period 1973, 1999, 2005, 2014, and 2022. Analysis of Landsat 

data of 1973 provided LULC during the pre-globalization period. Globalization and the opening of 

Indian markets started in 1990 and gained momentum in the mid-1990s. Hence, Landsat TM of 1999 

and 2005 were used to understand LULC dynamics, while Landsat OLI data of 2014 and 2022 aided 

in understanding the urban dynamics during the latest decade. 

3.1 Land Cover 

Bangalore urban district was rich in agricultural resources in the 1970s. Post-liberalization from 

1990 onwards, with the spurt in developmental activities, contributed to rapid urbanization with 

urban sprawl, leading to a decrease in agricultural lands in this district, enhancing carbon content in 

the atmosphere [41]. As agricultural lands, fallow land, and open spaces were converted into urban 

spaces, the area under non-vegetation is seen to increase from 15.73% to 67.3% from 1973 to 2022 

(Figure 5). 

 

Figure 5 Land cover Analysis of Bangalore Urban district from 1973 to 2022 (Source: 

Author). 
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3.2 Land Use 

Land use analyses (Figure 6, Table 2) showed that this district's area under built-up has increased 

drastically during the last five decades. Bangalore was spatially expanded in the mid-2000s with the 

formation of the BBMP area by including rural landscapes, which led to the conversion of 

agricultural land to paved areas.  

 

Figure 6 Land use Analysis of Bangalore Urban District from 1973 to 2022 (Source: 

Author). 

Table 2 Land use dynamics in Bangalore Urban district from 1973 to 2022. 

  1973 1999 2005 2014 2022 

Built-up 
sq. km 84.66 323.94 451.23 813.31 1224.27 

% 3.85 14.74 20.53 37.01 55.71 

Forest  
sq. km 650.61 470.89 355.94 214.59 72.97 

% 29.60 21.43 16.20 9.76 3.32 

Waterbody 
sq. km 36.46 32.84 52.90 70.48 52.19 

% 1.66 1.49 2.41 3.21 2.38 

Agriculture 
sq. km 1287.60 1156.02 963.25 782.93 723.24 

% 58.59 52.60 43.83 35.63 32.91 

Open  sq. km 137.09 93.66 201.15 86.87 45.93 
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% 6.24 4.26 9.15 3.95 2.09 

Plantation  
sq. km 1.22 120.30 173.19 229.48 79.03 

% 0.06 5.47 7.88 10.44 3.60 

3.2.1 Landscape Dynamics Change in Bangalore Urban District  

The spatial analyses of urban dynamics highlight alterations in the landscape structure, evident 

from the decline of open spaces (6.24% in 1973, which decreased to 2.09% in 2022), agricultural 

areas (58.59% in 1973 to 32.9% in 2022), forests (29.6% to 3.32%) and fragmentation of contiguous 

forests (Figure 6, Table 2). In 1973, the district had a 3.85% built-up area, which increased to 55.71% 

in 2022 (Figure 6, Table 2). The agricultural lands were also converted into paved areas in the last 

five decades, which caused a decline of areas under agricultural lands from 58.59% in 1973 to 32.9% 

in 2022. The peri-urban areas are becoming dense urban clusters with poor infrastructure and 

devoid of connectivity. The area under open spaces declined due to the conversion of open spaces 

into paved areas and newly formed layouts. There was 6.24% (137.09 sq. km) of open spaces in 

1973, which decreased to 2.09% (45.93 sq. km) in 2022. The lakes of Bangalore urban district have 

been degraded due to pollution and encroachment. Some of the lakes, like Varthur Lake and 

Belandur Lake, are being recently rejuvenated, and currently, in 2022, 2.38% (52.19 sq. km) of the 

district is under water bodies. The forest areas in the outer regions of BBMP have decreased from 

29.6% to 3.32% from 1973 to 2022, including the Bannerghatta National Park. The forest 

department has been promoting unscientific monoculture plantations of Eucalyptus, Teak, etc., in 

the district. It covered 0.06% in 1973, and in 2022, there is 3.6% of the area covered by plantations.  

The accuracy assessment for each land use class based on the validation data showed high 

precision. The overall accuracy and Kappa coefficient of ladn use classification were 99.84% and 

0.9967, respectively (Table 3). 
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Table 3 Accuracy assessment (2022). 

