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Abstract 

Building performance is often expressed according to primary energy use; however studies 

should also include environmental load. To mitigate the effects of increased CO2 emissions, green 

building designs are now increasingly popular options for stakeholders. In contrast, impacts of 

green design parameters, building performance assessment, and design optimization objectives 

are not addressed sufficiently for American infrastructure. Designing low-energy architecture to 

minimize carbon emissions requires thoughtful articulation of green building design alternatives. 

A common barrier for green building design in the U.S. is the time needed to identify and evaluate 

alternatives. Modeling energy consumption in buildings is essential for different applications, 

including building energy management and establishing baselines for sustainable building 

performance codes. This paper proposes a new optimization objective, which considers annual 
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carbon emissions for multi-family construction in Florida. A multi-step sensitivity and epistemic 

uncertainty approach are proposed to identify the critical design parameters during the early 

stages of sustainable building design. Building simulation software was utilized to model green 

building configuration for carbon emission values, further analyzed using Monte Carlo and Morris 

Method sensitivity analysis techniques. The present study considered green building design 

alternatives as variables since carbon emission reduction potential is sensitive to these variables. 

Results indicate that PV panel efficiency, PV payback limit, lighting efficiency, plug load efficiency, 

and solar heat gain coefficient are highly influential parameters. The methodology is presented, 

and an example is applied to a new construction multi-family apartment design in Tallahassee, FL. 

This uncertainty and sensitivity analysis improved the design efficiency, while emphasizing 

usefulness in the green building optimization process. 
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Monte Carlo simulation; epistemic uncertainty; green building; sustainability 

 

1. Introduction 

Climate change can be attributed to the ever-increasing effects from the built environment, 

impacting structural resilience and sustainability. A comprehensive meta‐analysis of climate change 

impacts for Florida specifically, predicted annual precipitation changes of up to +30%, an indicator of 

the severe shifts in Floridian climate change [1]. This study displays the importance of sustainable 

infrastructure, promoting environmental synergy, since construction management, adaptation, 

resilience, and climate change mitigation, are areas of interest addressed through green infrastructure 

adoption. Green construction possesses many benefits, including cost-effectiveness, natural resource 

conservation, and creating a healthier balance with the environment.  

Energy use and related emissions is substantially increasing due to several key trends including, 

demand for adequate housing options, leading to increased strain on urban ecosystems due to 

inextricable connections between emerging infrastructure and the environment. This is led by 

population growth, exponential urbanization, modernization, accompanied by increasing lifestyle 

demands globally, contributing factors for significant building energy use. New construction in 

developed nations represents a climate risk and opportunity from a mitigation perspective. According 

to Construction Permit Data Northeastern Florida construction has spiked by approximately 38% in the 

past year, with an additional 24,274 permits submitted [2]. Energy usage of buildings and the resulting 

carbon emissions can be addressed through a low-carbon pathway approach associated with robust 

decision-making design methodologies.  

Green infrastructure strategies utilize ecosystem services and natural systems for adaptation and 

resilience. A range of environmental issues is impacted by the built environment, including natural 

resource use, solid waste generation, ozone depletion, coastal zone effects, and global warming [3]. It 

is necessary to establish building codes and regulations for new buildings, that consider climate change, 
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while enforcing energy savings, and CO2 emission reduction, however building commissioning data 

reveals millions of inefficient buildings will remain until 2050. Design decisions, impacting the 

residential structure’s life cycle, must consider operational carbon emissions and energy usage, during 

its service life, to determine environmental impact and energy savings. Traditional thinking in this realm 

is dominated by thermal comfort and increasing energy usage, at the expense of the environment. A 

new way to evaluate systems and inform design teams for optimal design decisions includes Building 

Information Modeling and statistical analysis. Environmentally friendly design decisions will include the 

optimization of the building envelope including the implementation of PV Panel Systems, since most 

studies focus on HVAC systems, however more than half of total residential energy consumption is 

composed of additional building element factors. Solar electricity generation through PV systems 

estimate an energy savings of up to 19 to 30% relative to BAU (Business-as-Usual Emission Scenarios) 

in Florida (Intergovernmental Panel on Climate Change) [4].  

