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Abstract 

A multicopper oxidase, laccases catalyze the four-electron reduction of the substrate with the 

use of molecular oxygen. Laccases are abundant in nature and can be found in virtually every 

form of life on the planet. Generally speaking, laccases are classified into three types: blue, 

white, and yellow. Plant, bacterial and fungal laccases all have the same trinuclear copper site 

for substrate reduction. Non-phenolic as well as phenolic molecules are both capable of being 

catalyzed by this enzyme. Laccases are used in a wide range of industries that make use of 

phenolic chemicals. Laccases have been the subject of recent research because of their unique 

features. Laccase, its sources, manufacture, purification, and applications in many sectors are 

discussed in length in this review.  
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1. Introduction 

The search for ecologically friendly technologies has increased interest in using enzymes to 

replace conventional non-biological methods, which are increasingly becoming popular. Laccases 

(benzenediol: oxygen oxidoreductases; EC 1.10.3.2) have received the most attention in recent 

decades when comparing the many oxidant enzymes currently exist. In nature, laccases are 

multicopper oxidases that may be found in abundance. They catalyze the one-electron oxidation of 

phenolic compounds, resulting in the simultaneous reduction of oxygen to water in the presence of 

oxygen. 

Laccases are found in various organisms, including higher plants, bacteria, fungi, and insects. 

Laccases were found for the first time in the exudates of the Japanese lacquer tree Rhus vernicifera 

in the nineteenth century, which is where they earned their name [1]. Laccase has been discovered 

in microorganisms mostly in fungi [2] and it is especially common in white-rot fungi engaged in lignin 

metabolism. In addition, certain bacterial laccases have been discovered in the last few years [3]. 

Laccases have a wide range of substrate specificities. They can catalyze the oxidation of both 

phenolic and non-phenolic substances [4]. Laccases are useful biocatalysts for a variety of 

biotechnological applications, including biobleaching of pulp, textile dye decolorization, xenobiotic 

bioremediation, biosensors, and the food industry [5]. This is due to their high and non-specific 

oxidation capacities, lack of requirement for cofactors, and ability to repeatedly use oxygen as an 

electron acceptor. 

This review summarizes the detailed information about laccase’s production, purification and 

applications to date. 

1.1 Sources of Laccases 

Laccases have been observed in plants, insects, fungi, archaea and bacteria.  

1.1.1 Plant Laccases 

In plants, laccases belong to the multigene family. Laccase was initially isolated from the sap of 

the Japanese lacquer tree Rhus vernicifera [1]. Other plants have been reported to contain laccases, 

including lacquer, mango, mung bean, peach, pine, prune, and sycamore [6]. Laccases come in a 

variety of forms in some plants. Eight laccases have been identified in Pinus taeda and five distinct 

laccases in poplar (Populus trichocarpa) xylem tissues [7]. Sycamore maple (Acer pseudoplatanus) 

cell suspension culture was also found to excrete laccase-like multicopper oxidases (LMCO) [8]. Four 

closely linked LMCOs had been recognized in yellow-poplar xylem tissues (Liriodendron tulipifera) 

[9]. Other species have been found to contain LMCOs, including Zinnia elegans [10], tobacco 

(Nicotiana tabacum) [10], and Zea mays [11]. A monocot laccase was also cloned and characterized 

from ryegrass also (Lolium perenne) [12]. 

Plant laccases are glycosylated enzymes having 22-45% glycosylation than the fungal laccases 

(10-25%). Mannose, N-acetyl glucosamine, and galactose are the major carbohydrate moieties of 

laccases. Thus, fungal laccases have lower molecular weight than plant laccases [13], 10-50% of their 

MW was due to glycosylation. Glycosylation is advantageous for secretion, copper retention, 

thermal stability, and enzyme activity [12, 14]. 
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Plant laccases have found a role in lignin polymerization [8]. Transgenic approaches utilizing 

laccase genes for overexpression and down-regulation and using plant biomass for various purposes 

including energy production, phytoremediation, and alteration of phenolic metabolism, have also 

been used in the last decade or so [15]. 

1.1.2 Insect Laccase 

In insects, laccases have been observed in the pharate pupal cuticle of Drosophila virilis [16], 

tobacco hornworm, Manduca sexta [17], the malaria vector mosquito, Anopheles gambiae [17] and 

the silkworm, Bombyx mori [18]. Laccase is also found in insects of many genera, viz. Diploptera, 

Oryctes, Papilio, Bombyx, Calliphora, Phormia, Rhodnius, Drosophila, Lucilia, Manduca, Musca, 

Sarcophaga, Schistocerca and Tenebrio [19]. Laccase is believed to be involved in cuticle 

sclerotization in insects due to its ability to catalyze the oxidation of phenolic compounds to their 

corresponding quinines [17]. 

1.1.3 Fungal Laccase 

Numerous fungus species have been shown to possess laccase activity (Table 1). But several fungi 

do not produce laccase, such as Zygomycetes and Chytridiomycetes [20]. In fungi, laccase is thought 

to play a role in lignin biodegradation and infestation of decaying wood. Laccase is most commonly 

produced by basidiomycetes that cause white rot and the saprotrophic fungi that decompose trash. 

Laccase secretion has been observed in nearly all species of white rot fungi [21]. Agaricus bisporus, 

Botrytis cinerea, Coprinus cinereus, Trametes versicolor, Pleurotus ostreatus, Ganoderma sp., 

Pleurotus sajor-caju, Schyzophylum commune and Flammulina velutipes, Mycena purpureofusca 

and Ceriporiopsis subvermispora are some examples of basidiomycetes that produce laccases [22]. 
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Table 1 Properties of different fungal laccases. 

S. No. Organism 
Cellular 

localization 

Optimum 

Temperature/Therma

l Stability 

Optimum 

pH/stability 

Molecular 

Weight 

kDa 

Km (µM)/Kcat (s-1) 
Spectroscopic 

Properties 
References 

1 
Phytophthora capsici 

(rlac) 
Extracellular 30°C; 4.0/ABTS; 68 ND Blue [23] 

2 

Trichoderma 

harzianum S7113 

LacA and LacB 

Extracellular 
50°C; 

100%/40°C/3 h 

LacA: 2.0/ABTS; 

3.0/DMP; 

3.5/SGZ; 

LacB: 5.0/ABTS; 

100%/7.0/2 h 

8.0/DMP; 

7.0/SGZ 

100%/7.0/2 h 

Lac A-63; 

Lac B-48 

0.1 mM/ABTS; 

0.064 mM/ABTS 
Blue [24] 

3 
Ganoderma lucidum 

MTCC-1039 
Extracellular 

50°C; 

90%/50°C/0.5 h 
5.0/guaiacol 57 

3 mM/ABTS; 

21.36 mM/Guaiacol 
Blue [25] 

4 Phlebia brevispora Extracellular 40°C; 4.0/ABTS 180 - Blue [26] 

5 Agrocybe pediades Extracellular 45°C 5.0/DMP 55-60 100 μM/DMP Blue [27] 

6 
Ganoderma 

leucocontextum 
Extracellular 

70°C; 

 > 90%/60°C/16 min 
3.0/guaiacol 65 1.658 mM/Guaiacol; Blue [28] 

7 Gymnopus luxurians Extracellular 
55°C-65°C; 

63%/50°C/24 h 

2.2/ABTS; 

86%/2.2/24 h 
64 539 μM/140 mM–1 s–1 Blue [29] 