 REFERENCE Column 
total 

User 
Accuracy Urban Vegetation Waterbody Agriculture Open Wetland Park Horticulture Plantation 

C
LA

SS
IF

IE
D

 

Urban 3741 0 0 3 4 0 0 0 1 3749 0.9979 

Vegetation 0 31 0 0 0 0 0 0 0 31 1.0000 

Waterbody 0 0 50 0 0 0 0 0 0 50 1.0000 

Agriculture 0 0 0 666 0 0 0 0 0 666 1.0000 

Open 0 0 0 0 207 0 0 0 0 207 1.0000 

Wetland 0 0 0 0 0 187 0 0 0 187 1.0000 

Park 0 0 0 0 0 0 224 0 0 224 1.0000 

Horticulture 0 0 0 0 0 0 0 14 0 14 1.0000 

Plantation 0 0 0 0 0 0 0 0 135 135 1.0000 

Row total 3741 31 50 669 211 187 224 14 136 Overall accuracy 99.84% 
Producer Accuracy 1.0000 1.0000 1.0000 0.9955 0.9810 1.0000 1.0000 1.0000 0.9926 Kappa statistic 0.9967 
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3.2.2 Landscape Dynamics in the Neighbourhood of Rapidly Urbanising Landscape 

Changes in land uses in the neighborhood of Bangalore city (rapidly urbanizing landscape) are 

presented in Figure 7 and Table 4, which shows an increase in built-up area from 1.84% (1973) to 

40.91% (2022) due to urban sprawl. This has decreased forest cover from 30.21% (1973) to 4.44% 

(2022). A decline in agricultural land from 61.94% (1973) to 46% (2022) can be seen due to the 

conversion of agricultural land into paved surfaces. Spatial analyses using temporal remote sensing 

data, due to good rainfall during the past decade, show an increase in the spatial extent of water 

spread areas in the region apart from water stagnation in some mining pits (mining was rampant in 

the peri-urban areas to cater to the growing demand of construction materials in the rapidly 

urbanizing landscape (Bangalore city). 

 

Figure 7 Land use dynamics in the neighborhood of the rapidly urbanizing landscape of 

Bangalore city. 

Table 4 Change in land use categories in the neighbourhood of the rapidly urbanizing 

landscape of Bangalore city. 

BBMP Surroundings 1973 1999 2005 2014 2022 

Built-up 
sq. km 27.39 71.32 106.09 319.43 608.03 

% 1.84 4.80 7.14 21.49 40.91 

Forest sq. km 448.97 329.63 252.83 152.93 66.01 
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% 30.21 22.18 17.01 10.29 4.44 

Waterbody 
sq. km 23.45 21.80 37.77 56.81 37.32 

% 1.58 1.47 2.54 3.82 2.51 

Agriculture 
sq. km 920.53 917.61 824.11 735.02 683.70 

% 61.94 61.74 55.45 49.45 46.00 

Open 
sq. km 65.33 66.58 144.74 67.71 42.35 

% 4.40 4.48 9.74 4.56 2.85 

Plantation 
sq. km 0.58 79.31 120.71 154.35 48.84 

% 0.04 5.34 8.12 10.39 3.29 

The analyses of land use dynamics of Bangalore city (BBMP) from 1973 to 2022 presented in 

Figure 8 and Table 5 show congestion with an exponential increase of built-up area at the cost of 

areas under forests, open spaces, and agricultural land. In 1973, there was 28.34% forest and 8.05% 

built-up area in the region, which converted into 0.98% forest and 86.63% built-up in 2022. 

 

Figure 8 Rapid urbanisation in Bangalore city. 

Table 5 Land use changes in Bangalore city (BBMP) from 1973 to 2022. 

