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Abstract 

The urgency to manage global methane emissions has been acknowledged with international 

pledges to reduce 2020 levels by 30% by 2030. Carbon management requires effective tools 

to monitor changes, including those from significant sources including waste disposed on land. 

The first order degradation model used to determine landfill methane emissions, has been 

described by researchers as highly variable, insensitive and inadequate, despite recent 

attempts to explain microclimate impacts on methane oxidation. The development of detailed 

regional inventories is hampered by these variables. The availability of historical waste 

management and meteorological data in California, enables a theoretical review and 

modelling of meteorological moisture changes with methane generation data in a region of 

decadal drought. This study identifies a novel approach in the modelling of regional 

optimisation of variable seasonal parameters of moisture and methane oxidation based on 

the adjustment of the methane correction factor (MCF) generally assumed to be MCF = 1 for 

managed sites, that is optimised as MCFsite ≠ 1 as the average regional MCFall sites, → 1 (Range: 
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<1, ≥1). Regional annual unmitigated methane emitted in December 2010 after methane 

recovery, oxidation and flaring is estimated at 0.40 million tonnes, falling to 0.31 million 

tonnes in 2011 and back to 0.40 million tonnes in 2012 (Pr < 0.01, n = 370). as meteorological 

conditions returned to the changing decadal norm. Meteorological and climate sensitivity is 

demonstrated in relation to the regional water balance, spatial distribution of landfill site 

moisture levels, satellite imagery of 2012 wildfire intensity ranges, the 2011 El Nino impacts 

and independent data sources. The method provides accurate regional methane assessments 

inclusive of soil and cover material oxidation. This will primarily benefit developing countries 

where landfill remains a dominant option, enabling the development of database linked 

satellite monitoring and detailed regional landfill climate emission inventories.  

Keywords  

Regional; climate; meteorological; sensitivity; unmitigated methane; inventory; waste models.  

 

1. Introduction 

Globally 2.5 billion tonnes of municipal solid waste (MSW) generated annually in 2014 with only 

about 20% of municipal waste is formally recycled. This leaves many developing countries still 

disposing of most of their MSW to land or elsewhere, despite a range of policy initiatives including 

zero waste and the circular economy. Degradation of the disposed waste presents a significant 

source of global methane [1]. The United States and the European Union have pledged to reduce 

2020 methane emission levels by at least 30% by 2030, recognising the urgent need to manage the 

reduction of “… this dangerous climate pollutant over the next decade” [2]. 

Decadal drought affects the southwestern region of the United States [3-5] including California 

where researchers [6, 7] have adapted first order degradation (FOD) models to assess the relative 

impact of microclimate climate changes and the use of cover materials in mitigating fugitive landfill 

methane emissions (See discussion on the CALMIM Model and Californian State Inventory [7]). 

Methane assessments using FOD rate constants are based on soil moisture considerations in 

relation to mean annual precipitation and potential evapotranspiration [8-11].  

In municipal solid waste (MSW) methane oxidation levels vary seasonally across the full range 

from very little to 100%. However, a default (annual) soil oxidation value of 10% is applied to sites 

that are managed and covered with methane oxidising material in the 2006 IPCC Waste Model [7, 

10-14].  

Higher moisture levels in MSW increase the rate of degradation rate. In a study in Thailand, dry 

season field methane emissions were found to be significantly lower than in the wet season. In this 

study the authors optimise the methane correction factor (MCF). a variable in the FOD equation 

that is used in the estimation of the proportion of degradable organic carbon (DOC), with results of 

methane analysed with error function analysis [15, 16].  

Default site MCF estimates are based on site descriptions in the 2006 IPCC model. with a range 

of 1.0 to 0.4 with uncertainties ranging from 0 to10% for managed sites; a default MCF value of 1 is 

applied to managed sites; and at MCF = 0.4 uncertainties range from -50% to +60%. The 2005 EPA 

model adopts the MCF = 1 default [8, 10, 11, 17].  
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Landfill gas generation models have been highly variable in estimating methane with error ranges 

of -81% to 539% in a study on 35 Canadian landfills [18], that assessed four models including the 

German EPER zero order, Scholl Canyon and the LandGem model v2.01. A study on 6 landfills in 

South America for World Bank Clean Development Mechanism (CDM) projects including the 2006 

IPCC Waste model and 2005 EPA model had a error range of 3 to 1109%. A comparison of 4 landfill 

models including the LandGEM, UK GasSim model and the IPCC tier 2 model had an error range of -

65% to +165%. The original IPCC emission validation based on data from 9 Dutch landfills, though 

this was based on limited biogas recovery data [8-11, 18-21]. 

