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Abstract 

A filtered Poisson process is proposed as a model for river flows. With the help of real-life 

data, the model parameters are estimated. Mathematical formulae are derived in order to 

estimate the various return periods of the river. An application to two rivers shows that the 

point estimates are very close to the corresponding values computed by hydrologists, based 

on historical data. Moreover, by modifying the values of the parameters in the model, we can 

see the potential effects of climate change on the return periods. 
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1. Introduction 

Let 𝑋(𝑡) be the flow of a certain river at time 𝑡. We consider the following model: 
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𝑋(𝑡) = ∑ 𝑤

𝑁(𝑡)

𝑛=1

(𝑡, 𝜏𝑛, 𝑌𝑛) (𝑋(𝑡) = 0 if 𝑁(𝑡) = 0), (1) 

in which the 𝜏𝑛’s are the arrival times of the events of a Poisson process {𝑁(𝑡), 𝑡 ≥ 0} with rate 𝜆. 

Moreover, 𝑌1, 𝑌2, …  are independent and identically distributed random variables, and are also 

independent of {𝑁(𝑡), 𝑡 ≥ 0}. The stochastic process {𝑋(𝑡), 𝑡 ≥ 0} is known as a filtered Poisson 

process; see Parzen [1]. 

In hydrology, the response function 𝑤 is often taken to be of the form 

𝑤(𝑡, 𝜏𝑛, 𝑌𝑛) = 𝑌𝑛  𝑒−(𝑡−𝜏𝑛)/𝑐, 

and the 𝑌𝑖’s are assumed to be exponentially distributed with parameter 𝜇. Thus, 𝜆 is the rate at 

which signals occur, 1/𝜇 is the average size of a signal, and 𝑐 is a parameter that is related to the 

speed at which the effect of a signal on the flow discharge decreases. Figure 1 shows an example of 

a trajectory of a filtered Poisson process having the above response function. 

 

Figure 1 Example of a trajectory of a filtered Poisson process. 

The author has used filtered Poisson processes (see for instance Lefebvre and Guilbault [2]) and 

their generalization to filtered renewal processes (see Lefebvre [3] and Lefebvre and Bensalma [4]) 

in various hydrological applications. In particular, they can serve as models for daily flows, but also 

to estimate the probability that the river flow will exceed a given threshold [5]. 

Another important problem in hydrology is the estimation of the return periods or recurrence 

intervals. A return period 𝑇𝑛, where 𝑛 is in years, is defined such that the probability of exceedance 

of a certain event (like a large river discharge flow) during a given year is equal to 1/𝑛: 

𝑃[∃ 𝑡 ∈ (0,365]: 𝑋(𝑡) ≥ 𝑇𝑛] =
1

𝑛
. 

The probability is usually expressed in percentage. The estimates of return periods are generally 

based on historical data over a long period of time. These return periods are important in risk 
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analysis, in particular in the design of structures such as dams or bridges. Sometimes, the return 

periods are computed for the height or water level of the river, rather than its flow. 

Gumbel [6] wrote a seminal paper in which he applied the theory of largest values to flood flows. 

He used his method to estimate the return periods of the Rhône River in France, and the Mississippi 

River in the USA, and he compared his estimates to the observed return periods. Since then, many 

papers have been published on this subject; see, for example, Onyutha and Willems [7]. Jennings et 

al. [8] wrote a report on the use of regression equations to estimate the magnitude and frequency 

of floods. There are also papers on return periods of extreme precipitation [9], hail storms [10], 

hydrological droughts [11], etc. 

It is important to mention that the above-mentioned papers are based on statistical techniques. 

Akyuz et al. [12] used Markov chain models to estimate drought characteristics. Here, we will 

present a technique based on a continuous-time stochastic process to estimate return periods. This 

stochastic process has been shown in previous papers by the author to be an appropriate model for 

river flows. The technique that we propose is different from the ones that can be found in other 

papers and it will be seen that it yields very good results. 

In computing the estimates of the 𝑇𝑛’s, it is assumed that they do not vary over time and that 

they do not depend on past events. However, because of climate change, these assumptions 

become more and more dubious; see also Serinaldi [13]. 

In this note, we will present a method that could enable us to see the effects of climate change 

on the values of the return periods. The method will be presented in the next section, and it will be 

applied to two rivers in Section 3. We will conclude with a few remarks in Section 4. 

2. Estimates of the Return Periods 

In practice, flow values are generally recorded on a daily basis. Therefore, we have 365 

observations of 𝑋(𝑡) per year. Let 𝑀 denote the annual maximum flow discharge. If we assume that 

the various peaks during a given year are sufficiently spaced in time, then 

𝑃[𝑀 ≤ 𝑚] ≃ ∏ 𝑃

365𝜆

𝑖=1

[𝑌𝑖 ≤ 𝑚] =
𝑖.𝑖.𝑑.