BBMP  1973 1999 2005 2014 2022 

Built-up 
sq. km 57.27 252.62 345.14 493.88 616.25 

% 8.05 35.51 48.52 69.42 86.63 

Forest 
sq. km 201.64 141.26 103.11 61.66 6.96 

% 28.34 19.86 14.49 8.67 0.98 

Waterbody 
sq. km 13.01 11.04 15.13 13.67 14.88 

% 1.83 1.55 2.13 1.92 2.09 
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Agriculture 
sq. km 367.06 238.41 139.14 47.91 39.54 

% 51.60 33.51 19.56 6.73 5.56 

Open 
sq. km 71.77 27.08 56.40 19.15 3.58 

% 10.09 3.81 7.93 2.69 0.50 

Plantation 
sq. km 0.64 40.99 52.48 75.13 30.19 

% 0.09 5.76 7.38 10.56 4.24 

3.3 Forest Fragmentation 

Conservation of biodiversity is possible by maintaining ecological integrity, which has been 

assessed through metrics to understand the fragmentation of forests (Figure 9, Table 6). Quantifying 

forest fragmentation would help formulate appropriate mitigation measures for improving the 

condition of forest ecosystems, and the analyses showed that the interior forest area had declined 

from 9.75% (in 1973) to 1.68% (in 2022). 

 

Figure 9 Forest Fragmentation Analysis of Bangalore Urban from 1973 to 2022 (Source: 

Author). 
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Table 6 Forest Fragmentation Analysis of Bangalore Urban from 1973 to 2022. 

  1973 1999 2005 2014 2022 

Non-Forest 
sq. km 1510.58 1693.92 1788.81 1912.58 2072.48 

% 68.74 77.08 81.40 87.03 94.30 

Patch 
sq. km 72.50 93.28 78.43 41.26 13.44 

% 3.30 4.24 3.57 1.88 0.61 

Transitional 
sq. km 125.32 100.67 77.72 41.89 7.22 

% 5.70 4.58 3.54 1.91 0.33 

Edge 
sq. km 47.79 20.14 14.05 7.98 1.97 

% 2.17 0.92 0.64 0.36 0.09 

Perforated 
sq. km 190.81 139.91 101.87 55.29 13.35 

% 8.68 6.37 4.64 2.52 0.61 

Interior 
sq. km 214.19 116.89 83.87 68.17 36.99 

% 9.75 5.32 3.82 3.10 1.68 

Waterbody 
sq. km 36.46 32.84 52.90 70.48 52.19 

% 1.66 1.49 2.41 3.21 2.37 

3.4 Prediction of Likely Land Uses-Modelling 

Prediction of likely land uses would help in framing appropriate land management policies for 

conserving biodiversity and maintaining ecological balance. Modeling of likely land uses has been 

done with the help of Markov and Cellular Automata (MCA) to understand future land use 

transitions based on the current transitions. Likely, land uses (predicted) were compared with the 

actual land uses. Higher kappa and overall accuracies confirm the robustness of the modeling 

approach. The computation of user, producer, and overall accuracy (of 91.45%) shows relatively 

higher accuracies across all land uses. (Table 7, Figure 10). The validation values were Kno = 0.9381, 

Klocation = 0.9516, KlocationStrata = 0.9516, and Kstandard = 0.9235, and they suggest a good performance 

of the modeling technique. Subsequently, using current period land-use transitions, predicted land 

uses of 2030 and 2038 (Figure 10) highlight further degradation of forests by 0.65% in 2038. Similarly, 

the area under agriculture will likely decrease to 27.03% in 2030 and 22.4% in 2038. 

Table 7 Actual land use in 2022 and simulated land use for 2022, 2030, and 2038 in 

Bangalore Urban district. 

 2022 actual 2022 Simulation 2030 Simulation 2038 Simulation 

sq. km % sq. km % sq. km % sq. km % 

Built-up 1224.27 55.71 1246.92 56.74 1381.19 62.85 1536.08 69.90 

Forest  72.97 3.32 121.92 5.55 28.22 1.28 14.32 0.65 

Waterbody 52.19 2.38 38.93 1.77 61.25 2.79 52.21 2.38 

Agriculture 723.24 32.91 673.81 30.66 593.96 27.03 492.19 22.40 

Open  45.93 2.09 46.88 2.13 54.34 2.47 46.91 2.13 

Plantation  79.03 3.60 69.19 3.15 78.68 3.58 55.94 2.55 
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Figure 10 shows actual land uses and simulated land uses for 2022, and a prediction of 

land uses for 2030 and 2038 in the Bangalore Urban district (Source: Author). 