1.1 Building Performance Simulation (BPS) 

Building performance simulation (BPS) is a powerful analytical tool for building energy assessments 

and environmental impacts. Within green construction research, these tools address unprecedented 

design challenges that are likely to exist in the years ahead (e.g., adaptation to climate change impacts, 

increased urbanization, and additional complexities of technological system operations)[5]. [6] defined 

the main objective of BPS is to support this mission by providing a high integrity representation of the 

dynamic, connected, and non-linear physical processes that govern the different performance aspects 

dictating the future of green building innovation and their respective energy supply systems. Building 

simulations address challenges with the renderings of sustainable construction designs, but they also 

reveal gaps in energy usage over time. The energy performance gap causes significant discrepancies 

between real-time and calculated energy consumption of a building [7]. In building energy models, 

incorporating decision-making sensitivity analysis tools for use in design can be helpful, providing 

parameter impact insight while displaying the proposed objective [8]. [9] Results from simulations 

relying on erroneous parameter values can lead to highly unquantifiable inaccuracies with small 

perturbations to a sensitive variable, influencing the results significantly. In previous studies, the 

uncertainty associated with model parameters of a building using a solar thermal collector and the 

influence of associated parameters on solar fraction was quantifiable by using the Monte Carlo 

simulation technique [10]. [11] conducted a study utilizing a global design exploration in the late design 

phase with Monte Carlo Simulations, obtaining feasible solutions for the architects, and improving 

collaboration efficiency between stakeholders.  

In addition, BPS requires detailed characterization of the green construction’s envelope and 

operation. Similarly, sensible development of modeling approaches and definition of their outputs is 

necessary to keep models targeted to the objectives of the simulation study, which in this case would 

be harmful environmental impact reduction [6, 12, 13]. Furthermore, the adaptation of building design, 

combating climate change impacts is a primary challenge and central component of this research. 
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1.2 Uncertainty Quantification Methods 

Uncertainty quantification (UQ) determines the effect of input uncertainties on response metrics of 

interest. These input uncertainties are characterized as aleatory uncertainties classified as irreducible 

variabilities inherent in nature. They are also classified as epistemic uncertainties, which are reducible 

uncertainties resulting from a lack of knowledge. [14] Based on uncertain inputs (UQ), determine the 

distribution function of outputs and probabilities of failure (reliability metrics). Epistemic uncertainties 

encompass several methodologies, including analytic reliability, Dempster-Shafer, second-order 

probability, and sampling, with research studies using multiple uncertainty quantification methods to 

reach the study’s objective. Dempster-Shafer does not allow input specification by a probability 

distribution and input correlation studies, making this type only suitable for cumulative distribution 

functions. Second-order probability for inner loop analysis, analytic reliability, and sampling are 

methods used to express multiple common distributions while enabling a correlation analysis for input 

parameterization [15]. 

This research analyzes application of the second-order probability approach [16] through a multi-

step epistemic uncertainty quantification methodology, complete with an outer level of epistemic 

uncertainty through interval frequencies while utilizing an inner level of aleatory uncertainty through 

probability distribution.  

1.3 Morris Screening Method and Sustainable Building Design  

Two approaches, both mathematical and statistical, were utilized to produce many model 

evaluations, in order to pinpoint the most impactful green parameters and then produce a ranking 

system of green building parameters.  

The one-parameter-at-a-time (OAT) approach also known as a “mathematical approach,” utilizes 

output calculations to determine parameter input within its possible range, consisting of the Morris 

methodology. The “statistical (or probabilistic) approach” involves running many model evaluations on 

a randomly generated input sample, with the capability of multiple inputs being varied at once [17]. 

The statistical methods allow quantifying the effect of simultaneous interactions among numerous 

parameters. The statistical approach includes methods using statistical indices: PEAR (Pearson product-

moment correlation coefficient), SPEA (Spearman coefficient), SRC (Standardized regression 

coefficient), and SRRC (Standardized rank regression coefficient)[8, 18].  

The Morris method, also known as the Elementary Effect (EE) method, utilizes a discrete 

approximation of an average Jacobian matrix value within respective input spaces. This methodology 

relies on the one-factor-at-a-time (OAT) experimental design mechanism, which allows assessment of 

random green building design effects, known as trajectories, on each defined output. The main 

advantage of Morris screening method utilization is assumption reduction on sustainable input 

parameters’ monotonicity. [19] OFAT sensitivity analysis methods are straightforward to establish 

parameter dependency of the solutions and useful to study problems with a few uncertain parameters. 

Screening methods reduce computational cost in high-dimensional green building design models. In 

these methods, a sensitivity index is evaluated by the partial derivative average at different points in 

the input space, determining the significance of each input parameter.  
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1.4 Sensitivity Analysis (SA) in Building Performance Assessment (Sources) 

[20] investigated the sensitivity of energy performance of office buildings in subtropical Hong Kong 

through parametric analysis of existing structures. [21] proposed a multi-output calibration of the 

building model undertaken, utilizing thirty-five parameters and ten outputs. The sensitivity analysis 

results revealed active model inputs and interactions that produce building performance predictions. 

[22] addressed the difficulties of obtaining SA data using detailed models with existing techniques and 

proposed a problem-solving methodology. The methodology consists of using a building model, 

defining uncertainties of input parameters, and calculating macroparameters resulting in statistical 

sensitivity indices. [23] developed a methodology to calibrate building models, including simulation of 

design days for thermal analysis and sensitivity analysis of input parameters related to heat gains/loss. 

However, these methods only explore the variation of energy performance with typical energy systems, 

therefore negating additional interactions amongst other design parameters.  