The error range of rate models used to estimate landfill gas decreases from zero order to first 

order to second order when comparing model outcomes to measured data. The zero-order error 

range is very high. The second-order model is claimed to be more accurate than the first-order 

model, is more difficult to apply. This leads to the more common use of the first-order equation [22, 

23].  

In a review, conclusions are drawn that the first order empirical model was insensitive to the 

approach taken in determining the modelling parameters and uncertainties in the quantification of 

the rate constant (k) and degradable organic carbon (DOC) and consider that for landfill gas 

generation and collection, the model is inadequate. Both the 2005 LandGem and 2006 IPPC waste 

models were never fully validated having been developed before the availability of landfill data on 

a regional scale [7, 22, 24].  

In California, a regional scale online waste management database exists detailing 370 landfill sites 

in 2010 with 1.37 billion tons (US metrics) of waste in place. The earliest site operating from the 

early 1930’s and 129 sites with methane recovery and treatment. Regional meteorological data 

collected from over 200 monitoring stations is available, with many that are close to the landfill sites 

that have gas recovery and treatment. Regional characterisation data, with site “other waste” 

variations is taken from the Walker database to provide a unique opportunity to model bespoke site 

waste characterisations and theoretical moisture adaptations [25-27].  

This is supported by the availability of an adaptable FOD model that is based on the 2005 

LandGem and 2006 IPCC models. This model has already been used in the estimation of changes to 

regional methane emissions due to developmental and climatic changes (desertification) in dry 

tropical and dry temperate climates in the Middle East and North Africa region. However, the 

estimated regional methane emissions recorded in these papers are likely to change due to 

adaptions considered and implemented in this study [9-11, 28, 29]. 

The purpose of this paper is to make use of the historical data availability in applying a theoretical 

moisture adaptation to the FOD model to rationalise and optimise the wide-ranging data errors and 

uncertainties in regional methane generation, assessing the sensitivity of the model to ongoing 

meteorological and climate conditions by comparing model outcomes with measured data.  

2. Materials and Methods 

2.1 Theoretical Review  

2.1.1 The Role of Moisture in MSW Landfill Degradation  

Methane (CH4) is only produced when water is present in anoxic conditions generating CH4 and 

carbon dioxide (CO2) in equimolar quantities, as shown in-Eq. (1) below. It is accepted that the 
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natural chemical stoichiometry varies in the biodegradable fraction as the generated CH4 to CO2 

molar ratio uncertainty may vary from 0.50 the default value to 0.55 [9-11, 17]. The rate equation 

can be derived from a general carbohydrate formula [C][CH2O]n-1 which is used to represent the 

simplified structure of one ring of carbohydrate from empirical formulae [30, 31] to illustrate the 

role of moisture in creating sugars as the intermediate precursor for the degradation of organic 

waste.  

[C][CH2O]n−1 + (1 + a)[H2O] → [CH2O]n + a[H2O] → n
2⁄ [CH4] + n

2⁄ [CO2] + a[H2O] (1) 

Where: a is the additional number of water molecules to achieve 100% moisture saturation point 

for equimolar anaerobic digestion and n = 5 or 6. The intermediate [CH2O]n is a sugar, a food source 

for the microbes in the soil that is converted in anoxic conditions to CH4 and CO2. 

Degradation can also be considered as a zero-order rate reaction as shown in Eq. (2). 

−
 𝑑[𝐶[𝐶𝐻2𝑂]𝑛−1]

𝑑𝑡
 =  𝑘

[𝐶𝐻4]
[𝐻2𝑂]⁄ (2) 

However, the water concentration [𝐻2𝑂] is assumed to be sufficiently large to remain constant 

and is considered zero order in FOD models with [𝐻2𝑂]0 = 1. The classic waste FOD rate equation 

[11] is shown in Eq. (3).  

−
 𝑑[𝐶[𝐶𝐻2𝑂]𝑛−1]

𝑑𝑡
 =  𝑘[𝐶𝐻4] (3) 

In the rate determining step (hydrolysis of the carbohydrate), the relative moisture saturation is 

a non-constant dimensionless term. So, if b is a variable portion of water available within the waste 

mass that is ≤ or > (1 + a), then the adjusted proportion of CH4 (and equimolar CO2) emitted is 

regulated as the moisture saturated rate constant (k) with b/(1 + a) in Eq. (4).  

−
 𝑑[𝐶[𝐶𝐻2𝑂]𝑛−1]

𝑑𝑡
×  

𝑏

(1 +  𝑎)
 =  (

𝑏

(1 +  𝑎)
𝑘) [𝐶𝐻4] (4) 

Where k is the 100% moisture saturated rate constant = 0.050 [9, 10]. 

