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Abstract 

The vitality of the Great Barrier Reef (GBR) is threatened by many human-made impacts. 

Monitoring this ecosystem makes it possible to study the general condition and the health of 

the GBR. However, due to the large extent of the GBR and limited accessibility in the ocean 

environment, mapping and monitoring this ecosystem has been always challenging task and 

connived. In this regard, Remote Sensing (RS) is an effective technique that provides 

valuable information for mapping and monitoring this ecosystem. In an attempt to monitor 

the GBR, this article applied a supervised machine learning algorithm to classify the Landsat 

8 imagery collected over the GBR. To this end, the spectral responses of coral reefs, shallow 

water, deep ocean, rocks and sands, and green alga were initially determined from the 

satellite images. This information was then ingested to the Maximum Likelihood supervised 

classifier to map coral reefs in the GBR. Additionally, this study discusses how the GBR has 

been affected by anthropogenic disturbance. The results provide confirmatory evidence that 
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RS techniques present great promise as a means of mapping coral reefs and monitoring their 

general conditions. We used the ambiguity matrix and validation data to estimate the 

accuracy of the proposed method. Overall, the proposed method was able to identify 5 

different classes considered in this article with an average accuracy of 90%.  
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1. Introduction

Coral reefs hold an immense importance to the marine ecosystem. They are the habitats for at 

least 25% of all marine species [1]. Coral reefs have a numerous benefits to flood and coastline 

protection [2, 3], tourism [4], fisheries, and human food [5]. Moreover, coral reefs are home for 

approximately 4,000 species of marine life [6]. However, because of climate change, 

industrialization, and anthropogenic disturbance, 54% of the world’s coral reefs are extremely 

susceptible to degradation from regional or global threats. In this regard, the Great Barrier Reef 

(GBR) in Australia is no exception.  

The GBR is the largest coral reef ecosystem in the world that spans over 14 degrees of latitude 

and extends over 2,300 kilometres along the Northeast coast of Australia. This ecosystem is of 

great importance due to many reasons, such as protecting more than 275 million people through 

the absorption of wave energy which reduces damages to coastlines and structures due to storms, 

hurricanes, or cyclones [7]. Moreover, the GBR has such an extensive diversity of species that no 

other ‘World Heritage Site’ on Earth possesses such diversity. This diversity of species includes but 

is not restricted to, over 410 species of hard coral, over 1,620 species of fish, 2,000 species of 

sponge, 14 species of sea snake, 6 out of 7 species of marine turtle, at least 300 mollusc species, 

630 species of echinoderm, and 500 species of marine alga [8]. However, the vitality of the GBR is 

threatened by seven key indirect or direct pressures, including climate change, declining water 

quality, coastal development, shipping impacts, fishing impacts, diseases and pest species, and 

marine debris [9]. The fundamental resilience of this significant coral reef ecosystem has been 

gravely compromised and many elements of the biological diversity for which it is recognized for, 

may be at risk of extinction [8]. Majority of the threats identified to be harming the diversity of 

marine life on the GBR over the last couple decades continue to be addressed but many of these 

threats are worsening [8]. The increasing impacts like widespread coral bleaching and other 

damaging impacts have amplified preservation concerns for the future of the GBR. Intelligent 

monitoring and mapping the ecosystem of this area allows for researchers to determine the health 

of the GBR and discover ways on how it can be protected [10]. In this regard, RS present great 

means of monitoring and mapping this ecosystem thanks to the accessibility of the frequent high-

resolution satellite images [11]. RS techniques can be effectively employed to determine both 

anthropogenic and natural effects on coral reefs in the GBR [12]. These methods allow for the 

instantaneous study of reef areas for the evaluation of spatial patterns and can provide a high 

frequency of observation for the determination of temporal patterns [13-15].  
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During the past few decades, the observations from various RS satellites have been used to 

provide key information on coral reef environments, such as the GBR [16, 17]. In this regard, 

Landsat 8 satellite data can be considered as the main RS instruments applied for data acquisition 

on coral reefs since the mid 1980’s. Landsat 8 has 11 spectral bands; each of them measures 

different ranges of frequencies along the electromagnetic spectrum. Of its 11 bands, bands 1–4 

and 8 sense visible light. Band 1 measures deep blues and violets. Bands 2, 3, and 4 are visible blue, 

green, and red, respectively. Band 5 covers the NIR spectrum. Bands 6 and 7 cover different parts 

of the shortwave infrared. All of the mentioned bands have the spatial resolution of 30 m. 

However, Bands 10 and 11, which are in the thermal infrared portion of the electromagnetic 

spectrum, have the spatial resolution of 100m. From all bands of Landsat 8, band 8 is a 

panchromatic band and has the spatial resolution of 15 m [18]. High bandwidth, easy accessibility, 

appropriate temporal interval, and suitable spatial resolution have made Landsat 8 one of the 

most widely used Rs systems in ocean studies [19, 20]. In this study, Landsat images along with a 

supervised classification algorithm, called Maximum Likelihood were implemented to identify the 

coral reefs in the GBR of Australia. 