[24] identified and analyzed input design parameters from the aspect of annual energy consumption, 

peak design loads, and building load profiles. Since the results from regression methods indicate a large 

proportion of the output variance is left unexplained, a meta-model sensitivity analysis is used to 

determine the most influential factors without running additional simulation runs. A common high 

computational energy model qualitative analysis method includes Morris method. Alternatively, a 

better choice is the meta-model sensitivity analysis quantifying output variance for every input, 

prompting an observational building energy performance study [26].  

The global sensitivity approach evaluates the significance of an input factor, by varying other input 

factors, usually generating many model evaluations. [27] used two types of sensitivity analyses, noticing 

a benefit of sensitivity index and GSA (Global Sensitivity Analysis) inclusion since an individual building 

elements’ performance alone differs from how it relates to other components. [28-30] noted that 

sensitivity analysis methodologies are beneficial to identify impactful building parameters across 

numerous construction types. [29] used a Monte Carlo Latin hypercube sampling technique to calculate 

the energy rating for a residential structure in Italy. [31] compared the performance of simple random, 

stratified, and Latin Hypercube sampling (LHS) when applied to a typical building simulation problem 

and established that fewer simulation runs are required for LHS and stratified, respectively. 

1.5 Uncertainty Analysis in Building Performance Assessment  

Design parameter uncertainty is described as design variations occurring during the planning process. 

Decision-makers fully determine them, causing green building design phase irregularities [32]. The main 

focus in current research is reducible epistemic uncertainty, characterized by utilizing building 

performance simulation tools. Table 1 displays basic descriptions of the Global Method used for this 

analysis.  

Table 1 Global methods description chart [33]. 

Aim 
Meant for the determination of uncertainty of a specific 

input parameter in relation to the overall output. 
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Input Parameters The input parameters are sampled simultaneously 

Correlation between input and 

output 

A linear correlation is assumed between input and output of 

a model 

Choice of distribution In the input each variation/distribution is possible 

Distribution of variables 

Distribution of input is based on an assumed distribution of 

each parameter. Implying the insight in the behavior of the 

parameters 

Quality assurance related to green building design options relies on analyzing these design 

uncertainties. In addition to physical uncertainty, epistemic uncertainty is an emerging research topic, 

observable when utilizing building performance simulation. Uncertainties belonging to an epistemic 

group arise from many different sources and can be divided into three groups caused by other 

parameters: physical, design, and scenario uncertainties [34]. The effective integration of UA/SA in BPS 

for information and quality assurance is critical for decision-making regarding the overall sustainable 

residential building design. 

1.6 Hybrid Green Building Systems Parameters  

According to the Energy Information Agency, the residential sector accounted for roughly 22% 

percent of the total U.S. energy consumption in 2020, or approximately 11 quadrillions (Btu). Less than 

three percent of total energy production came from renewable energy sources (U.S. Energy 

Information Administration, 2012). 

Passive measures and renewable energy sources reduce long-term costs and the building's energy 

consumption. This research strongly suggests the need to increase renewable energy use within the 

residential building sector. Building energy performance parameter evaluation is complex, dependent 

on several factors related to the building characteristics, equipment and systems, green building 

options, local weather conditions, occupant schedule, and sociological influences [35, 36]. Although 

there has been a significant push from the federal government to incorporate renewable energy use in 

the U.S., there is substantial room for increased renewable energy dependency. 

[17] A review of SA case studies noted that the most frequent input parameters are weather, 

building envelope I (e.g., walls, roof), building envelope II (e.g., windows), ventilation/infiltration, 

HVAC/mechanical systems, and occupant behaviors. The building/urban energy consumption and 

occupant thermal comfort are frequently studied outputs; however environmental impacts are not 

often-studied outputs. This research aims to utilize both the screening method and a global sensitivity 

analysis methodology for parameterized environmental impact determination of green infrastructure 

design elements. 

1.7 Problem Statement 

A primary aim of this UA/SA research study is to support the pre-construction process by providing 

a comparative analysis between green design parameter impact on carbon emissions and energy usage. 

In this case, the input variables are defined as continuous uniform or triangular distributions, respective 
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to each parameter presented in Table 2 and Table 3 below. For example, sensitivity analysis is used to 

decide whether higher lighting efficiency is necessary compared to other energy-saving measures since 

stakeholders' additional construction costs are a concern. A detailed simulation to estimate how 

building energy performance and carbon emissions change with meteorological conditions and green 

building design parameters epistemic uncertainty will be produced. This study’s global objective is 

sensitivity analysis method evaluation, with a focus on residential structures in sub-tropical climate 

conditions. 

Table 2 Epistemic uncertainty properties in design variations. 

Table 3 Parameterization table: Building envelope parameters, distributions, and 

boundaries used in Monte-Carlo simulation.  