8 Arthrographis KSF2 Extracellular 
50°C; 

69%/60°C/1 h 
74.4%/11/24 h 55 15 μM/ABTS Blue [30] 

9 Trametes polyzona Extracellular 
55 °C; 

64.38%/40°C/2 h 

4.5/ABTS; 

93%/6.5/2 h 
66  8.66 μM/ABTS Blue [30] 
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10 
Trametes pavonia 

EDN 134 
Extracellular 27 °C 4.0/ABTS 45 - Blue [31] 

11 
Pleurotus tuber-

regium 
Extracellular 60 °C 4.0/ABTS 52 7.82 μM/ABTS Blue [32] 

12 Peniophora lycii Extracellular 

Lac5 

50%/70°C/10 min; 

LacA 

50%/70°C/8 min; 

- 
Lac5 62 

LacA74 
- Blue [33] 

13 
Marasmius sp. 

BBKAV79 
Extracellular 40°C 5.5/ABTS 75 3.03 mM/guaiacol Blue [34] 

14 
Marasmius 

scorodonius 
Extracellular 

75°C; 

80%/70°C/100 min 
3.4/ABTS 67 

3.4/ABTS; 

4.0/guaiacol; 

4.6/DMP 

Blue [35] 

15 
Cerrena unicolor 

BBP6 
Extracellular 

60°C/ABTS; 

80°C/guaiacol; 

80°C/2, 6-DMP; 

80%/50°C/2 h 

2.5/ABTS; 

4.0/guaiacol; 

5.5/DMP; 

82%/4.0/12 h 

55 

49.11 μM/ABTS; 

1238.6 μM/guaiacol; 

3430.8 μM/DMP 

Blue [35] 

16 
Ceriporiopsis 

subvermispora 
Extracellular 50°C 2.0/ABTS 45 - Blue [36] 

17 
Myrioconium sp. 

UHH 1-13-18-4 
Extracellular >80%/15°C/1 h >80%/4.0-6.0/1 h 72.7 

4.2/SGZ; 

104.9/ABTS; 

67.8/DMP 

Blue [37] 

18 
Hexagonia hirta 

MSF2 
Extracellular 40°C 3.4/ABTS 66 -  [38] 
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19 
Moniliophthora 

perniciosa FA553 
Extracellular 

60°C/ABTS; 

45°C/SGZ; 

45°C/Guaiacol; 

55°C/DMP; 

50%/40°C/35 min 

6.0/ABTS; 

7.5/SGZ; 

6.5/Guaiacol; 

6.5/DMP; 

70%/6-8/24 h 

57 

170/21.2/ABTS; 

21/0.45/SGZ; 

180/7.3/Guaiacol; 

108/0.3/DMP 

Blue laccase [39] 

20 Pleurotus ostreatus Extracellular 

40-70°C; 

100%/40°C/5 h; 

100%/50°C/10 min 

3.5/DMP; 

5.5/Guaiacol; 

4.5/ABTS 

68.4 

46.51 

mM/244.32/ABTS; 

400 mM/208.33/DMP 

Yellow [40] 

21 Pleurotus fossulatus Extracellular 

50°C; 

>50%/50°C/5 h; 

>50%/60°C/2 h 

7.0/Guaiacol; 

100%/3-6/1 h 
Not given 

0.083 mM/Guaiacol; 

0.454 mM/ABTS; 

0.041 mM/o-

dianisidine 

NA [41] 

22 
Coprinus comatus 

rlac 3 
Extracellular 

60°C; 

20%/60°C/30 min 

3.0/ABTS; 

5.5/SGZ; 

5.0/Guaiacol; 

5.0/DMP 

75 

0.087 mM/31.96/SGZ; 

0.136/3.485/ABTS; 

1.114/0.418/Guaiacol; 

1.374/0.307/DMP 

Blue laccase [42] 

23 
Coprinus comatus 

rlac 4 
Extracellular 

65°C; 

30%/60°C/30 min 

3.0/ABTS; 

5.5/SGZ; 

6.0/Guaiacol; 

6.0/DMP 

70 

0.204 mM/44.71/SGZ; 

0.205/1.467/ABTS; 

0.455/0.196/Guaiacol; 

7.131/1.468/DMP 

Blue laccase [43] 
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24 
Pycnoporus 

sanguineus CS43 
Extracellular 

Lac I-70°C; 

50%/60°C/18 h 

Lac II-60°C; 

50%/60°C/2.25 h 

Lac I –2.5/ABTS; 

3.5/DMO; 

4.0/Guaiacol; 

64%/6.0/100 h 

Lac II- 

2.5/ABTS; 

3.0/DMP; 

4.0/Guaiacol; 

52%/6.0/100 h 

Lac I –68 

Lac II-66 

Lac I-6.9/519.2/ABTS; 

89.2/184.2/DMP; 

1484.5/2472.5/Guaiaco

l 

Lac II- 

12.0/447.2/ABTS; 

191.6/155.6/DMP; 

1100.8/2084.4/Guaiaco

l 

Blue [44] 

25 Fomitopsis pinicola Extracellular 

80°C; 

40%/60°C/1 h; 

20%/70°C/1 h 

3.0/ABTS; 

80-90%/1.5-11.0/1 h 
92 200/ND/ABTS Blue [45] 

26 Panus conchatus Extracellular 
50%/45°C/24 h; 

50%/60°C/10 h 
100%/4-12/24 h 56.1 

11.6/ABTS; 

101.1/DMP 
White [46] 

27 Trametes polyzona Extracellular 
30°C; 

90%/50°C/1 h 

2.0/ABTS; 

4.0/DOPA/Guaiacol/c

atechol; 

5.0/DMP; 

100%/6.0-8.0/24 h 

71 

150/594/ABTS; 

503/38.2/DMP; 

1890/92.2/Guaiacol; 

4080/125/Catechol; 

6280/83.2/DOPA 

Blue [47] 

28 Pleurotus florida extracellular 
50°C; 

50%/60°C/2 h 

5.5/ABTS; 

50%/6.0/1 h 
54 

21/364/SGZ; 

38/1121/ABTS; 

210/1466/DMP; 

550/3310/Guaiacol 

Blue [48] 

29 
Pycnoporus 

sanguineus CS-2 
Extracellular 

65°C; 

98%/60°C/24 h; 

50%/70°C/4 h 

3.5/DMP; 

4.5/SGZ; 

3.0/ABTS; 

64.4 
41/88/DMP; 

23/231/ABTS 
Blue [49] 

30 
Mycena 

purpureofusca 
Extracellular 

50°C; 

50%/40°C/40 min 

2.2/ABTS; 

100%/6-8/24 h 
61.7 296 µM/ABTS Blue [50] 
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31 
Coriolopsis floccosa 

MTCC-1177 
Extracellular 

40°C; 

100%/45°C/1 h 

5.0/DMP; 

100%/4.0/1 h 
64 

112.5/5.16/DMP; 

58/5.16/ABTS; 

100/5.16/SGZ 

yellow [51] 

32 
Psathyrella 

candolleana HLS-2 
Extracellular 

60%/20°C/16 days; 

50%/30°C/16 days 
90%/7-8/40 days - - Blue [52] 

33 Ganoderma sp. Extracellular 
50°C; 

100%/30°C/150 min; 

4.5/Guaiacol; 

50%/6.0/6 h; 

95%/5.0/64 

62 
217/guaiacol; 

77/ABTS 
Blue [53] 