Let us assume that meteorological conditions in the environment are in equilibrium with the 

change in landfill moisture levels. Moisture changes can be measured as ETo/P, the annual 

evapotranspiration (ETo) and precipitation (P) ratio (ETo/P). Similar terms are used by hydrologists 

in the estimation of soil moisture (See review in: [32]). The non-constant water term (ETo/P) relates 

to the proportion of CH4 produced as a proportion of the total theoretical default term 𝑛 2⁄  CH4 

produced in Eq. (1) with the residual carbon being converted to CO2. As ETo/P is both relative (non-

constant) and dimensionless, the moisture term in the zero order Eq. (3) forms the Fickean non-

constant rate constant term, inverting as P/ETo (the Aridity Index: [33]), changing to the first order 

equation, shown in Eq. (5). 

−
 𝑑[𝐶[𝐶𝐻2𝑂]𝑛−1]

𝑑𝑡
 =  𝑘

[𝐶𝐻4]

[𝐻2𝑂]
 =  (

1

𝐸𝑇𝑜

𝑃

𝑘) [𝐶𝐻4]  =  (
𝑃

𝐸𝑇𝑜
𝑘) [𝐶𝐻4] (5) 
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In practice, the b/(1 + a) and P/ETo term is highly variable, impacted by changing environmental 

conditions, inhomogeneous disposed waste composition, engineering and working practices at the 

landfill (See review in: [7]), as well as, for example, the loss of degradable carbon due to surface and 

underground fires [34]. 

The FOD equation is derived from the 1855 Fick’s Law, the mass (Ms) of degrading solute (sugar) 

transferred, is defined by a non Fickean rate constant (knc) and the time (t) period (usually 1 year) 

to the power of n, where n = 1, due to the porosity of degradable organic substrate (Eq. (6)).  

𝑀𝑠 =  (𝑘𝑛𝑐)𝑡(𝑛 = 1)  =  (
𝑃

𝐸𝑇𝑜
𝑘) 𝑡 = (

𝑏

(1 +  𝑎)
𝑘) t (6) 

Adding a moisture term in the exponential rate term of the FOD equation has been previously 

used by researchers as a hydrolysis rate constant [35]. The FOD equation, outlined in Eq. (7), used 

to estimate methane generation is made up of 4 terms: ‘M’ the mass of the disposed waste; ‘L’ is 

the biodegradable content term built around the degradable organic carbon (DOC); the MCF is 

normally included in ‘L’ – for this study it is treated as an unknown variable; and an exponential rate 

constant term (k) and time t = 1 (year). The equation terms are calculated in yearly intervals and 

summed (Σ) across operational and closure periods (See; [10, 17]). 

Methane generated =  ∑ 𝑀  × (𝐿 ×  𝑀𝐶𝐹) ×  𝐸𝑥𝑝(−𝑘𝑛𝑐𝑡) (7) 

There are two key highly variable terms that hinder consistency in the estimation of regional 

emissions.  

• MCF, and  

• Non-constant rate constant term – shown as Knc.  

The moisture related non-constant term has a logarithmic relationship with the mass of waste in 

Eq. (7) and with the methane gas generated. 

2.1.2 Data Sources, and Site Selection Criteria Used in Modelling 

The principal sources of data available were obtained from,  

• The 2012 Walker database was the first comprehensive Californian waste management data 

base [25] that includes data on the disposal of “other wastes” such as green wastes and 

sewage sludge.  

• The CIMIS regional meteorological database [26], with monthly data from January 2010 to 

December 2011 from monitoring stations near to Landfill sites. 

• The Calrecycle, Californian waste characterisation report [27] provides regional 

characterisation of wastes disposed at sites. This is used to calculate ‘L’ using the DOC (Eq. (7)). 

• 2006 IPCC model [10, 11] provides optimum DOC and moisture data for waste types at 

disposal (See: [28], Table 2) and uncertainty levels  

The MSW landfill sites used for the rate calibration were selected from the waste management 

database [25] using the following criteria. 

• Without leachate circulation (So landfill moisture changes in the landfill can be directly related 

to meteorological changes).  

• With annual methane extraction, flaring, oxidation or recovery data 
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• With sufficient data for FOD modelling. 

Many sites listed in [25] did not have a corresponding CIMIS meteorological monitoring station 

[26] nearby and only 66 sites of 129 with gas recovery were used to match the meteorological with 

the site waste management data.  