# DESIGN VARIABLE ID UNIT  LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 

1 Building Orientation BO  Degrees (°) 45 90 135 180 

2 Lighting Efficiency LPD  W/sqft 0.3 0.7 1.5 1.9 

3 Plug Load Efficiency EPD  W/sqft 0.6 1.3 1.6 2.6 

4 Infiltration Factor INF  dimensionless 0.17 0.4 1.6 2.0 

5 
Wall Construction 

Factor (N, S, E, W) 
WCF  W/m2K 

R38 

Wood 

0.026 

R13+R10 

Metal 

0.17 

R13 

Wood 

0.07 

R13 

Metal 

0.03 

6 
Roof Construction 

Factor (N, S, E, W) 
RCF  W/m2K 

R60 

0.016 

R38 

0.026 

R19 

0.05 

R10 

0.1 

 Parameter 𝝁 𝝈 

X1 Building Orientation 58.0948 112.5 

X2 Lighting Efficiency 0.7303 1.1 

X3 Plug Load Efficiency 1.525 0.8302 

X4 Infiltration Factor 1.0425 0.8947 

X5 Wall Construction Factor 0.074 0.067 

X6 Roof Construction Factor 0.0176 0.0255 

X7 Window Shading 0.2367 0.335 

X8 Solar absorptance of external walls 10.524 27.636 

X9 Solar absorptance of the roof 41.87 52.51 

X10 Windows Glazing 0.2202 0.33 

X11 Window to Wall Ratio 0.0427 0.1563 

X12 Solar Heat Gain Coefficient 0.1826 0.44 

X13 Panel Efficiency 1.8257 18 

X14 PV-Payback Limit 8.5391 18.75 

X15 PV-Surface Coverage 33.2603 48.75 
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7 
Window Shading (N, S, 

E, W)  
WS  dimensionless 0.1 0.25 0.33 0.66 

8 
Solar absorptance of 

the external walls 
SAEW dimensionless 0.2 0.4 0.6 0.8 

9 
Solar absorptance of 

the roof 
SAR dimensionless 0.2 0.4 0.6 0.8 

10 Windows Glazing  WG  W/m2K 0.12 0.27 0.29 0.64 

11 
Window to Wall Ratio 

(N, S, E, W) 
WWR  dimensionless 0.1 0.15 0.175 0.2 

12 
Solar Heat Gain 

Coefficient (N, S, E, W) 
SHGC  dimensionless 0.24 0.34 0.54 0.64 

2. Methodology 

2.1 Monte-Carlo Probability Analysis 

Prior to relative sensitivity assessment of each input factor, a method must be selected based on the 

target function. Monte Carlo Analysis is the most commonly utilized method for UA/SA, while 

considering the total sensitivity due to input uncertainties. The Monte Carlo analysis (MCA) method is 

applied to analyze an approximate distribution of possible results based on probabilistic inputs 

displayed in the equations below: 

𝐸(𝑌) =
1

𝑁
∑ 𝑦𝑖

𝑁

𝑖=1

 

𝐸(𝑌) =
1

10000
∑ 𝑦15

10000

𝑖=15

 

𝑉(𝑌) =
1

𝑁
∑ [𝑦𝑖 − 𝐸(𝑌)]𝑁

𝑖=1
2 

where N = number of samples, and I = number of input parameters. 

To run a carbon emissions model, an extensive set of inputs are pre-defined within Revit to specify 

the building geometry, internal loads, outdoor environment, equipment, and occupancy schedules. In 

conceptual design, only a small subset of these inputs, specifically, the building envelope, orientation, 

materials, and green building design alternatives, are considered. The remaining inputs required to run 

an annual simulation are fixed at default values based on the building type and composition of the base 

energy model presented in the pre-processing section. Initially, key green design parameters relevant 

to sustainable building construction are identified. Next, to sample the design space, Monte Carlo 

simulation is used to test combinations of parameter values within their defined ranges, producing a 

rich dataset determining standardized rank coefficients. Monte Carlo Latin hypercube sampling was 

utilized to assess annual carbon emissions and energy usage, while gaining a more comprehensive 
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understanding of parameter impact on carbon emissions reduction, further outlined in Figure 1. This 

analysis focuses on the environmental impact of green building design options by considering solar 

power as an energy source. 

 

Figure 1 Global sensitivity analysis and epistemic uncertainty analysis framework. 

1. The limit state function for the response metric of interest is defined, based on model outputs. 

Next, the reliability method of specified probability was illustrated above in Figure 2. A 95% 

confidence interval was chosen to display Monte Carlo Simulation results, for the estimate range 

of epistemic uncertainty parameter population values.  
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Figure 2 Graph of reliability. 