4. Discussion 

Spatial analyses using temporal remote sensing data reveal the decrease in vegetation cover in 

the rapidly urbanizing city landscape (under BBMP jurisdiction) and in its neighborhoods after 

globalization and liberalization of the market economy in the 1990s. Locations such as Koramangala 

and Hosur witnessed the growth of IT companies with the announcement of favorable IT policies by 

the State government. Post 2000, the Electronic City, Whitefield's eastern and southeastern parts 

witnessed a boom in IT hub and industrial growth in Peenya and along the city's outer ring road, 

leading to the transition of open spaces (with vegetation and water bodies) to paved urban spaces. 

Increased commercial activities triggered residential growth across the eastern part of the district. 

Due to the city's expansion, the surrounding forest area and green spaces have declined in the last 

five decades, affecting the native biodiversity in the region. Rapid urbanization lacked planned 

interventions, and increased paved surfaces indiscreetly affected the natural drainage network and 

groundwater recharge, leading to frequent flooding and severe groundwater scarcity.  

Mapping of trees using higher spatial resolution remote sensing data revealed that Bangalore 

city has a tree population of 14,78,000, which accounts for one tree per seven persons (considering 

the population of 9.5 million (excluding floating population) contrary to the requirement of seven 

trees per person [42, 43]. This has contributed to oxygen deficiency in the region. The acute water 

crisis (due to insufficient recharging of groundwater) and oxygen scarcity (due to the reduction of 

tree cover) are pushing Bangalore City toward unliveable status [44].  

Rapid urbanization in Bangalore has resulted in increased air pollution levels, which have shown 

PM10, PM2.5, and NO2 more than the national ambient air quality standard because of the rise in 

vehicular emissions, industrial activities, and construction projects in and around Bangalore city 

[45]. The mushrooming of IT companies and the subsequent population growth have impacted the 

basic infrastructure, which became evident from the increased traffic congestion in the city [32, 33]. 

Unplanned urbanization has strained existing infrastructure systems, including transport networks, 

groundwater resources, sewage systems, water supply, and waste management [46]. The increase 

in paved surfaces and the reduction in green spaces have contributed to the urban heat island effect 

in Bangalore, with increased Land Surface Temperature (LST) from 33.07°C to 41.14°C (in urban 

areas) of March to May from 1992 to 2017 evident from the analyses of Landsat thermal band data 

through computation of NDVI (normalized difference vegetation index), emissivity, brightness 

temperature, etc. [34]. The decline of heat sinks like water bodies and the green cover has negative 
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impacts on the local microclimate, evident from the reduced cooling effect, increase in land surface 

temperature, and consequent increase in electricity consumption, which has increased vulnerability 

and exposure to environmental risks and hazards. 

Also, urbanization spreading in the surrounding areas of the municipality (Bruhat Bangalore 

Mahanagara Palike, BBMP) has resulted in a significant loss of agricultural land and the livelihood of 

farmers with reduced farm output and a decrease in farmers' income [41]. The conversion of natural 

habitats like wetlands and green spaces into urban spaces has resulted in biodiversity loss and 

eroded soil quality in and around Bangalore [36, 47]. The accelerated urbanization of the city has 

exerted considerable pressure on its waste management systems due to inadequate infrastructure 

for the proper processing of solid waste [48-50]. Consequently, this has led to environmental 

degradation in the surrounding areas and the city. The key ecological and environmental impacts in 

the neighborhood of Bangalore city due to rapid and uncontrolled urbanization are loss of 

vegetation, water bodies, and open spaces, the decline of native biodiversity, contamination of air 

and water due to pollution, higher GHG emission, water scarcity with the depletion of groundwater 

due to lack of recharge, urban heat island and alterations in a micro-climate, prevalence of vector-

borne diseases with escalating temperature, etc. [44, 47]. The urban heat island effect would 

enhance the ambient temperature and humidity levels, resulting in heat stress and heat-related 

illnesses, including behavioral changes [15, 28, 42-44, 51]. 

Rapid urbanization has changed the composition and diversity of the vegetation near Bangalore 

city. The native vegetation, such as grasslands, wetlands, and scrublands, has been replaced by 

exotic species. Urban green spaces provide various benefits for urban residents, such as recreation, 

aesthetics, cooling, air purification, noise reduction, etc. Degradation of green and blue spaces 

would lead to impaired ecological functions and services. 