2.2 Optimising Site MCF, Moisture Saturation and Methane Oxidation 

The key premise for the moisture adaption modelling is that there needs to be a sufficient annual 

quantity of moisture available to generate a related quantity of methane. Figure 1 shows three 

charts with a wide range of variation of the site meteorological moisture saturation estimates across 

the WIP range.  

 

Figure 1 Optimising site and rate calibration moisture estimates. 

The variation decreases (shown as R2 increases) as moisture levels increase across all sites. To 

generate the rate calibration trendline that is used to estimate the methane emitted, all the data 

points are adjusted to MCF = 1 by iteratively changing the rate constant from 0.050 to value that 

generates field methane measurements (recovered, treated and adjusted for collection deficiencies 

and oxidation). The trendline generated optimises differences in the site MCF across the WIP range 

from points where generally MCF ≠ 1, though MCF = 1 is possible but a rare occurrence. The chart 
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calibration with data points above and below the trendline optimised within the moisture saturation 

values creating the conditions in Eq. (8) and Eq. (9). 

∑  (
𝑀𝐶𝐹𝑛

𝑛
)

𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠
→ 1 (8) 

∑  (
∆𝑀𝐶𝐹𝑛

∆𝑡
)

𝑎𝑙𝑙 𝑠𝑖𝑡𝑒𝑠
→ 0 (9) 

where ‘all sites’ is the number (n) of regional sites available, ΔMCF is the difference between MCF = 

1 and the site MCF value and Δt = 1 (year). As shown in Eq. (9). 

The CIMIS data (n = 66) [26] is used with the rate calibration data to generate optimisation charts 

to the following general Eq. (10) with moisture saturation as. 

b

a +  1
or

P

ETo
=  𝑆𝑙𝑜𝑝𝑒 × (Ln(WIP) − 1) (10) 

where the Slope is the gradient of the trendline.  

The equation allows the estimation of moisture saturation for all regional sites (n = 370) with 

WIP and the site location data [25]. The rate calibration Slope is fixed to a measured methane 

recovery level (n = 88), which allows an optimum regional moisture adaptation (ORMA) assessment 

to be made. 

This gives a two-dimensional (surface) view of moisture saturation that is mass balanced with 

the site WIP as a proportion of the total WIP for the estimation of methane, removing the spatial 

bias created by the smaller (<10 million tons) 343 of 370 sites that constitute 31.9% of the total WIP 

[25]. 

The molar methane oxidation is estimated from the site annual methane by volume and landfill 

gas recovery data [25]. The relationship with WIP is assessed as unoxidised methane (using molar 

values) to allow a direct data feed into the FOD model. The proportion of methane generated at 

each site (n = 66) is shown in Figure 2. 

 

Figure 2 Optimising regional unoxidised methane in December 2010.  
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The molar methane oxidation is estimated from the site annual methane by volume and landfill 

gas recovery data [25]. The relationship with WIP is assessed as unoxidised methane (using molar 

values) providing a direct data feed into the FOD model. The proportion of methane generated at 

each site (n = 66) is shown in Figure 2. 

As with the moisture saturation Slope, the unoxidised methane ‘Gradient’ is used to estimate 

optimum regional post oxidation methane generation with the WIP data from the 370 sites. 

However, whereas annual P/ETo is available monthly, there is only one dataset of annual methane 

by volume available for estimation of annual methane oxidation data (December 2010) [25]. 

However, the Gradient can be iteratively modelled to the 100% unoxidized methane, which is 

related to the point where the molar output of CO2 and CH4 is equal at the 100% moisture saturation 

level. The empirical equation enabling a direct estimation of unoxidized methane into the FOD 

model from site WIP is shown in Eq. (11).  

𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =  (0.1617 × 𝑆𝑙𝑜𝑝𝑒 𝐸𝑞. (10)) +  0.0514 (11) 

3. Results 

3.1 Regional Site Distribution by Relative MSW Landfill Moisture Levels 

The raw data meteorological (P/ETo) data with the rate calibration (b/(1 + a) estimate, is shown 

in an accumulative site distribution chart in Figure 3. Over the period from November 2010 to 

December 2011 there is a general drying trend with a significant drying period in the latter months 

of 2011.  

 

Figure 3 Regional landfill site distribution of P/ETo ranges From Nov10 to Dec11. 

There is a monthly range from 63% (November 2010) to 90% (November 2011) of the sites (n = 

66) that have a P/ETo below 0.40 or an average regional %MSW moisture <16.9%. These low MSW 
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moisture levels are in the range of increased wildfire intensity 10 to 15% and high wildfire intensity 

levels 0 to 10% that are measured as dead fuel moisture. The increasing scale and intensity of 

wildfires in a region of decadal drought indicate rapidly changing climate conditions [3-5, 34, 36-38].  