34 Coriolopsis byrsina Extracellualr 
50°C; 

33%/50°C/5 h 
5.5/ABTS 57.7 31.6/37.4/ABTS Blue [54] 

35 
Trematosphaeria 

mangrovei 
Extracellular 

65°C; 

55.71%/45°C/1 h; 

2%/80°C/1 h 

4.0/ABTS; 

87.34%/4.5/30 min; 

8%/6.0/1 h 

48 1400/NDABTS NA [55] 

36 
Shiraia sp. SUPER –

H168 
Extracellular 

50°C; 

60°C/ABTS; 

45%/60°C/2.5 h 

4.0/DMP; 

6.0/SGZ; 

5.5/Guaiacol; 

3.0/ABTS; 

80%/6-7/96 h 

70.78 

190/7109/ABTS; 

40/938/SGZ; 

370/1476/DMP; 

380/30.44/Guaiacol 

Blue [56] 

37 Ganoderma lucidum Extracellular 
55°C; 

50%/60°C/1 h 

5.0/ABTS; 

100%/ 
38.3 

47/54/ABTS; 

94/37/Guaiacol 
Blue [57] 
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Brown-rot fungi have not been reported to produce laccase. However, laccase-coding genes have 

been discovered in some brown rot fungi like Gloeophyllum trabeum, Postia balsamea and Postia 

placenta [58]. Laccase synthesis by ascomycetes has been reported numerous times. 

Phytopathogenic ascomycetes like Melanocarpus albomyces, Cerrena unicolor, Magnaporthe grisea, 

Trichoderma reesei and Xylaria polymorpha are reported to produce laccase [59]. Some soil 

ascomycete species of the genera Aspergillus, Curvularia, and Penicillium as well as some freshwater 

ascomycete species have been found to produce laccases [60]. 

In both ascomycetes and basidiomycetes, yeasts are a physiologically distinct category. The 

human yeast pathogen Cryptococcus neoformans (Filobasidiella) has been found to have laccase 

[61]. The laccase produced by this yeast can oxidize phenols and aminophenols but not tyrosine, 

indicating that it is a real laccase [62]. 

1.1.4 Acinomycetes Laccase 

Actinomycetes are prokaryotic filamentous microorganisms. Various species of the genera 

Streptomyces are known to produce laccases, such as S. griseus NBRC 13350, S. cyaneus CECT 3335, 

S. psammoticus MTCC 7334, S. ipomoea CECT 3341, S. cinnamomensis, S. sviceus, S. chartreusis 

NBRC 12753, Thermobifida fusca [63]. 

1.1.5 Bacterial Laccase 

Laccases from prokaryotic organisms have been overlooked because of a lack of knowledge 

regarding the variety and distribution of laccases within bacteria (Table 2). Over 2,200 bacterial 

genomes were studied by Ausec et al. [64]. They found that more than 1,200 laccase-like enzyme 

genes were present in bacteria. So many genes showed the presence of predicted signal peptides 

which demonstrated the possibility of extracellular transport of these laccase-exporting bacterial 

entities [65]. 
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Table 2 Properties of different bacterial laccases. 

S. 

No. 
Organism 

Cellular 

localization 

Optimum 

Temperature/Th

ermal Stability 

Optimum pH for 

different substrates 

Molecular 

Weight kDa 
Km (µM)/Kcat (s-1) 

Heterologous 

expression 

Spectroscopic 

Properties 
References 

1. 
Azospirillum 

lipoferum 
Intracellular 

30°C; 70°C/10 

min/100%, 

80°C/10 min/40% 

6.0/SGZ 

Two 

fragments 

81.5 and 

16.3 

34.65 µM - Blue laccase [65] 

2. 
Marinomonas 

mediterranea 
Intracellular - 5.0/DMP; 6.5/SGZ 59 

4800 µM, 8 s-1/ABTS; 

1.5 µM/19.13 s-1/SGZ; 

170 µM/28.80 s-1/DMP 

E. coli Blue laccase [66] 

3. Bacillus sphaericus 
Spore coat 

protein 
60°C 6.0/DMP - - - Blue laccase [67] 

4. Bacillus subtilis 
Spore coat 

protein 

75°C; 80°C/240 

min/50% 
3.0/ABTS 65 

106 µM/16.8 s-1/ABTS; 

26 µM/3.7 s-1/SGZ; 
- Blue laccase [68] 

5. 
Sinorhizobium 

meliloti 
Intracellular 30°C 

5.0/ABTS; 

5.0/SGZ 
95 4 µM/SGZ --- Blue laccase [69] 

6. 
Bacillus 

halodurans 

Recombinant

/Spore coat 

protein 

45°C 7.5-8.0/SGZ 56 -- E. coli Blue laccase [70] 

7. 

Thermus 

thermophilus HB 

27 

Intracellular/r

ecombinant 

92°C; 

80°C/14 h/50% 

4.5/ABTS; 

5.5/SGZ 
53 

900 µM/24.6 s-1/ABTS; 

1880 µM/6.47 s-1/SGZ 
E. coli Blue laccase [71] 

8. 
Pseudomonas 

putida F6 
Intracellular 

30°C; 

30°C/91% 
7.0/SGZ 59 110 µM/SGZ - - [72] 



Adv Environ Eng Res 2023; 4(2), doi:10.21926/aeer.2302030 
 

Page 11/37 

9. 

γ-

proteobacterium 

JB 

Intracellular 

55°C; 

60°C/30 

min/50%; 

55°C/120 

min/50% 

6.0/SGZ; 

6.5/Guaiacol 
120 

10 µM/SGZ; 

580 µM/Guaiacol 
--- Blue laccase [73] 

10. 
Bacillus 

licheniformis 

Recombinant

/Spore coat 

protein 

85°C; 

70°C/60 

min/43%; 

80°C/60 min/8% 

4.2/ABTS; 

7.0/SGZ; 

7.0/DMP 

65 

6.5 µM, 83 s-1/ABTS; 

4.3 µM, 100 s-1/SGZ; 

56.7 µM/28 s-1/DMP 

E. coli Blue laccase [74] 

11. Klebsiella sp. 601 
Recombinant

/Intracellular 
37°C; 

8.0/DMP; 

3.0/ABTS; 

7.0/SGZ 

58.2 

490 µM/1.03 × 103 s-

1/DMP; 

5630 µM/6.64 × 103 s-

1/ABTS 

23 µM/4.68 × 102 s-1/SGZ 

E. coli Blue laccase [75] 

12. 
Aeromonas 

hydrophila WL-11 
Intracellular 

37°C; 

70°C/10 

min/>40% 

2.6/ABTS; 

8.0/DMP 
58 

940 µM/81.98 s−1/ABTS; 

1.83 µM/205.99 s−1/DMP 
E.coli Blue laccase [76] 

13. 
Bacillus subtilis 

WD23 

Spore coat 

protein 

60°C; 

80°C/2.5 h/50% 
6.8/SGZ - - -  [77] 

14. Bacillus sp.HR03 
Spore coat 

protein 

70°C/250 

min/50%; 

80°C/45 min/50% 

7.4/DMP, 

4.0/ABTS, 

7.0/SGZ 

65 

535 µM/127 s-1/ABTS; 

53 µM/3 s-1/DMP; 

5 µM/20 s-1/SGZ 

E.coli 
Spore 

formation 
[78] 

15. Lac591 
Metagenome 

derived 

55°C; 

55°C/15 min/30% 
7.5./Guaiacol; 57.4 

1037 µM/10.81 

s−1/Guaiacol; 