2. The sensitivity analysis of environmental impacts should form an integrated part of the green 

building design decision-making processes, guiding the main objective of this study. Due to this 

observed phenomenon, a two-dimensional Monte Carlo method can be used in this case, 

considering respective output factors. Global sensitivity measures, also known as elementary 

effects are calculated by using the equation below, with 𝑥1, 𝑥2, 𝑥𝑖 , 𝑥𝑘  as input variables and ∆ as 

the change in operational carbon emissions and energy usage:  

𝐸𝐸𝑖 =
𝑓(𝑥1, 𝑥2, … 𝑥𝑖 + ∆, … 𝑥𝑘)

∆
 

3. Next, Figure 3 and Figure 4 display results of the Morris randomized OAT (one-step-at-a-time) 

design code runs to conduct parameter screening method, with outputs given as meta-model 

simulations for further evaluation [37]. Typically, a design parameter can be classified as sensitive, 

if its value can vary considerably; therefore, these parameters are selected for the initial 

screening with epistemic uncertainty properties shown in Table 2. Variation of the parameter 

results for considerable environmental impacts defined within the problem statement, are 

illustrated by the equation below. 

𝜎 =
𝜇√𝑟

2
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where sigma (𝜎) is the mean value of the elementary effect (tons/year), 𝑟 is the number of elementary 

effects per design parameter, Mu (𝜇) is the standard deviation of the elementary effect (tons/year). 

 

Figure 3 Annual carbon emissions Morris screening method. 

 

Figure 4 Three-phase epistemic uncertainty analysis methodology. 

4. Due to the individual impacts, each element has on green building performance, the necessary 

design parameters are listed below in Table 4. The range of all green building input factors in the 

specified case study is determined before conducting the sensitivity analysis. The probability 

distributions of the inputs must also be defined when utilizing the Monte Carlo sensitivity analysis 

methodology.  

Table 4 PV systems parameterization table. 

Types of 

modules 

(Cell 

Material)  

Type of 

PV 

system 

(kW) 

annual 

electricity 

production 

(kWh) 

annual 

carbon 

emissions 

reduction 

(tons) 

Panel 

Efficiency 

(%) 

Surface 

coverage 

Energy 

payback 

estimat

e 

Ground 

Coverage 

Ratio 

System 

Losses 
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Multicrysta

lline-silicon 
10 kW 14100 10 17.2% 62.5 m2 4 0.4 14% 

Thin-film 10 kW 8207.5 5.8 10% 62.5 m2 2 0.4 17% 

Next, probability density functions are assigned to each key parameter, utilized to quantify annual 

carbon emissions, which in this case is closely correlated to annual energy costs. Limit estimation 

for the design parameter variation identifies the most appropriate probability density function. 

Sensitivity analysis results generally are dependent on selected ranges. Uncertain inputs are 

assigned a continuous distribution, based on the approximate distribution of possible results. The 

Quasi-Monte Carlo technique derived from SIMLAB includes continuous distribution, maximizing 

data entropy with a calculated mean and standard deviation [25].  

5. An input matrix was generated, based on the probability density functions of each parameter 

within Statgraphics™. Utilizing Building Information Modelling, an output parameter is created 

by a simulation model for each sample of design parameters.  

2.2 Pre-processing Phase 

During the pre-processing phase, simulations to obtain values for input parameters were conducted 

in Green Building Studio. Insight and Project Solon were utilized to obtain parameter ranges for Monte 

Carlo Latin hypercube sampling. The generated files were then transferred to Excel, and the Monte 

Carlo simulation output considered in energy consumption and carbon emissions. The generated values 

pass to Excel, and the simulation is started 10,000 times automatically. Figure 4 displays the three-

phase epistemic uncertainty analysis. Advantages include: (i) understanding parameter relatability to 

environmental impacts, (ii) comprehension of how variations in the model input affect the output, and 

(iii) decision- making process support by providing a baseline for comparison within green building 

systems. 

2.3 Case-Study 

One realistic case study has been simulated adapting UA/SA and was implemented in this proposed 

framework on a new construction multi-family floorplan in Tallahassee, FL, considering green building 

design epistemic uncertainties. The multi-family home has three floors with a total area of 5846 ft2. 

Based on 2D CAD drawings, a BIM model is developed using Autodesk Revit software. The various 

building envelope components are extracted from the model for utilization within Green Building 

Studio and Revit EnergyPlus. Based on the energy savings for each associated building envelope 

modification used in this model, maximum carbon emission reduction were analyzed for each defined 

green building design parameter. 

2.4 Computational Model of the Case-study Building  

The simulation software used was Revit™, which allows importing architectural drawings. Green 

Building Studio was then utilized to conduct a base run for the original model. Specifically, since the 
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approach used is based on sensitivity analyses, a base case was needed as a reference against which 

green building design alternatives should be assessed. At the preliminary stage of sustainable design, 

choices must be made according to good engineering judgement criteria—constructive solutions, such 

as wall construction factor, roof construction factor, window to wall ratio, glazing, lighting efficiency, 

SGHC (solar heat gain coefficient), and the impact of renewable energy systems. Some of the initial 

choices included the weather file, present within Green Building Studio, a default occupant schedule of 

24/7, and an air change rate set at 0.75 air changes/hour, a higher value than the natural infiltration 

rate, as demanded by the simulator. 