The coloured wildfire intensity ranges in Figure 4were used to show the environmental sensitivity 

of the optimised moisture saturation term as site MSW moisture (n = 370), making use of the 

regional (Geographic Information Systems-GIS) landfill locations [25]). Charts at high and low MSW 

moisture levels that occurred in November and December 2010 and 2011 are shown in Figure 4. 

 

Figure 4 Regional distribution charts of Californian landfill moisture as wildfire intensity 

levels. 

The wildfire vulnerability transformation that occurred over the next 12 months from November 

and December 2010 to November and December 2011 is stark, as sites change from those 

dominated by wildfire intensity ranges of 10 to 15% (red) and above 15% moisture (black) within 12 

months, to those dominated by those with yellow, high wildfire intensity data points (0 to 10% 

moisture) across the whole region.  

3.2 Case Study. Simulation of 2012 NASA Wildfire Intensity Image 

Given the random distribution of the 370 site locations, it would seem unlikely it would be 

possible to reproduce key features of a satellite image of regional wildfire intensity for 2012 [39]. 
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The chart on the left-hand side of Figure 5 was modelled by iteratively adjusting the Slope (Eq. (11)) 

to a value of 0.0243 where key wildfire intensity features of the 2012 NASA image were reproduced 

as closely as possible.  

  

Figure 5 Modelled landfill moisture simulation of 2012 NASA Wildfire Intensity Image 

[39]. 

The distribution of high wildfire intensity in the north, with scattering of sites along the coast and 

to the north of Los Angeles. The central red belt of increased wildfire intensity sites in the central 

South Southeast to North Northwest band up and down the State, mirroring the NASA image. In San 

Francisco black markers (>15% moisture) with a few further to the south along the central coast 

area, demonstrate visual similarities, despite differences in landfill and wildfire locations, 

engineering, practices, sizes, MSW moisture variations, meteorological, seasonal and microclimate 

differences (See review on these issues in [7]) that occur across such large region. 

3.3 Methane Oxidation 

Due to the narrow range of the mass balanced methane oxidation charts generated from 

Equation 10, there is little difference in the visualisation in the spacial distribution between the 

highest and lowest methane oxidation values of 12.76% in November 2010 and 16.40% in December 

2011. An example from a mid-range chart in April 2011 is shown in Figure 6. 
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Figure 6 Site distribution with optimised methane oxidation. 

3.4 The El Nino Impact 

The El Niño-Southern Oscillation is an impact that affects or interfaces with weather systems in 

regions, such as the US east coastal region. The Oceanic El Nino Index (ONI) is one measure of this 

affect that generates cooler drying conditions. The ONI impact shown in Figure 7 as an average of 

annual anomalies over a 5-year period. ONI values may change up to two months after the initial 

"real time" value is posted and is made up of historical NOAA data [40]. The low point between 

October and December 2011 coincides with the extreme dry spell in at the end of 2011 (Figure 4).  

 

Figure 7 Annual anomaly changes in Oceanic Nino Index (ONI). 

The following year 2012 was a very intense period for wildfires in California with significant  
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increases in areas burned in comparison to 2011 [38] an ongoing trend that has continued into the 

present [34]. 

3.5 Data Analysis of Optimal Regional Moisture Adaptation 

There are a wide range of uncertainties related to the application of the FOD model listed in the 

IPCC (2006, Table 3-Table 5) [10]. The ORMA process adopted in this study, optimises the 

dimensionless non-constant moisture saturation term and indirectly the MCF within the non-

constant rate constant term. The impact of this is shown in Table 1 which shows that Slope (Equation 

9), the moisture saturation and the MSW moisture are within the 99% confidence range, despite a 

major natural event occurring at the end of 2011. The 2012 NASA wildfire intensity satellite imagery 

[39] confirms there is less than 1% chance of the results being random (Pr < 0.01) illustrating the 

climate and meteorological sensitivity of the Slope, the primary modelling tool. 

Table 1 Data analysis of moisture saturation and methane oxidation tools. 