8 µM/0.031 s−1/SGZ; 

340 µM/96.25 s−1/DMP 

E.coli Blue laccase [79] 
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16. Bacillus pumilus 

Recombinant

/Spore coat 

protein 

70°C; 

4.0/ABTS; 

7.0/DMP; 

6.5/SGZ 

58 

80 μM/291 s-1/ABTS; 

680 Μm/11 s-1/DMP; 

66 s-1/SGZ 

E. coli Blue laccase [80] 

17. Bacillus sp. ADR Extracellular 

40°C; 

Lost complete 

activity/50°C/1 h 

3.0/o-tolidine; 

4.0/DMP; 

5.0/Guaiacol 

66 ---- - 
Non-blue 

laccase 
[81] 

18. Ochrobactrum sp. Intracellular 37-40°C; 

8.0/DMP; 

3.6/ABTS; 

7.5/SGZ 

57.8 

90 µM,7.94 s-1/DMP; 

72 µM, 2.95 s-1/ABTS; 

15 µM, 2.4 s–1/SGZ 

E.coli Blue laccase [82] 

19. Lac21 
Metagenome 

derived 
45°C 7.5/SGZ - - E.coli  [83] 

20. 

Stenotrophomona

s maltophilia 

AAP56 

Intracellular 40°C; 
5.0/ABTS; 

7.0/DMP 
66 

2250 µM/1.07 s-1/DMP; 

160 µM/1.18 s-1/ABTS 
--- 

Yellow 

Laccase 
[84] 

21. Bacillus sp. Extracellular 
35°C; 

23 min/75°C/50% 
3.0/ABTS 70 - -  [85] 

22. 
Bacillus 

vallismortis 
Spore bound 

82°C; 

70°C/10 h/50%; 

80°C/4 h/50% 

4.8/ABTS; 

7.4/SGZ; 

10 days/80%/pH 7.0/ 

55 

22.7/ABTS; 

476.8/DMP; 

1062.4/Guaiacol 

- Non-Blue [86] 

23. 
Bacillus tequilensis 

SN4 
Extracellular 

85°C/ 

70°C/24 h/>80%; 

65°C/24 h/100%; 

8.0/Guaiacol, DMP, 

5.5/ABTS, 

6.5/SGZ 

32 840 µM/73.15 s-1/DMP; - Blue laccase [87] 

25. Micrococcus sp. Extracellular 
40°C; 

50°C/1 h/100%; 
9.0; 23 --- -  [88] 

27. 

Geobacillus 

thermocatenulatu

s MS5 

Extracellular 55-60°C; 4.0-5.0/ABTS; 

Two 

subunits of 

42.5 and 65 

- -  [89] 
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28. 
Bacillus subtilis 

strain R5 
 

55°C; 

80°C/2.5 h/50% 
7.0/SGZ; 58.5 12.72 µM/302 min-1/SGZ E. coli Blue laccase [90] 

29 
Bacillus pumilus 

ZB1 

Extracellular/

Recombinant 
25°C 4.8/ABTS; 55 

35.454 µM/20.155 s-

1/ABTS; 

6097.515 µM/0.252-
1/2,6-DMP; 

E. coli --- [91] 

30 
Meiothermus 

ruber 
Recombinant 

70°C; 

70°C/half life/120 

min 

5.0/ABTS; 

8.0/2,6-DMP; 

7.5/SGZ; 

50 

27.3 µM/325 min-

1/ABTS; 

3.01 µM/115 min-1/2,6-

DMP; 

4.2 µM/106 min-1/SGZ; 

E. coli Blue laccse [92] 
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31 
Aquisalibacillus 

elongatus 
Extracellular 

40°C; 

25-55°C/6 h/80%; 

75°C/6 h/50%; 

6.0/ABTS; 

8.0/2,6-DMP; 

7.0/SGZ; 

75 

39. 2 µM/2150 s-1/ABTS; 

8.2 µM/1009 s-1/2,6-

DMP; 

16.1 µM/918.8 s-1/SGZ; 

77.3 µM/414.5 s-

1/Catechol; 

102 µM/318.8 s-1/L-

DOPA; 

51.4 µM/675.0 s-1/Gallic 

acid; 

366.7 µM/56.3 s-

1/Guaiacol; 

68.6 µM/44.3 s-

1/Hydroquinone; 

14.0 µM/1231 s-

1/Pyrogallol; 

25.1 µM/1471.9 s-

1/Tannic acid; 

51.8 µM/462.5 s-

1/LTyrosine; 

16.1 µM/282.4 s-1/2,5-

Xylidin; 

- --- [93] 

32 
Sinorhizobium 

meliloti 
Intracellular 

80°C; 

50°C/2 h/58%; 

5.5/SGZ; 

2.2/ABTS; 

3.5/Caffeic Acid; 

5.0/2,6-DMP; 

6.0/Ferulic Acid; 

70 

0.088 mM/3.46 s-1/ABTS; 

0.342 mM/48.7 s-1/2,6-

DMP; 

0.019 mM/11.2 s-1/SGZ; 

0.244 mM/2.51 s-

1/Guaiacol; 

  [94] 
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33 Bacillus sp. PC-3 Extracellular 

60°C: 

60°C/180 

min/99.1%; 

60°C/240 

min/70.2%; 

7/Guaiacol; 
36(single 

subunit) 
   [95] 

34 
Bacillus sp. MSK-

01 
Extracellular 

75°C; 

100°C/50%/5 min 
4.5/ABTS; 8.0/Guaiacol 32 

5.481 mM/19.32 μM 

min−1 ml−1/Guaiacol; 

1.624 mM and 25.53 μM 

min−1 ml−1/ABTS 

- White [96] 

36 
Sphingobacterium 

ksn-11 
Extracellular 

40°C; 

40°C/48 h/100%; 

4.5/ABTS; 

7.0/SGZ; 
90 

2.12 mM/ABTS; 

2.5/SGZ; 

2.5/Guaiacol; 

  [97] 

37 
Anoxybacillus 

ayderensis SK3-4 
Recombinant 75°C 7.0/SGZ 29.8 14.2 μM/SGZ E. coli  [98] 

38 

Bacillus 

licheniformis 

NS2324` 

Recombinant 
45°C; 45°C/8 

h/50% 

8.0/Guaiacol; 7-9/24 

h/50% 
66 

11.55/Guaiacol; 0.05 

mM/ABTS 
E.coli Blue laccase [99] 



Adv Environ Eng Res 2023; 4(2), doi:10.21926/aeer.2302030 
 

Page 16/37 

The first intracellular bacterial laccase was discovered in Azospirillum lipoferum, a non-moving 

soil bacterium [65]. The enzyme was discovered to be involved in the manufacture of melanin in 

this bacterium. Marinomonas mediterranea, a melanogenic marine bacterium, has also been found 

to produce laccase [66]. Polyphenol oxidase (PPO) from this laccase can oxidize substrates 

characteristic of laccase and tyrosinase enzymes [66]. 

Bacillus subtilis Cot A, an endospore coat component, is the most extensively researched laccase-

producing bacterium [100]. The outer spore coat protein contains the Cot A gene, which encodes 

for a 65-kDa Cot A protein that produces brown spore pigment, a melanin-like substance, to protect 

the bacteria against UV light and hydrogen peroxide [100]. The protein has improved thermal 

stability compared to other laccases, with a half-life of around 2 hours at 80°C and an optimal 

activity temperature of 75°C [100]. In addition to this, B. halodurans [70], B. licheniformis [74], B. 

safensis [101], B. tequilensis SN4 [102, 103], Bacillus sp. MSK-01 [96], B. amyloliquefaciens [104], B. 

marisflavi strain BB4 [105], B. licheniformis VNQ [106], B. licheniformis NS2324 [99] are some other 

laccases reported till date. 