2.5 Energy Model Creation 

Autodesk Revit, a software package, allows the user to create an architectural template, define 

building geometry, thermal zones, and occupancy number, within the energy model. The model is then 

exported to GBS as a gbXML (green building eXtensible Makeup Language) file format for sustainable 

building performance analysis. Within Green Building Studio’s web interface, a new project for 

Tallahassee, FL was created by specifying the project name, building type, operational schedule, and 

location. 

2.6 Simulation Results 

The simulations were organized to identify the influence on the building performance for green 

building design changes, including constructive elements and equipment. This sensitivity analysis 

methodology aims to identify the most impactful parameter for a robust and economical green building 

design. PV panel parameters collected from GBS and the solar panel efficiency estimation website are 

displayed below in Table 5: 

Table 5 Default values assumptions chart.  

Parameter 
Default 

Value  
Description  

Ground Coverage Ratio 0.4 

An array with wider spacing between rows of modules has 

a lower GCR than one with narrower spacing. A GCR of 1 

would be for an array with no space between modules, 

and a GCR of 0 for infinite spacing between rows. 

DC System Size 2.75 
The default 10 kW system has an array size of 10 DC kW 

and an inverter size of 3.62 AC kW. 
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System Losses 14%, 17% 

System losses account for performance losses expected in 

a real system and were assumed for each module type 

according to corresponding efficiency. 

Default value of system losses is assumed to be 14% and 

17% respectively for each module type and an example 

expression is included below: 

100% x [1 − (1 − 0.02) × (1 − 0.03) × (1 − 0.02) ×

(1 − 0.02) × (1 − 0.005) × (1 − 0.015) × (1 − 0.01) ×

(1 − 0.03)] = 14% 

2.7 Post-Processing Phase 

Finally, a global sensitivity analysis regression-based method was utilized in this study of comparison, 

where the influence of each design parameter on the expected value and the variance of the output 

parameters are estimated.  

During the post-processing phase, a number of analyses were conducted to compare various 

techniques, including regression analysis and graphing of the Morris method results, yielding sensitivity 

and uncertainty measures. Following the Standardized regression coefficient calculation, all SRRCs were 

established for green building parameters, indicating the sensitivity of each parameter, noting that 

higher values correlate to increased parameter sensitivity and epistemic uncertainty. Standardized 

regression coefficient are an effective statistical technique to quantitively determine the most 

impactful green building parameter, while analyzing the impact on a modelled structure’s carbon 

footprint. 

2.8 Validation of the Building Energy Model  

During the analysis, sustainable building properties are considered as input variables 𝑥1, 𝑥2, 𝑥𝑚 (i.e., 

heating/cooling energy consumptions, annual carbon emissions, and annual energy usage) as the 

energy cost or environmental cost function 𝐸𝐹. 

𝐸𝐹 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) 

Predictions for heating and cooling energy consumption are compared against those delivered from 

a popular building performance simulation (BPS) software tool, i.e., Green Building Studio, to verify the 

accuracy of the current sustainable building model. Heating load, cooling load, annual carbon emissions, 

and annual energy costs are obtained for a tri-plex multi-family building. Each room is defined as one 

thermal zone.  

The building is simulated in Tallahassee, FL and weather files sourced from EnergyPlus are utilized 

for this simulation. This model assumes that the building is on the ground and facilitating typical 

residential thermal energy exchange. Interior heat gain sources such as occupant schedule/details, 

equipment types, lighting, and main building envelope factors are focal points of simulation with a 

Residential premium efficiency 17 SEER/9.6 HSPF Split HP as the primary HVAC system.  
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Figure 5 annual energy consumption predictions for annual heating (a) and cooling (b from the 

current model, compared to Green Building Studio simulations for the year 2021. Both heating and 

cooling energy loads show a good agreement with Green Building Studio simulations. The total heating 

and cooling energy consumption delivered by the current model for the entire 2021 year differs less 

than 7% from Green Building Studio simulations. 

 

Figure 5 Comparison between monthly heating and cooling energy consumption against 

GBS simulations (2021). 

3. Results  

3.1 Sensitivity Analysis Results Using Morris Method 

Eighty-four simulations (the number of elementary effects per parameter is set as 8), obtained by 

sampling all 15 design parameters within their ranges, are conducted for sensitivity analysis using the 

Morris Method and results are shown in Figure 6. Table 6 displays epistemic uncertainties for robust 

design options. A value in the x-axis represents the absolute value of elementary effects of a parameter, 

a reflection of importance. The y-axis value is an indicator that measures the parameter's non-linear 

effects and its interactions with other parameters. Observations show that most of the design 
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parameters have both linear and non-linear correlated impacts on the environmental objective, while 

WWR, SHGC, infiltration rate mainly have linear effects. As parameters are ranked based on their values, 

the top 12 sensitive parameters identified are the same as the regression method. 