 Range or 

Mean 
χ2 

**DoF (n-

1) & (No 

of 

datasets) 

Probability 

(Key 

Variables) 

Data Source 

Slope (Moisture saturation) 

*ORMA 

Nov2010 to 

Dec2011 

0.0303 to 

0.0166 
0.00765875 (4-1) (14) Pr<0.01 (4) 

WIP [25], ETo [26], P [26], 0.50-

0.55 Molar uncertainty [9-11, 17] 

NASA (2012) 

[39] Wildfire 

intensity 

0.0243 1.89x10-8 (5-1) (2) Pr<0.01 (5) 

NASA [39], WIP [25], ETo [26], P 

[26 ], 0.50-0.55 Molar 

uncertainty[9-11, 17] 

Moisture saturation 

*ORMA 

Nov2010 to 

Dec2011 

0.4694 to 

0.2448 
0.00635982 (3-1) (14) 

Pr<0.010 

(3) 

ETo [26], P [26], 0.50-0.55 Molar 

uncertainty [9-11, 17] 

MSW moisture 

*ORMA 

Nov2010 to 

Dec2011 

10.33 to 

19.81% 
0.00280387 (4-1) (14) Pr<0.01 (4) 

WIP [25], ETo [26], P [26], 0.50-

0.55 Molar uncertainty 

[9,10,11,17] 

NASA (2012) 

[39] Wildfire 

intensity 

15.89% 1.24x10-7 (5-1) (2) Pr<0.01 (5) 

NASA [39], WIP [25], ETo [26], P 

[26], 0.50-0.55 Molar uncertainty 

[9-11, 17] 

Gradient (Unoxidised methane) 

*ORMA 

Nov2010 to 

Dec2011 

0.0541 to 

0.0563 
0.00011574 (5-1) (14) Pr<0.01 (5) 

Methane by Vol [25], WIP [25], 

ETo [26], P [26], 0.50-0.55 Molar 

uncertainty [9-11, 17] 

ORMA 

Dec2012 - 

NASA (2012) 

0.05533 2.17 x10-10 (5-1) (2) Pr<0.01 (6) 

NASA [39], Methane by Vol [25], 

WIP [25], ETo [26], P [26], 0.50-

0.55 Molar uncertainty [9-11, 17] 
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[39] Wildfire 

intensity 

Oxidised methane 

*ORMA 

Nov2010 to 

Dec2011 

12.67% to 

16.19% 
0.00817788 (5-1) (14) Pr<0.01 (5) 

Methane by Vol [25] WIP [25], 

ETo [26], P [26], 0.50-0.55 Molar 

uncertainty [9-11, 17] 

ORMA 

Dec2010 
14.19% 4.5x10-6 (6-1) (2) Pr<0.01 (5) 

NASA [39], Methane by Vol [25], 

WIP [25], ETo [26], P [26], 0.50-

0.55 Molar uncertainty [9-11, 17] 

ORMA 

Dec2012 - 

NASA (2012) 

[39] Wildfire 

intensity 

14.27% 2.02x10-8 (6-1) (2) Pr<0.01 (6) 

NASA [39], Methane by Vol [25], 

WIP[25], ETo [26], P [26], 0.50-

0.55 Molar uncertainty [9-11, 17] 

* CALMIM 

Dec2010 [7] 
12.92% 0.00127903 (6-1) (2) Pr<0.01 (6) 

Spokas et al. [7], Methane by Vol 

[25], WIP[25], ETo [26], P [26], 

0.50-0.55 Molar uncertainty [9-

11, 17] 

Notes: * χ2 referenced to mean value of meteorological moisture saturation charts Nov10 to 

Dec11. ** DoF: Degrees of Freedom. 

The Gradient used to estimate the unoxidised methane (Equation (10)) is very sensitive over a 

very narrow range 0.0541 to 0.0563, though can be extended from 0.0000 to beyond 0.0563) with 

the narrow range of methane oxidation falling well within the 99% confidence limits. The CALMIM 

December 2010 methane oxidation level [7] falls between the ORMA November and December 

2010 estimates and within the 99% confidence limits. 

3.4 Optimised Regional Moisture Adjusted (Orma) Methane Modelling 

The spatial distribution of the OMAR December 2012 landfill moisture estimates in Figure 5, 

matched with the NASA (2012) wildfire intensity image [39] shows a return to the relative annual 

meteorological regional norms with 1.65 million tonnes of post oxidation methane generated in 

December 2010 and 1.66 million tonnes in 2012 (Pr < 0.01, n = 370). The 2011 El Nino cycle dropping 

post oxidation methane generation to a minimum of 1.21 million tonnes in November rising to 1.26 

million tonnes in December (Figure 8) as the cooler drying cycle fades away (Figure 7) into the 

warmer moist climate conditions across 2012. 
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Figure 8 Optimised regional methane inventory as monthly rolling (12-month) averages. 