Most of the reports of laccases are available from Bacillus; however, bacteria other than Bacillus 

have also been reported to produce laccase. Rosconi et al. [107] reported an intracellular laccase of 

95 kDa in melanin-producing strain of Sinorhizobium meliloti. This lacacse is active at 30°C and has 

optimum pH of 5.0 for syringaldazine and ABTS as substrate. Tyrosinase activity was also detected 

in this strain.  

Other intracellular laccases have been reported from Stenotrophomonas maltophilia AAP56 [84], 

Aeromonas hydrophila WL-11 [76], Ochrobactrum sp. [82], and Proteus hauseri [108]. A non-

melanogenic alkalotolerant γ-proteobacterium JB isolated from industrial wastewater-drained soil 

has also been reported to produce a pH-stable laccase with no tyrosinase activity. This laccase is 

present intracellularly but secreted out after 16 h due to cell lysis. The enzyme was highly stable in 

the pH range 4–10 even after 60 days at 4°C [73].  

Laccases have also been identified and characterized from thermophiles. Intracellular laccase 

from the hyperthermophilic bacterium Aquifex aeolicus VF5 [109] and Thermus thermophilus HB27 

[71] have been isolated. HB27 laccase is active at 92°C and has a half-life of 14 h at 80°C and is the 

most thermophilic laccase reported to date.  

Lac591 gene encoding a novel multicopper oxidase with laccase activity was identified through 

activity-based functional screening of a metagenomic library from mangrove soil [79]. Sequence 

analysis revealed that lac591 encodes a protein of 500 amino acids with a predicted molecular mass 

of 57.4 kDa. The recombinant enzyme demonstrated activity towards syringaldazine (SGZ), guaiacol 

and 2,6-dimethoxyphenol (2,6-DMP). The purified Lac591 exhibited maximal activity at 55°C and pH 

7.5 with guaiacol as substrate and was stable in the pH range. This laccase was found to be active 

at 45°C and pH 7.5. 

Recently, some extracellular laccase from bacteria has also been isolated and characterized viz. 

Bacillus sp. ADR [81], Bacillus sp. [85], Micrococcus sp. [88], Geobacillus sp. ID17 [110], Anoxybacillus 

ayderensis SK3-4 [98] etc. 

1.2 Cellular Localization of Laccases 

Laccases have been observed in plants, insects, fungi, archaea and bacteria. Despite their 

occurrence, their presence in a particular system depends on the laccase’s role for that system. In 
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plants, laccases are found in the sap or tissue extracts. Most laccases from fungi reported so far are 

extracellular [19]. However, intracellular laccases from wood-rotting fungi have been reported. 

When cultivated on glucose, wheat straw, and beech leaves, Trametes versicolor produced laccases 

in both extracellular and intracellular fractions [111]. P. chrysosporium and Suillus granulates were 

also have intracellular and extracellular laccases [112]. There are also intracellular or cell wall laccase 

enzymes from Neurospora crassa, Rigidoporus lignosus, and one of the laccase isozymes from 

Pleurotus ostreatus [113]. Irpex lacteus, a white-rot basidiomycete, has laccase activity nearly 

completely connected with its cell walls [114]. 

Laccase's function in the body and the variety of substrates it can use are linked to the enzyme's 

location in the body. Melanin and other protective cell wall chemicals were formed by a cell wall 

and spore-associated laccases [7]. Laccase from actinomycetes is mainly extracellular. Laccase from 

Streptomyces cyaneus CECT 3335 [115], S. psammoticus [116], S. ipomoea CECT 3341 [117], S. 

cinnamomensis [118], S. sviceus [119] and Thermobifida fusca [120] have been reported to be 

secreted in the culture supernatant. However, intracellular laccase from S. lavendulae [121] and S. 

coelicolor [122] have been isolated and characterized.  

In bacteria, mostly laccases are present in cytoplasm or spore bound [123]. Most of the laccases 

reported from different species of Bacillus are found as a component of spore coat protein Cot A. 

However, in recent years, extracellular laccase-producing bacteria have also been isolated. The 

Laccase from Bacillus sp. ADR has been reported to be produced extracellularly but ADR laccase is 

a non-blue laccase [81]. Another extracellular laccase has been reported from Bacillus sp. [85] and 

Geobacillus thermocatenulatus MS5 [89], Micrococcus sp. [88] and B. tequilensis SN4 [87], Bacillus 

sp. MSK-01 [124] and B. licheniformis NS2324 [99]. 

1.3 Characteristics of Laccase 

Besides being similar in structure, laccases from different organisms exhibit different properties. 

Therefore, to study the properties of laccase, purification of the enzyme is necessary as the presence 

of other enzymes and media components in crude preparation may alter some of the characteristics 

of the enzyme. Laccases can be purified using a variety of methods. These techniques include 

membrane filtration, precipitation, anion exchange chromatography, gel permeation 

chromatography, and hydrophobic interactions. Purification efficiency can be increased by 

employing affinity chromatography with a phenolic group as the ligand. SDS-PAGE and the 

absorbance ratio at 280 nm to 600 nm are commonly used to determine laccase purification 

effectiveness. 

1.3.1 Purification of Laccases 

Purification of any protein is crucial for a better understanding of its functioning. Despite the 

diversity in the origin of enzymes and types, their purification can be carried out by a generalized 

approach, which includes the recovery of proteins, their concentration, and then purification using 

high-resolution chromatographic techniques [125]. The first step in the purification of any enzyme 

is its recovery. As most of the fungal laccases are extracellular, they are released into the 

fermentation media and separation of cells from the supernatant is generally done by centrifugation 

or filtration. Bacterial laccases are intracellular or spore-bound proteins; therefore, extraction of 

laccase involves a few steps. For intracellular laccases, cells are harvested by centrifugation and then 
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lysed by ultrasonication. Laccase from the spores of bacteria can be isolated by the method of Held 

et al. [126]. After the recovery, the next step is the concentration of enzyme which makes the 

volume manageable for subsequent purification steps [125]. This can be achieved either by 

ultrafiltration or by precipitation. Although ultra-filtration has been used by some workers [127] 

precipitation is the most commonly used concentration method. Protein precipitation is promoted 

by agents such as organic solvents, neutral salts, and high molecular mass polymers or by 

appropriate pH adjustment. Organic solvents and salts like ammonium sulfate, which lowers the 

solubility of the proteins in an aqueous solution leading to their precipitation, are generally 

employed for precipitation [128]. Ammonium sulfate precipitation has been used in various studies. 

Organic solvents mostly used for precipitation include ethanol and acetone. Various acetone 

concentrations such as 50-80% [96] have also been used to precipitate proteins having maximum 

laccase activity from the supernatant. Some researchers have used different concentrations of 

ethanol viz. 70% and 95% for the precipitation of laccases [129]. 

For further purification of laccase a combination of one or more chromatographic techniques viz. 

gel filtration chromatography, ion exchange chromatography (IEC), affinity chromatography (AC) 

etc., are used: 

Ion Exchange Chromatography: Ion exchange chromatography using DEAE-cellulose resin has 

been widely employed in the purification of laccases [130]. Researchers have used other ion 

exchange resins to purify laccase include CM-Cellulose, Q-Sepharose FF, and DEAE sepharose CL-6B 

[130].  