 

Figure 6 Global sensitivity histogram (annual carbon emissions). 

Table 6 Green building parameter epistemic uncertainties. 

PARAMETER  μ σ 

X1 Building Orientation 58.0948 112.5 

X2 Lighting Efficiency 0.7303 1.1 

X3 Plug Load Efficiency 1.525 0.8302 

X4 Infiltration Factor 1.0425 0.8947 

X5 Wall Construction Factor 0.074 0.067 

X6 Roof Construction Factor 0.0176 0.0255 

X7 Window Shading 0.2367 0.335 

X8 Solar absorptance of external walls 10.524 27.636 

X9 Solar absorptance of the roof 41.87 52.51 

X10 Windows Glazing 0.2202 0.33 

X11 Window to Wall Ratio 0.0427 0.1563 

X12 Solar Heat Gain Coefficient 0.1826 0-44 

X13 Panel Efficiency 1.8257 18 

X14 PV-Payback Limit 8.5391 18.75 

X15 PV-Surface Coverage 33.2603 48.75 
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3.2 Epistemic Uncertainty Analysis-Normality Plots 

Uncertainties in design parameters can be described as design variations that occur during the 

planning process. They are fully determined by the decision-maker and caused by a lack of knowledge 

or arise due to changes or irregularities in the structure’s planning phase. This research compared the 

normality plots between energy performance and carbon emissions for a new building using different 

design options. An accounting approach for design uncertainty leads to quality assurance of the model. 

Research inputs to a photovoltaic decision problem (i.e., thin-film crystalline modules or anticipated 

multi-crystalline modules) is key during the green building design process. Computation of epistemic 

uncertainties of response mean and variance is completed by following the equation below:  

𝜇(𝑠) = 𝛼0(𝑠),  𝜎2(𝑠) = ∑ 𝛼𝑘
2

𝑃

𝑘=1
(𝑠)(𝜑𝑘

2) 

Figures 7-10 indicate weekly heating loads, cooling loads, carbon emissions, and energy costs 

according to theoretical quantiles as green building parameters outlined in Figure are utilized 

throughout the model simulations. Figure 11 displays the frequency of carbon emissions and energy 

costs per year during the yearly energy cycle of the multi-family home. 

 

Figure 7 Frequency distribution and normality plot of weekly heating loads when 

considering epistemic uncertainty in all parameters. The results for weekly heating loads 

vary between 28 and 31.5 Kwh. The normality plot on the right side displays a normal 

distribution. 
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Figure 8 Frequency distribution and normality plot of weekly cooling loads when 

considering epistemic uncertainty in all parameters. The results for weekly cooling loads 

vary between 44 and 51 Kwh. The normality plot on the right side displays a normal 

distribution. 

 

Figure 9 Frequency distribution and normality plot of weekly carbon emissions when 

considering epistemic uncertainty in all parameters. The results for annual carbon 

emissions vary between 45 and 59 Kwh. The normality plot on the right side displays a 

normal distribution. 

 

Figure 10 Frequency distribution and normality plot of weekly energy costs when 

considering epistemic uncertainty in all parameters. The results for annual energy costs vary 

between $7,500 and $11,000. The normality plot on the right side displays a normal 

distribution. 
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Figure 11 Operational annual energy costs and carbon emissions frequency diagram. 

4. Discussion 

4.1 Epistemic Uncertainty Representations of a Random Variable 

The histogram above represents the cumulative frequency distribution of annual carbon emissions 

when considering epistemic uncertainty in physical parameters. 

Finally, standardized regression coefficients (SRCs) were used to determine which design 

parameters are most sensitive and therefore explain the most variability in the models. The units of 

coefficient βj depend on the units of xj, which do not have the same order of magnitude.  
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Standardized Regression Coefficients are obtained by multiplying each coefficient by the ratio of 

estimated standard deviations obtained from Monte-Carlo simulation of xj; xj; 𝑦: 

𝑈𝑆𝑅𝐶(𝑥𝑖, 𝑦) =
𝛽𝑗𝑥𝑠𝑗

𝑠𝑗
 

Observed results showed that PV panel efficiency and lighting efficiency significantly affect annual 

carbon emissions. Standardization must occur before comparing green building parameters, which in 

this research differ in scale (i.e., building orientation of 45 degrees and wall construction factor of 0.2). 

Normalization of linear regression coefficients permitted a more thorough and accurate comparison 

between parameters with varying scale degrees [38].  

By normalizing the regression coefficients using a standard deviation of the sampled parameter 

values, the effects due to the scale of the parameters are eliminated. 