2. Study Area and Data  

2.1 Study Area   

The study area is the GBR region, located in Coral Sea, Australia (central coordinate: 150.402 W, 

21.043 S). Due to the large extent of the GBR, which is over 2,300 kilometres in length, only a 

portion of this region was considered as the study area (see Figure 1). The spatial extent of the 

satellite imageries that covered large area of the GBR corals and included least amount of cloud 

coverage was selected as the study area. Therefore, the North-East coast of Australia, towards the 

lower end of the GBR was selected as the study area. 

 

Figure 1 The geographic location of the Great Barrier Reef (GBR) area, located in Coral 

Sea, along with the spatial extent of the study area (red square). 
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2.2 Datasets   

To provide a medium-resolution classification map of the coral reef in the GBR region, a 

Landsat 8 image was utilized. As mentioned before, among the 11 spectral bands of Landsat 8, 

band 1 to 7 have the spatial resolution of 30 m. Therefore, these bands (bands that cover deep 

blues and violets, blue, green, red, NIR, and tow shortwave infrared) were used for classification. 

As mentioned before, the study area was limited to one satellite image scene (red boundary in 

Figure 1). The Landsat 8 image of study area was obtained from the Earth Explorer platform 

(https://earthexplorer.usgs.gov/), where the United States Geological Survey (USGS) provides 

satellite imagery across the globe. From all images of Landsat 8, those images with more than 0-6% 

cloudy pixels over the study area were initially excluded. Finally, the Landsat 8 image of August 

29th of 2018 which provided cloudless imagery was downloaded. Figure 2 shows the true colour 

composite of the Landsat 8 image which was used in this study. In this study, both shallow water 

and deep water were considered in the classification. Briefly, the deep open ocean waters in 

which phytoplankton is the major determinant of water spectral characteristics are referred to as 

case-1 of water [21]. Case-2 waters, which are more turbid than open ocean, refers to the shallow 

costal water. The case-2 of waters are generally shallow so the underwater surface or the particles 

may be visible. Therefore, the spectral properties of case-2 waters are affected by different 

optically active constituents, such as mineral particles, Colored Dissolved Organic Matter (CDOM), 

and microbubbles [22]. Since the case-2 of water is naturally shallow, the waters around the rocks 

in the oceans are considered as case-2 of water. The presence of rocks near the surface of ocean 

causes that these waters to be considered as the case-2 of water [23]. To better representation of 

the case-1 and case-2 of water existed in the ocean, Figure 2 shows two different band 

combinations with different visualization parameters. As is clear, the ocean deep water is 

distinguishable from shallow water. For example, Figure 2 (a) shows some white and shiny rocks 

that can be divided into two types. The first group of rocks are those that can be seen in a Landsat 

8 RGB image. These rocks are out of the water surface and can easily be observed in the RGB 

image. However, although several racks are not visible in the RGB image, they are discernible in 

the band combinations images (two zoomed images). They are bottom and near-surface rocks, 

and the water around them are mostly shallow waters. Moreover, both sallow water and deep 

water are distinguishable in Figure 2 (b). Shallow water can be found in the upper right corner of 

Figure 2 (b). The rest of water areas are mostly deep waters.  
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Figure 2 Landsat 8 satellite image over the study area. (a) and (b) show different band 

combinations of a Landsat 8 image with different visualization parameters to represent 

different classes (e.g., rock, shallow water, and deep water) in the study area.  

3. Methodology  

The selected Landsat 8 image was imported into the ArcGIS software to perform a supervised 

classification based on the Maximum Likelihood algorithm. It should be noted that before 

importing data into the ArcGIS software, we applied the atmospheric and radiometric correction 

using the ENVI software package. A comprehensive description about the corresponding 

corrections and their parameters and factors can be found in [24]. Given the characteristics of 

coral reefs of the selected area in the GBR, this study considers five classes of the ocean water 

(including shallow water (case-2 of water) and deep water (case-1 of water)), coral reef, rocks and 

sands, and green alga. Training samples of each corresponding classes were visually selected from 

the image using the Training Sample Manager (TSM) module of the image classification tool in 

ArcMap. To have a comprehensive evaluation of the proposed method, both point- and polygon-

based training samples were considered in this study. In order to achieve more than 70% 

confidence of the supervised classification, at least 10 samples with various geographic locations 

were considered for each class. Figure 3 presents one training sample area of each of the five 

classes. All ten training samples of each class were then merged to create the comprehensive 

training data utilized for the supervised classification.   
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Figure 3 Training samples for different coral reef classes. 