Affinity Chromatography: Most of the laccase are glycoproteins, so the concanavalin A-sepharose 

4B affinity column was used to purify laccases [131]. The enzyme was eluted with a linear gradient 

of α-D-mannopyranoside [132]. Phenyl sepharose is one of the most commonly used hydrophobic 

interaction chromatography (HIC) matrices in the purification of laccase [133]. Other affinity 

adsorbents used for the purification of laccases include Con-A CL agarose [134], Cu2+–iminodiacetic 

(IDA)–Sepharose [135] etc. Though this technique is a highly selective method of protein purification, 

the labile nature of some affinity ligands and high cost are the major limitations of this technique 

[125].  

Gel Filtration Chromatography: The Sephadex range of fractionation gels (Sephadex G-75, G-100, 

G-200) are widely used for the purification of laccases [31, 136] Sephacryl based matrix such as 

sephacryl S-200 [137] have also been used by various workers for purification of laccases. 

1.3.2 Molecular Weight of Laccases 

A laccase consists of a single, two, or four glycoproteins. In addition to secretion, proteolytic 

destruction, copper retention, and thermal stability, laccase is thought to have a role in glycosylation 

[3]. 10-45% of the molecular weight of laccases is contributed by the covalently linked carbohydrate 

moieties [138]. Compounds of monosaccharides including hexoamines, galactose, fructose, and 

arabinose are found in the carbohydrate compound [7]. Mannose is one of the major components 

of carbohydrates attached to laccase [139]. Most bacterial laccases have a molecular weight of 55-

65 kDa. Singh et al. [73] showed that the laccase from α-proteobacterium JB had a mass of 120 kDa. 

The molecular weight of some laccase was found to be around 30-36 kDa [140]. 
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Laccase from actinomycetes mainly Streptomyces are of variable sizes [141]. Laccases from S. 

sviceus [119] are reported to be of 32 kDa. Laccase from S. lavendulae [121] and S. cyaneus [115] 

has a molecular weight of 70-75 kDa. Other reported Streptomyces laccases are in the range of 40-

45 kDa. Laccase from S. griesus has the highest molecular weight of 114 kDa [142]. 

Fungal laccases reported to date are also of variable sizes. The laccase reported from 

Ascomycetes is generally in the range of 70-80 kDa [2]. Laccases from Basidiomycetes are generally 

from 50-75 kDa [142]. However, extracellular laccase from Pluerotus sajor-caju [143], Postia 

placenta [144], Ganoderma lucidum [145] and Fomitopsis pinicola [146] are in the range of 90-95 

kDa. 

1.3.3 Effect of pH  

The optimum pH for laccase activity varies from substrate to substrate [70]. Generally, laccases 

have alkaline pH optima for phenolic compounds while the non-phenolic substrates like ABTS are 

oxidized by laccase in the acidic range [70]. The redox potential difference between the compound 

and the T1 Cu of laccase, which rises with pH, is the driving force for electron transfer between the 

phenolic substrate and laccase [70]. Fungal laccases generally have acidic pH optima for phenolic 

and non-phenolic substrates. Bacterial laccases have alkaline pH optima for phenolic substrates and 

acidic pH optima for non-phenolic substrates. The low pH optima for fungal laccases are because 

they grow in acidic conditions.  

Generally, laccases are stable in wide ranges of pH. Bacterial and actinomycetes laccase are more 

stable in alkaline pH ranges. Laccase from S. coelicolor retains 100% activity for 48 h at pH 3.0-9.0 

[122]. Similarly, Streptomyces ipomoea CECT 3341 laccase remains 100% stable for 36 h in the 

buffers of pH 5.0-9.0 [117]. Fungal laccase also exhibits broad pH stability. Laccase from Xylaria 

polymorpha retains 86% activity at pH 10.0 for 4 h [59]. Laccase from Fomitopsis pinicola is 80-90% 

active in the pH range of 1.5-11.0 for 1 h [147]. Abortiporus biennis J2 laccase retains 80% activity in 

the pH range of 4.0-7.0 for 24 h [148].  

1.3.4 Effect of Temperature  

The optimum temperature for laccase activity varies from strain to strain. Spore-bound bacterial 

laccases are generally highly thermostable because of their very nature. Laccase from Thermus 

thermophilus has optimum temperature of activity at 92°C [71]. Cot A laccase from B. subtilis is 

active at 75°C [149]. Extracellular laccase from bacteria has a temperature optima range of 35-50°C 

[88]. Laccase from B. tequilensis SN4 is active at 85°C and could retain more than 80% activity at 

70°C in 24 h [103]. Laccase from actinomycetes has an optimum temperature range of 60-70°C [63]. 

Fungal laccases generally have optimum temperatures of 50-60°C [150]. However, laccase from 

Fomitopsis pinicola is active at 80°C, thus having the highest temperature optima reported among 

the fungi [147]. Fungal laccases are less thermo-stable than bacterial and actinomycete laccases.  

1.3.5 Substrate Specificity of Laccases 

Laccases of different origins have different preferences for different substrates. Laccases can 

oxidize a wide diversity of substrates, but kinetic studies have only been conducted on a few laccase-

specific substrates. Guaiacol, syringaldazine, and 2,6-DMP (2,6-DMP) are the most commonly 
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studied phenolic compounds, while many authors have also looked at ABTS as a non-phenolic 

substrate. It has been found that laccase kinetic catalytic constants are highly variable [151]. Laccase 

Km values range from 1.5-7,500 nM [3]. 2,6-DMP and guaiacol have low affinity for laccases, while 

ABTS and syringaldazine have high affinity. There is no significant difference in the laccase's kcat 

values between different substrates. 

1.3.6 Inhibitors of Laccase 

As laccase is a copper-containing enzyme, metal ion chelators such as EDTA, and dimethyl 

glyoxime are good inhibitors of laccase activity. Anions such as F-, Cl-, N3
-, CN- and OH- bind to the 

T2 and T3 copper atoms of laccases disrupting the electron transfer between substrate and oxygen, 

resulting in enzyme inhibition [70]. OH- also prevents catalysis of substrates by laccases at higher 

pH causing inhibition of the enzymatic reaction. The inhibition by halides varies with different 

laccases. This can be due to the difference in the size of the solvent channel of TNC [70]. Several 

laccase inhibitors, such as Hg2+, Fe2+, fatty acids, sulfhydryl reagents, hydroxylysine, kojic acid, and 

ammonia detergents, can be employed in various ways [42]. They may chelate the Cu (II) atoms, 

modify amino acids, or change the conformation of the glycoprotein by affecting the laccase. 

1.4 Laccase's Industrial and Biotechnological Applications 

Laccases are useful enzymes due to their potential applications in various industries like the pulp 

and paper industry for biobleaching and bioremediation of effluent water, the textile industry for 

dye decolorization, the cosmetic industry for hair coloring, nanobiotechnology, the food and 

beverage industry, etc. [152, 153]. Laccases have also been applied to remove many recalcitrant 

compounds such as alkenes, para chlorophenols, dyes, herbicides, polycyclic aromatic hydrocarbons, 

benzopyrene, etc. [154]. Some of the applications of laccase are discussed below: 

1.4.1 Food Industry 

Recently, Mayolo-Deloisa et al. [155] reviewed the use of laccase in the food industry. Phenols 

and other aromatic compounds present in foods are good substrates of laccase. Waste from food 

industries is utilized to produce laccase. Banana peels were utilized for laccase production from 

Aspergillus sydowii NYKA 510 [156]. Akpinar and Urek [157] have utilized peach waste as a substrate 

for laccase production. Sweet lime peels were used as solid substrates for laccase fermentation from 

Bacillus sp. MSK-01 with a total activity of 687IU-g [158]. Sondhi and Saini [159] have utilized fruit 

juice waste to produce laccase. They observed a maximum laccase yield of 1645 IUg−1 in solid-state 

fermentation conditions. Backes et al. [160] utilized pineapple crowns to produce laccase in a recent 

study.  