(1 − 𝑒−𝜇𝑚)365𝜆. (2) 

Let 𝑝 denote the probability of having two events on two consecutive days: 

𝑝: = 𝑃[𝜏𝑘 − 𝜏𝑘−1 ≤ 1] = 𝑃[Exp(𝜆) ≤ 1] = 1 − 𝑒−𝜆. 

The probability of having 𝑟 events on 𝑟 consecutive days is therefore, by independence, 𝑝𝑟−1. 

Remark. By looking at real-life hydrographs, it is actually not obvious to determine whether a 

peak was caused by a single event, or by multiple consecutive events. 

If 𝜆 is large enough, and if we neglect the possibility of observing three or more consecutive 

signals, a more precise formula for the distribution function of 𝑀 would be 

𝑃[𝑀 ≤ 𝑚] ≃ (1 − 𝑒−𝜇𝑚)365𝜆(1−𝑝) {𝑃[𝑌1𝑒−1/𝑐 + 𝑌2 ≤ 𝑚]}
365𝜆(p/2)

. (3) 

Indeed, there are, on average, 365𝜆(1 − 𝑝) single events and 365𝜆𝑝/2 pairs of consecutive 

events. Moreover, we assumed that 
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𝑌1 ≤ 𝑌1𝑒−1/𝑐 + 𝑌2, 

which should be the case in general since 𝑌1 and 𝑌2 have the same exponential distribution. 

If we use Eq. (2) to approximate the distribution function 𝐹𝑀(𝑚) of 𝑀, we need to estimate the 

parameters 𝜆 and 𝜇, while with Eq. (3) we must estimate 𝑐 as well. If the value of 𝜆 is small, then so 

is 𝑝, so that one can make use of the simpler formula (2) to approximate 𝐹𝑀(𝑚). 

We can write that 

𝐹𝑀(𝑇𝑛) = 1 −
1

𝑛
. 

Therefore, if we have the values of 𝑇𝑛, for various 𝑛, that were calculated by hydrologists, we 

can use them to estimate the parameters in our model. 

In the next section, we will present an application to the Delaware River, which is an important 

river located in the United States, and to the Lim River in Montenegro. The technique that we 

propose can be applied to any river. However, in order to evaluate its accuracy, we need some 

estimates calculated by hydrologists to compare our point estimates to theirs. We could also, in 

theory, compare the point estimates derived from our mathematical formulae to the corresponding 

ones calculated by making use of the statistical techniques that can be found in the papers 

mentioned in Section 1. However, because the values provided by hydrologists are assumed to be 

reliable and are used in practice, it is preferable to compare our point estimates to these estimates. 

3. Applications 

The values of various return periods have been estimated for the Delaware River; see Schopp 

and Firda [14]. The estimated values (in cubic feet per second) at the Montague, N.J., station are 

presented in Table 1. 

Table 1 Estimated return periods for the Delaware River. 

𝑛 2 5 10 25 50 100 500 

𝑇𝑛 62500 101000 127000 164000 194000 226000 308000 

First, we will estimate the parameters 𝜆 and 𝜇 in Eq. (2). To do so, we need two values of 𝑇𝑛. 

Because the estimates are most likely more reliable for small values of 𝑛, we chose 𝑛 = 2 and 𝑛 =

5. We have 

𝐹𝑀(𝑇2) = 0.5  ⇔   (1 − 𝑒−62500𝜇)365𝜆 = 0.5 

and 

𝐹𝑀(𝑇5) = 0.8  ⇔   (1 − 𝑒−101000𝜇)365𝜆 = 0.8. 

We find that the point estimate of 𝜇 is 𝜇̂ ≃ 0.0000278, which implies that 𝜆̂ ≃ 0.0098. Hence, 

the average size of flow increases due to (important) signals is 35971 𝑓3/𝑠, and there are, on 

average, 3.577 such signals per year. 
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Next, we compute 

𝑝̂ ≃ 1 − 𝑒−0.0098 ≃ 0.00975. 

Therefore, in this application we can neglect the possibility that there will be 𝑟  signals on 𝑟 

consecutive days, for 𝑟 = 2,3, … 

With 𝜇̂ and 𝜆̂, we can estimate the values of 𝑇𝑛 for any 𝑛, based on our model; see Table 2. We 

see that the model underestimates the value of 𝑇𝑛 for 𝑛 very large. However, estimating a flow that 

occurs on average every 500 years is quite difficult and requires a lot of observations. Therefore, 

the point estimate 𝑇500 provided by hydrologists is probably more or less reliable, and a confidence 

interval for 𝑇500 should be very wide. Onyutha and Willems [7] wrote that in practice return periods 

between 5 and 100 years are used for the design of hydraulic structures, while higher return periods 

around 𝑇100 are used mainly for flood plain development and medium-sized flood protection works. 

Moreover, 𝑇500 is rarely used in designs. 

Table 2 Point estimates 𝑇̂𝑛 of 𝑇𝑛 based on the model for the Delaware River. 