𝑦𝑖 = 𝑎 + ∑ 𝑏𝑗𝑥𝑖𝑗𝑗 + 𝜀𝑖 , where 𝑦𝑖 , 𝑖 = 1, … , 𝑚, are the output values of the model; 𝑏𝑗 , 𝑗 =

1, … , 𝑛, are determined coefficients, and 𝜀𝑖 is the residual computational error due to approximation, 

(𝑚 represents the number of inputs in the sample, n represents the number of input variables). The 

reliability of the SRC results depends on R2 of the linear model. The following form of the regression 

equation was utilized to predict annual carbon emissions: 

𝑦(𝑥1, 𝑥2, … , 𝑥𝑛) =  𝛽0 + ∑ 𝐵𝑗𝑥𝑗

𝑛

𝑗−1`

 

where 𝑦  is annual carbon emissions, 𝑥𝑗  represents the value of design parameter 𝑗 , and 𝛽𝑗  is the 

corresponding regression coefficient.  

4.2 Sensitivity Analysis Results Using Regression Method 

In this research, we compared the environmental impact for a new building using different design 

options, by first focusing on the ranges of chosen design variables. The input variables are taken as 

continuous distributions, assuming each variable is equally probable. The Latin Hypercube method 

samples fifteen selected design parameters within their ranges. A total number of 10000 samples are 

generated by the Monte Carlo simulation for the sensitivity analysis using the regression method. The 

standardized rank regression coefficient (SRC) is used as a sensitivity measure. Figure 12 displays a 

sensitivity analysis plot based on parameter impact, which measures the linearity of design parameters. 

A positive indicator value means an increase of a design parameter increases defined performance 

objectives. Results in Figure 13 display that the lighting efficiency, SGHC, and wall construction have 

the most significant influence on the building performance. The parameters of system design and 

construction quality (i.e., plug load efficiency, infiltration factor, window glazing, WWR, Surface 

absorptance of roof and external walls, surface coverage, panel efficiency) have higher impacts on 

environmental impacts compared with the photovoltaic design parameters (i.e., infiltration factor, wall 

and roof construction factors, and building orientation.) This means that utilizing PV panel systems, 

increasing lighting efficiency, Low-e hot climate glazing, shading, and acceptable construction quality 
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can contribute significantly to the performance objective of carbon emissions reduction. The sensitivity 

measures of SHGC (solar heat gain coefficient), infiltration factor, and window shading are larger than 

building orientation. Wall construction and roof construction factors have more significant impacts 

when compared with surface absorptance.  

 

Figure 12 Sensitivity plot and table displaying all parameters based on operational heating 

and cooling energy usage.  
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Figure 13 SRC histogram green building design parameters (annual carbon emissions and 

annual energy usage). 

5. Conclusion 

An approach combining green building design alternatives in energy performance simulation tools 

and a multi-stage sensitivity analysis method is proposed for the sustainable design of multi-family 

homes in Florida to mitigate carbon emissions. Based on the case study results, conclusions can be 

made as follows. Results show that PV panel efficiency, PV payback limit, lighting efficiency, plug load 

efficiency, and SGHC are highly influential parameters. Furthermore, the building envelope design and 

renewable energy system interactions were accounted for. Building orientation and surface coverage 

affect power generation, while PV panels affect building cooling load and affect optimal building design 

choice due to the impact on envelope design parameter choices.  

This analysis proved epistemic reliability applicability to model-form uncertainty parameters with 

varying ranges. Although epistemic uncertainty was used, there is still a possibility of modeling error, 

therefore incorrectly skewing results; however, this method is a vital tool for error reduction when 

combined with sampling uncertainty. The proposed method for this research displays the ability of 

epistemic uncertainty and aleatory separation under our modeling methodology. Based on preliminary 

results from an unsatisfactory optimal design, we decided to reduce the epistemic uncertainty achieved 

by sampling more design options, proved theoretically and numerically in the results section under 

model conditions. Uncertainty methods often have increased computational cost; however, this 

methodology reduces computational overhead, simplifies the research approach, and allows for rapid 

outputs of building design decisions despite uncertainty propagation. A more in-depth study is 

necessary to account for interdependencies amongst chosen green building design parameters while 
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also considering an inverse modeling approach for design evolution uncertainty during the building’s 

life cycle. 

Sensitivity analysis for green building design optimization can provide insights about the building 

system as a part of the simulation process and can present opportunities for improved handling and 

analysis of data so that energy estimates can be improved while quantifying uncertainties. The annual 

carbon emissions are sensitive to measures affecting building envelope components, renewable energy 

system options such as solar energy production, characteristics of windows, and building envelope. 

Further research is needed to determine the sensitivity of weather data in Green Building Studio (GBS) 

since this significantly impacts energy model data outputs. A hybrid metaheuristic optimization 

algorithm can also be utilized in future studies to find the optimal solution between occupant comfort, 

annual carbon emissions, construction costs, and life cycle costs. 
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