Laccases can improve the quality of fruit products and lower their costs by altering them. 

Oxidation/cross-linking of the tyrosyl group in myofibril protein leads to rheological changes in meat 

products [161]. Laccase is widely used in the food industry for various purposes, including clarifying 

wine and beer [155] Ethanol, salts, organic acids, and phenolic compounds are some of the active 

components of wine, beer and must. Alcohol and organic acids are responsible for wine aroma while 

the phenolic compounds contribute to the color and taste of wine. Oxidative reactions 

(modernization) in musts and wines cause turbidity, color intensification, aroma, and taste 



Adv Environ Eng Res 2023; 4(2), doi:10.21926/aeer.2302030 
 

Page 21/37 

alteration. Laccase can oxidize the polyphenolic compounds in wine and beer thus causing 

clarification [139]. Laccase is also added at the end of the beer production process to remove 

unwanted oxygen and thus increase the shelf-life of beer [162]. Laccases are also responsible for 

cross-linking the biopolymers in wheat flour to improve the quality of baked products. Laccases 

oxidize the ferulic acid unit in arabinoxylans, pentosans, and pectins, leading to the gelling of cereal 

foods [163]. In flour and gluten dough, laccase from Trametes hirsuta has increased maximum 

resistance while decreasing dough extensibility [164]. The use of laccase in the baking industry has 

been reported to increase the textural quality of bread [165]. 

Laccases have also found application in fruit juice processing. During the juice extraction from 

fruits, various proteins, and polyphenols interact with each other, leading to haze formation in fruit 

juices. Using laccase to reduce the phenolics in fruit juices results in the clarity of juices [162]. 

Laccases are also applied to remove phenolics in food industry effluent water.  

The olive mill effluent (OMW) is a byproduct of the olive oil production. The color of OMW 

depends on the age and type of olive used. Olive mill effluent contains high salt and organic matter 

levels, including pectins, sugars, tannins, and phenolic compounds. Laccase can be used to reduce 

the phenolic content of effluent and thus reduce the color of the effluent [166]. 

1.4.2 Cosmetics  

Laccases have also found a role in the cosmetic industry. The use of laccases has been reported 

in hair dyeing to replace H2O2 in the developer. It is simpler to handle laccase-based hair colors than 

current hair dyes since they are less irritating to the skin. Laccase can also be used to make natural 

colors such as gallic acid, syringic acid, catechin, catechol, ferulic acid, and syringic acid, among other 

phenolic compounds, as a color for hair [140]. 

Laccase-containing dermatological preparations for skin lightening has also been documented 

[167]. Laccase can also be used to treat poison ivy dermatitis due to urushiol. Urushiol is a catechol 

derivative with alkene/allyl side chains found in the saps of trees. Laccase can polymerize urushiol 

to urushi and thus can be used as a topical agent for treating ivy dermatitis [167].  

The use of laccase in deodorants has also been proposed. Sulfides, thiols, ammonia, amines, 

short-chain fatty acids, and other volatile chemicals can cause foul body odors. Because laccase can 

oxidize thiols and other sulfur-containing compounds, it can be used as an deodorant additive [31].  

1.4.3 Nanobiotechnology 

Electron transfer reactions may be carried out by laccases without extra cofactors, making them 

useful in biosensors [168]. Biosensors based on laccase for the detection of morphine and codeine 

[169], catecholamines [169], plant flavonoids [170], azo-dye tartrazine [171] and for electro-

immunoassay [172] have also been developed.  

1.4.4 Bioremediation & Biodegradation  

Toxic chemical contamination of soil, water, and air has become one of our most pressing 

environmental issues. The pollution comes mainly from the industrial and agriculture sector where 

releasing harmful chemical compounds and pesticides to the air and water bodies results in serious 

health problems. Some hazardous chemicals such as benzene, toluene, 1,1-trichloro-2,2-bis (4-
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chlorophenyl) ethane (DDT), xylene (BTEX), ethylbenzene and tri chlorotoluene (TNT) remain in the 

environment and are well-known carcinogens [173]. Laccases can be used for the degradation of 

these compounds [174]. Polyhydroxy hydrocarbons have also been reported to be degraded by 

laccases [19]. 

1.4.5 Plastic Degradation 

Plastics are synthetic polymers obtained by polymerizing ethylene gas. Based on their density 

and branching, they are classified into low-density (LDPE) and high-density (HDPE) polyethylene 

plastics [175]. Plastic has persisted in the environment for as long as 1000 years. Degradation is 

extremely difficult with these materials. Researchers are working to solve the problem because of 

environmental concerns about the buildup of this type of plastic. In the past few years, plastic-

degrading microorganisms that utilize plastic to grow and degrade have been reported. It was 

observed that laccase is the only ligninolytic enzyme produced in the culture of plastic-degrading 

bacteria [176]. Thus, laccase can also be applied to the degradation of plastics [175]. 

1.4.6 Disinfection 

Laccase has also found application in the generation of iodine in situ. Iodine is widely used as a 

reagent in disinfectants. Laccases can oxidize iodide to iodine [177]. A laccase-iodide (LIS) used for 

disinfection can have several advantages compared to direct iodine use. Using iodide salt for 

handling, storage, and transportation is safer than using iodine. The amount of laccase in LIS can be 

easily adjusted to regulate the release of iodine from the iodine storage solution. LIS can be applied 

to sterilize drinking water, swimming pools, etc. It can also be used to disinfect minor wounds [178]. 

1.4.7 Pulp and Paper Industry 

In the pulp and paper sector, natural resources are consumed at the highest rate globally (i.e., 

water, wood and energy). Therefore, it is a major contributor to water, air and soil pollution. Laccase 

can be used in the pulp and paper industry for bio bleaching of kraft pulp, bioremediation of effluent 

water and recycling of waste papers. 

Bio Bleaching of Kraft Pulp. The use of laccases has been extensively studied for the bio-bleaching 

of kraft pulp and was first patented in 1994 [179]. Fungal laccases are widely used for the 

biobleaching of pulp [179]. Despite high thermo-alkali-stability, using bacterial laccase for pulp bio-

bleaching is rare. This might be due to their intracellular/spore-bound localization which makes the 

subsequent purification and large-scale production steps difficult. Using bacterial laccase from γ-

proteobacterium JB and Streptomyces cyaneus has shown a 21.1 and 18.4% reduction in kappa 

number by using ABTS as a mediator [180]. 

Mediators increase the efficiency of laccases for delignification [181]. Several natural and 

synthetic mediators, e.g., ABTS, HOBT, viol uric acid, etc., are used for pulp delignification. Using 

fungal laccases in the presence of HOBT resulted in a 20-27% decrease in the kappa number of 

eucalyptus kraft pulp [182]. Laccase from B. tequilensis SN4 was known to reduce the kappa number 

of pulp by 28% and increase brightness by 7.6% [103]. 