Regional methane generation drops significantly with soil drying with an increase in methane 

oxidation [5, 6, 41, 42]. Results from this study show a regional methane oxidational range from 

12.67% to 16.19% in the period from November 2010 to December 2011 (Pr < 0.01, n = 370, Table 

1). The highest oxidation levels occurring in a significant drying period in the last quarter of 2011 

relative to the ONI assessment in Figure 7. Figure 9 estimates the regional annual landfill disposal 

site water balance significantly dropping to 141 in November 2011, with a small rise to 147 million 

m3 in December 2011, correlating well with the lower methane generation estimates in this period.  

 

Figure 9 Optimised regional rolling annual water balance and %MSW moisture. 

The estimated regional methane recovered in December 2010 is estimated at 1.26 million tonnes. 

This is based on OMAR simulations of the 129 sites where the methane is collected and or treated 

and included the largest site at Puente Hills in Los Angeles. This site was left out was omitted from 
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the regional methane gas analysis of 1.08 million tonnes in [7]. The CALMIN methane recovery 

estimate is higher at 1.19 million tonnes, based on available inventory data also in [7]. A mass 

balanced estimate of 1.00 million tonnes is based on WIP and methane gas measures (n = 129, WIP 

= 89.1%) in the Walker database [25]. All these measures falling within the 99% confidence range 

(Pr < 0.01).  

The rate calibrated ORMA post oxidation unmitigated methane after methane recovery of 0.40 

million tonnes is at levels close to, though higher than the CARB (0.30 million tonnes) and CALMIM 

(0.34 million tonnes) estimates that form the Californian CALMIM Inventory [7]. These are based 

measures of fugitive surface emission data collected from a small number (10) of case study sites. 

LGCE would also be a factor which would increase the CALMIN estimate to within 1% of the OMAR 

result. The monthly ORMA estimates fall well within in the 99% confidence range (Pr < 0.01) shown 

in Table 2. 

Table 2 Data analysis of OMAR methane estimations. 

  
Range or 

Mean 
χ2 

*DoF (n-

1). (No 

of 

datasets) 

Probability 

(Variables) 

Data source and 

variables 

Methane recovery 

ORMA Dec2010 

Rate Calibration 
1,256,278 0.01381 

3 (4-1) 

(12) 

Pr<0.01 

(5) 

WIP [25], Methane 

Recovery [25], MCF [rate 

constant Calibration], 

ETo [26], P [26], 0.50-

0.55 Molar uncertainty 

[9-11, 17] 

Walker (2012), 

Mass Balance [25] 
998,624 0.004287 

2 (3-1) 

(1) 

Pr<0.01 

(3) 

WIP [25], Methane 

recovery [25], Landfill gas 

recovery [25] 

CALMIM data [7] 1,084,133 No data No data Pr<0.001 CALMIN Inventory [7] 

Slope      

CALMIM Gas 

recovery WIP 

chart ([7]; Figure 

1, Gradient 'a') 

998,624 No data No data 
Pr<0.001 

(?) 
Spokas et al [7] 

Unmitigated methane of all methane generated 

ORMA 2010 to 

2011 

455,439 to 

305,978 
0.000212 

5 (6-1) 

(15) 

Pr<0.01 

(6) 

WIP [25], Methane by 

volume [25 ], Landfill gas 

recovery [25], ETo [26], P 

[26], 0.50-0.55 Molar 

uncertainty [9-11, 17] 

ORMA Dec2012 

and NASA (2012) 
405,000 

8.78 x 

10-6 

6 (7-1) 

(2) 

Pr<0.01 

(7) 

NASA [39], WIP [25], 

Methane by volume [25] 

Landfill gas recovery [25], 
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[39] Wildfire 

Intensity 

ETo [26], P [26], 0.50-

0.55 Molar uncertainty 

[9-11, 17] 

CARB 2010 [7] 

with OMAR 

unmitigated 

methane 

301,748 0.012812 
6 (7-1) 

(13) 

Pr<0.01 

(7) 

CARB [7] WIP [25], 

Methane by volume [25] 

Landfill gas recovery [25], 

ETo [26], P [26], 0.50-

0.55 Molar uncertainty 

[9-11, 17] 

CALMIM 2010 [7] 

with OMAR 

unmitigated 

methane 

337,430 0.005287 
6 (7-1) 

(13) 

Pr<0.01 

(7) 

CALMIN [7] WIP [25], 

Methane by volume [25] 

Landfill gas recovery [25], 

ETo [26], P [26], 0.50-

0.55 Molar uncertainty 

[9-11, 17] 

Notes: *DoF: Degrees of Freedom. 