𝑛 2 5 10 25 50 100 500 

𝑇̂𝑛 62500 101000 127000 161200 186350 211450 269500 

𝑇𝑛 62500 101000 127000 164000 194000 226000 308000 

Now, the aim of this work is to try to forecast the effects of climate change on the return periods. 

To do so, we computed the new point estimates 𝑇̂𝑛 if firstly the parameter 𝜇 is replaced by 0.9𝜇 (so 

that 
1

𝜇
 becomes 

10

9𝜇
), secondly 𝜆 is increased to 1.1𝜆, and finally when both changes are made. 

The results are presented in Table 3. 

Table 3 Point estimates 𝑇̂𝑛 for the Delaware River when the parameters are modified. 

𝑛 𝑇𝑛 𝑇̂𝑛 0.9𝜇 1.1𝜆 Both 

2 62500 62500 69500 65600 72900 

5 101000 101000 112300 104250 116000 

10 127000 127000 141550 131000 145500 

25 164000 161200 179100 164550 182800 

50 194000 186350 207100 189800 211000 

100 226000 211450 235000 215000 239000 

500 308000 269500 299500 272800 303300 

We see that the value of 𝜇 has more influence on the return period than that of 𝜆. Moreover, in 

the case of 𝜇, the value of 𝑇̂𝑛 is almost exactly multiplied by 10/9 for each 𝑛, while the percentage 

increase of 𝑇̂𝑛 decreases with 𝑛 when 𝜆 is replaced by 1.1𝜆. 

Finally, we will apply the technique that we propose to estimate the return periods of the Lim 

River, located in Montenegro. The return periods (in m3/s) based on the years 1961-1990 at the 

station Bijelo Polje can be found in a report (p. 159) on the Second National Communication on 

Climate Change [15] and are given in Table 4. In the report, there are also forecasts for these return 

periods in the periods 2001-2030 and 2071-2100. Notice that 𝑇𝑛 is given from 𝑛 = 5 to 𝑛 = 10000, 
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which is an extremely large value of 𝑛. Moreover, in cubic feet per second, 𝑇5 ≃ 19741, compared 

to 101000 for the Delaware River. Therefore, the Lim River is a mid-size river in comparison to the 

Delaware. 

Table 4 Estimated return periods for the Lim River. 

𝑛 5 10 20 25 40 50 100 200 500 1000 2000 10000 

𝑇𝑛 559 678 792 828 903 939 1049 1159 1303 1413 1522 1776 

As above, we first estimate the parameters 𝜆 and 𝜇 in Eq. (2), using 𝑇5 and 𝑇10. We have 

𝐹𝑀(𝑇5) = 0.8  ⇔   (1 − 𝑒−559𝜇)365𝜆 = 0.8 

and 

𝐹𝑀(𝑇10) = 0.9  ⇔   (1 − 𝑒−678𝜇)365𝜆 = 0.9. 

This time, we find that 𝜇̂ ≃ 0.00625 and 𝜆̂ ≃ 0.0198. The average size of flow increases is 160 

m3/s, and there are 7.227 important signals per year. 

Because 

𝑝̂ ≃ 1 − 𝑒−0.0198 ≃ 0.0196, 

the possibility that there will be 𝑟 signals on 𝑟 consecutive days is again negligible for 𝑟 = 2,3, … 

In Table 5, we give the estimated values of 𝑇𝑛 based on our model. The values of 𝑇̂𝑛 are very 

close to the corresponding 𝑇𝑛’s, for 𝑛 from 5 to 10000. The difference in absolute value between 

𝑇̂10000 and 𝑇10000 is less than 1%. We see that 𝑇̂𝑛 very slightly overestimates 𝑇𝑛 from 𝑛 = 25. As in 

the case of the Delaware River, we could easily compute the new values of 𝑇̂𝑛 when we modify the 

parameters 𝜇 and 𝜆. 

Table 5 Point estimates 𝑇̂𝑛 of 𝑇𝑛 based on the model for the Lim River. 

𝑛 5 10 20 25 40 50 100 200 500 1000 2000 10000 

𝑇̂𝑛 559 678 792 829 905 941 1053 1164 1311 1422 1533 1790 

𝑇𝑛 559 678 792 828 903 939 1049 1159 1303 1413 1522 1776 

4. Conclusion 

In this note, we proposed a model for the flow of a river that enables us to estimate the return 

periods for that river. In two applications, we saw that, after having estimated the parameters in 

our model, we obtained good or very good estimates of the various return periods, when compared 

to the values provided by hydrologists. Then, we computed the new point estimates for the 

Delaware River when the values of the parameters are modified, as we can expect, because of 

climate change. 

As a sequel to this work, we could try to apply the same technique to estimate the return periods 

of other important rivers, to see if the results that we obtained are as robust as they appear to be. 
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To do so, we must of course have the corresponding return periods estimated by hydrologists. 

Finally, we could also try to use different models for the flow 𝑋(𝑡), in particular models based on 

diffusion processes. 
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