Moreover, using laccases in combination with hemicellulases has broadened the use of enzymes 

in the pulp and paper industry. Hemicellulases facilitate the removal of hemicelluloses such as xylan 
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and mannan, making the lignin layer accessible for degradation by laccase thereby reducing chlorine 

consumption [183]. Using dual/triple enzymes for bio-bleaching is a novel approach [184]. 

Woldesenbet et al. [185] have reported using laccase and/or xylanase and/or mannanase for the 

bio-bleaching of kraft pulp. When mannanase was used with a laccase mediator system, a 32.6% 

reduction in kappa number was observed, while a 40% reduction was observed with the triple 

enzyme. Anugral et al. [186] have treated pulp with a cocktail of laccase, xylanase, and mannanase 

enzymes which led to a 49.35% reduction in kappa number and considerable enhancement in the 

brightness (11.59%), whiteness (4.11%), and other pulp properties. Most importantly, no mediator 

system was used for the pulp biobleaching by laccase. They showed that 40% less chlorine 

consumption was required to obtain a paper of the same quality as that of pulp treated without 

enzyme but with 100% chlorine. 

Bioremediation of Paper Industry Effluent. Laccase has also been used for the decolorization of 

paper industry effluent. Pulp and paper mills generate ample amounts of dark brown colored, highly 

alkaline effluent water called black-liquor which is characterized by having toxic chlorinated 

compounds such as chlorolignins, chlorophenols, and chloroaliphatics [187].  

Various white rot fungi have been reported to treat paper industry effluent. Gliocladium virens, 

a saprophytic soil fungus had been reported to decolorize paper and pulp mill effluents by 42% [188]. 

Although fungal treatment of pulp and paper mills effluent showed significant results, the treatment 

is not feasible at the industrial level because high pH, high temperature, and oxygen limitation in 

the effluent treatment plant of pulp and paper mills prevent fungi from proliferating [189].  

Laccase from Bacillus tequilensis SN4 reduced the color of effluent water by 83% BOD and COD 

were also reduced by 82% and 77% respectively [190]. Kumar et al. [191] reported a significant 

reduction of pollutants, i.e., kraft lignin 72.5%, color 62.0%, COD-45.05% and reduction in toxicity 

(80%) of effluent treated with B. cereus laccase. Kumar and Chandra [192] also reported up to 78.67% 

of decolorization by laccase from Bacillus cereus AKRC03. 

Recycling of Waste Papers. Laccases have also found a role in the recycling of waste papers. Old 

newspapers (ONP) are one of the major sources of waste paper. Deinking of ONP pulp by laccase 

has attracted awareness for its reuse. Laccase can also be employed for deinking of ONP pulp as 

they are rich in lignin [193]. 

1.4.8 Textile Industry 

Dye Synthesis. Laccase can also be used to synthesize natural dyes [194]. Laccases can naturally 

produce reactive colored quinones by the oxidation of various substrates. Some people, especially 

those in textile industries, develop allergic reactions from synthetic dyes. Natural dyes based on 

laccase are less irritant and not allergic to the individual. The colored products formed by laccase 

are soluble in water and thus can be used for dyeing fabrics [195]. 

Dye Degradation. The use of laccases has been reported for the degradation of textile dyes for 

bioremediation and denim finishing. Second, only to agriculture, India's textile industry is a major 

source of employment for its people. Textile manufacturing contributes to the national economy 

and environmental pollution [196]. Various inorganic, polymeric, and organic compounds are 

among the dyes employed by textile mills when dying fabrics [197]. To make clothing and other 
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products, the textile industry relies on three types of fibers: cellulose fibers like cotton, and rayon 

linen; polyester fibers like spandex polyester nylon acetate and protein fibers like wool angora 

mohair cashmere silk, etc. [198]. The textile industry uses a variety of dyes and chemicals depending 

on the type of fabric being produced. Many different types of reactive dyes (such as remazol and 

cibacron F), direct dyes (such as congo red, direct yellow 50), naphthol dyes (like fast yellow GC and 

fast scarlet R), and indigo dyes (like indigo white or indigo carmine) are used by manufacturers to 

color cellulose fibers. Protein fibers are dyed with lancet dyes and acid dyes (azo dyes, 

triarylmethane dyes, and anthraquinone dyes) (Blue 5G and Bordeaux B). Dispersed (yellow 218), 

basic (orange 37), and direct dyes (red 1) can be used to color synthetic fibers [154]. 

The fabric absorbs 70% of the dye in the dyeing process, while the effluent stream receives the 

remaining 30%. Dyes in the water absorb and reflect sunlight, disrupting algae's ability to 

photosynthesize [199]. Thermal and photochemical stability makes toxic dyes persistent in the 

environment for long periods [200]. According to India's Central Action Plan, the Ministry of 

Environment and Forests has designated the textile industry as a Red category polluter. 

Effluent water from dyeing industries is treated utilizing chemical and biological methods [197]. 

Treatment processes for these effluents include simple sedimentation, aerated lagoons, and 

aeration of activated sludge, a flocculant, chemical flocculation, coagulation, and trickling filters and 

reverse osmosis [201]. Conventional treatment methods, even the most cutting-edge ones, cannot 

handle the highly colored wastewater generated during textile manufacturing [201]. Aside from that, 

these methods use a lot of energy and degrade dyes ineffectively. Because of this, reducing textile 

dye pollution also necessitates addressing the issue of dye degradation. 

Laccase can decolorize dyes in effluents from the dye industry [154]. Literature has documented 

various degrees of decolorization in various types of dyes. As well as being used to remove the color 

from textile waste, laccase is also useful for bleaching fabrics and making dyes [5]. 

Synthetic Chemistry. Laccases play different roles in nature depending on the organism, and they 

are actively engaged in both catabolic and anabolic processes. A laccase-mediated reaction is a 

valuable tool in green chemistry for synthesizing biologically active compounds such as 

antimicrobial substances due to mild and environmentally friendly reaction conditions such as room 

temperature, atmospheric pressure, and the avoidance of organic solvents. Low molecular weight 

phenolics (monolignols and flavonoids) are typically oxidized to radical and/or quinone 

intermediates in normal anabolic reactions [202]. They combine to produce various dimeric 

products, many of which have biological activity. These dimers can make dimeric radicals, which can 

then self- or cross-couple to produce trimers, oligomers, and polymers because they still have 

phenolic activities [202]. As a result, laccases produce several dimers, such as lignans and related 

compounds, and polymeric products such as lignin, flavonoid polymers, melanins, quinones, cross-

linked to cuticular proteins (for insect cuticle sclerotization), etc. Laccase-mediated homo- and 

heteromolecular coupling reactions result in antibiotics that have been derivatized or synthesized 

for the first time [203]. 

2. Conclusion 

This review highlights the importance of laccase in different industries. The review encompasses 

detailed reports on different laccases and their properties. Laccase because of its very nature is a 

non-specific enzyme catalyzing both phenolic and non-phenolic substrates. Laccases are in various 
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industries for reducing the load of chemicals in industries. The complex nature of effluent water and 

chemical processes can be overcome by engineering laccases with site-directed mutagenesis and 

isolating more laccases from different sources. Existing literature suggests that laccase can be used 

for the bioremediation of various industrial effluents; however, the commercialization of said 

technologies is still in its infancy. In the future, developing more suitable immobilization techniques 

and increased production of laccase at a cost-effective rate can make its commercial application 

possible. 
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