Spatial analyses of landscape dynamics reveal that rapid urbanization in Bangalore city has 

affected the condition of ecosystems, evident from the fragmentation of forests, contamination of 

water bodies due to sustained inflow of the city sewage, disposal of untreated industrial effluents, 

and dumping of solid waste in lake beds. The decline of ecosystem conditions has led to the 

reduction and fragmentation of contiguous native forests, decrease of native vegetation, spread of 

invasive exotic species, increase in land surface temperature, and consequent increase in vector-

borne diseases [44]. The habitat loss and fragmentation reduce the availability and suitability of 

resources for various flora and fauna species, which affects their survival, reproduction, and 

dispersal. The loss of native vegetation and the invasion of exotic species alter the interactions and 

relationships among different species, which affects their adaptation and evolution. The loss of 

habitat and species diversity also reduces the genetic variability and resilience of the ecosystems. 

The decline of ecosystem services also increases the vulnerability and exposure of the urban 

population to environmental risks and hazards. 

Insights from the analyses of rapidly urbanizing landscapes (such as Bangalore city) would help 

evolve strategies for designing sustainable cities with liveable conditions, adequate infrastructure, 

and basic amenities while maintaining essential green and blue spaces through effective 

enforcement and implementation of land-use policies. 
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5. Conclusion 

Globalization and subsequent liberalization of Indian markets during the 1990s gave impetus to 

rapid urbanization in the Bangalore urban district with a spurt in industrial and infrastructural 

activities. Unplanned developmental activities leading to rapid changes altering land uses in the 

region had adverse ecological and environmental impacts, evident from the decline of forest cover 

(by 26%), agricultural lands (by 23%), with a sharp escalation of paved surfaces (urban area 34% 

increase in five decades). The implication of continuation of this trend, visualized likely land uses in 

2038 through the Cellular automata Markov technique, highlights that the city of Bangalore will be 

choked with paved surfaces (to the extent of more than 98%) and 69.9% of the landscape in the 

Bangalore Urban district would be paved areas. This highlights the consequence of a dying city 

(Bangalore) with unplanned irresponsible urbanization, which caused undesirable effects on the 

neighborhood areas and drove the entire landscape to an unliveable status, with reduced ecosystem 

services, poor environmental conditions, and increased vulnerabilities that impact people's 

livelihood.  

Planned urbanization would promote efficient land utilization, minimizing sprawl while ensuring 

all residents' basic amenities and infrastructure. Planned interventions would reduce the alteration 

of natural systems (forests, water bodies, and agricultural lands), optimize mobility with land uses 

to reduce greenhouse gas footprint, and promote the conservation of lung spaces (greeneries–

parks, etc.) and kidneys (wetlands) of the landscape and ensures reuse and recycle of wastes (solid 

and liquid). This would sustain ecosystem services (provisioning, regulating, and cultural services) 

through enhanced recreation services for the urban population, moderate microclimate, 

groundwater percolation due to adequate permeable and porous spaces, and livelihood of the 

dependent population.  

Therefore, the study highlights the need for planned urbanization and decongestion of the region 

by shifting large-scale industries, allowing future developments in other parts of Karnataka state to 

ensure liveable conditions through prudent management strategies. This will ensure sustainable 

development and the preservation of ecosystem services for intergenerational equity, ultimately 

leading to a liveable region. Machine learning technique adopted through the Google engine to 

classify temporal remote sensing data has been tried in other areas [35]. Accuracy assessment 

indicates consistent results, highlighting the robustness of the supervised non-parametric classifier 

compared to parametric classifiers in assessing the extent of urbanization and condition of 

ecosystems (through fragmentation of forests) and geo-visualizing likely land use changes in the 

neighborhood with the current path of rapid urbanization. 

RF classifier has been implemented because it uses numerous decision trees for computation, 

which can make the process relatively complicated. A single query to Earth Engine is limited to 10MB 

in size, and the size limit on computed results is 100 MB, which can cause an error, especially while 

performing multivariate analyses (such as PCA, etc.) restricting dimensions of the input data. 

However, RF is the robust classifier for multispectral data with adequate training data.  

Scope for future research includes geo-visualization of likely land uses considering agents of land 

use transitions and consideration of planned urbanization, which include provisioning 15% open 

spaces, conservation of greeneries and water bodies, maintaining at least 33% green cover, 

enhancing groundwater recharge potential, rainwater harvesting, climate resilient building 

architecture, etc. for prudent management of natural resources. 
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