The sensitivity of monthly (12 monthly rolling averages) estimates of methane emitted in the 

ORMA model to meteorological changes, is well illustrated in Figure 8 & Figure 9. The sensitivity to 

climate is illustrated in the detail provided in the 2012 ORMA total methane and post oxidation 

methane estimates from the NASA satellite image of wildfire intensity levels [38] that were made 

with no prior knowledge of methane emissions in 2012. The El Nino minimum and inflection point 

between October and November 2011 (Figure 7) provides an additional indication of climatic 

sensitivity to oscillatory events with a similar pattern of changes in landfill methane generated in 

the same period (Figure 8). 

The findings in the review [22] that the FOD model was insensitive in determining the modelling 

parameters, uncertainties and inadequate in determining landfill gas generation and collection, 

summarised the need for a new approach and set out a significant challenge for this study.  

The availability of measured data from the databases [25-27] and other referenced sources such 

as historical NASA satellite imagery [39] and El Nino data [40]. has been essential in modelling 

realistic estimates of methane and post oxidation methane generated, as well as in the estimation 

of recovered methane from the calibration modelling. This is supported a relative fix between the 

rate calibration of methane recovered and meteorological determined moisture saturation levels in 

the waste.  

From early development of the moisture related methane generation hypothesis, it became 

likely that the moisture levels estimated within the landfills would include the moisture within the 

landfill cover material acting as a transfer medium, homogenising the landfill moisture levels that 

generate the sugar solutes for microbial degradation.  

The optimisation process illustrated in Figure 1 and Figure 2, averages out the gains and 

deficiencies of landfill moisture and MCF uncertainties. The full impact of the OMAR approach 

became apparent in Figure 8 where the MCF, an unknown variable in the moisture optimisation is 

identified as the difference in the methane generated between the OMAR and CALMIM models.  

The OMAR ‘Slope’ moisture trendline optimization, generates the conditions MCFsite ≠ 1 as MCFall 

sites → 1, moving on from the error function analysis [16] with the multi variable analysis used in this 

study and invalidating the constant rate constant FOD models such as CALMIM that is based on the 
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2006 IPCC Waste model [10, 11] that does not apply the necessary Fickean non-constant rate 

constants. 

The results of this study do not support a proposition tested (by [7]) “refuting the current 

hypothetical linkage of biogas generation (ko) to climate”. This statement is a misunderstanding of 

the non-constant nature of the rate constant. The meteorological and climate sensitivity derived 

theoretically and demonstrated in this study re-stablishes the essential linkage for methane 

generation directly to moisture levels in the disposed waste, supported by consistently high 

confidence in levels shown in estimates of methane recovery and unmitigated methane levels, 

These have been verified with reference to associated (organisational) and independent sources 

including Californian State Inventory in [7], Calrecycle data [7, 9, 25], CIMIS [26], NASA [39] and 

NOAA [40].  

Subject to future confirmation of these results in other regions, it looks very likely that the ORMA 

non constant rate constant moisture adaption can used to address the concerns of inadequacies 

and insensitivity [22] enabling the modification of the primary FOD models including the 2006 IPCC 

Waste model [10, 11] and the 2005 EPA model [9] for regional assessments. 

4. Conclusion 

Considering the urgency to reduce global methane levels by 2030, a key purpose of carbon 

management is to develop, assess and utilize tools that provide accurate methane data that can be 

used to record and monitor both regional and global emissions particularly where there are 

significant variances or data gaps.  

Key findings from this regional Californian study involving a theoretical review of the moisture 

relationship with methane generation and soil oxidation were successfully used in the adaption of 

a flexible multi-variable FOD model to estimate regional methane generated and mitigated 

accurately. The results for moisture, methane oxidation and methane generation were analysed 

against measured data from researchers and independent sources that included satellite imagery 

and El Nino data. Both climate and meteorological sensitivity to moisture changes is demonstrated 

in the modelling, case studies and the figures shown in this paper.  

Using FOD adaptations, rate calibration, optimisation techniques and equations outlined in this 

study, it is likely other researchers will be able to quickly estimate regional methane emissions 

across other regions with varying climate (dry and wet, temperate and tropical). 

The OMAR model using basic location, meteorological and waste management data linked up to 

satellite or drone sensor monitoring systems could provide live estimates of moisture, wildfire 

intensity and the quantification of unmitigated methane emitted from regional landfills. 

For mainly developing countries, where landfilling remains the dominant waste management 

option, the findings will enable the development of detailed waste emission inventories at country 

and with international cooperation at regional level. Such, monitoring will inform wider carbon 

management strategies and provide a means of monitoring, baselining carbon (methane) mitigation 

strategies, plans and targets affecting waste landfill disposal.  
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