4. Results and Discussion  

The reliability of the training samples is an essential factor to obtain a high classification 

accuracy using supervised classification algorithms. Therefore, the spectral responses of the 

generated samples of the five coral reef classes in different bands of Landsat 8 imagery were 

initially investigated. To this end, a comparison analysis between the histograms of the training 

samples, as well as between the scatter plots of samples was conducted, where the results are 

illustrated in Figure 4. Using these results, one can figure out that if the selected training samples 

can distinguish five different classes of coral reefs. Moreover, it can be identified that which of the 

Landsat 8 bands is more suitable to identify and detect different coral reef classes. 
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Figure 4 Histograms of the values of the training samples for five coral reef classes 

using different spectral bands of Landsat 8 imagery. 

According to Figure 4, there is no/little overlapping between the histograms of classes in most 

of the spectral bands of Landsat 8 images, meaning that the training samples are able to 

distinguish the coral reef classes. Overall, the histogram of band 3 (Figure 4 (c)) had the highest 

potential to distinguish between different classes. However, the bands 6 and 7 can only distinguish 

the rocks and sands. It means that these two bands were not appropriate for classification. 

Moreover, according to Figure 4, there were no large outliers between the histograms of bands 2 

and 3, and none of the histograms had multiple peaks (i.e., multimodal distribution). If any of 

these two issues were detected in the histograms of the classes, the sample selection step must 

be repeated for the corresponding classes.  

After comprehensive evaluation of the training samples and image bands, the selected Landsat 

8 image was classified into different coral reef classes using the Maximum Likelihood supervised 
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classification algorithm. The result of the classification for the entire study area is shown in Figure 

5. Moreover, Figure 6 presents a visual comparison between the classified map and the satellite 

image for a zoomed area. 

 

Figure 5 Coral reef map in GBR using Landsat 8 imagery and the Maximum Likelihood 

algorithm. 
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Figure 6 Visual comparison between the (a) classified map and the (b) satellite image 

of the study area for a zoomed area. 

According to Figure 5 and Figure 6, the supervised classification was accurately identified coral 

reefs along with other classes. This map allows to a better viewing and understanding the 

characteristics and locations of the coral reefs in GBR. By visual investigating of the produced map, 

it was also observed that a significant amount of coral bleaching, which is mainly the results of the 

human impacts, was occurred in some parts of the GBR. Overall, the machine learning algorithm 

accurately detected coral reefs, which were not visible and distinguishable in the raw Landsat 8 

image.  

Table 1 shows the confusion matrix of the classification method applied for distinguishing five 

different classes in the study area. In this confusion matrix, 921 point-based samples, including 

231 samples of shallow water, 290 samples of deep water, 137 samples of rocks and sands, 143 

samples of green algae and 120 samples of coral reef were considered. 
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Table 1 The confusion matrix of the applied classification method 

Ground 

truth  

 Predicted class  

 

Shallow 

water 

Deep 

water 

Rocks and 

sands 

Green 

algae 
Coral reef 

 

       

Shallow water 198 10 1 1 21 0.86 

Deep water 0 283 2 12 3 0.94 

Rocks and 

sands 0 0 124 9 4 0.91 

Green algae 6 0 7 125 5 0.87 

Coral reef 12 5 0 3 100 0.83 

 0.92 0.945 0.93 0.83 0.75 0.90 

Based on the results of Table 1, deep water was identified more accurately than other classes. 

Coral reef could also be distinguished from other classes with the least accuracy. In fact, coral reef 

was usually confused with shallow water. This issue was understandable from the histograms of 

these two classes, which are represented in Figure 4. According to Figure 4, in almost all of the 

bands of Landsat 8, the spectral properties of coral reef and shallow water were similar, and the 

training samples of these classes had close peaks. In general, the proposed method was able to 

identify five different classes with an average accuracy of 90%. 

Overall, the technique used in this study provided relatively simple and reliable results. It is 

expected that employing high-quality ancillary data, such as high-resolution aerial photography or 

bathymetric Lidar products could considerably increase the level of accuracy. Additionally, as 

mentioned before, due to the absence of in-situ data, training and validation samples were 

retrieved from satellite image. However, future studies should aim to collect in-situ data to make 

the model more robust and accurate.  

5. Conclusions 

Coral reefs play an important role in the marine ecosystem and are the habitats for thousands 

of marine lives. Climate change, industrialization, and anthropogenic disturbance threaten this 

ecosystem. In this regard, the GBR in Australia is no exception. GBR is the largest coral reef 

ecosystem in the world. The vitality of the GBR is threatened by multiple factors, such as climate 

change, industrialization, and anthropogenic activities. Since the majority of the threats identified 

to be harming the diversity of marine life on the GBR are worsening, timely access to accurate 

monitoring and mapping the ecosystem of this area is relevant for many applications. The 

importance of monitoring these ecosystems is rapidly growing due to the continued impacts of 

pollution and climate change which is threatening coral reefs through coral bleaching. RS 

techniques along with machine learning algorithms present great promise as a mean of 

monitoring the coral reefs and detecting accurate classification of characteristics of coral reef 

ecosystems. By performing a supervised classification and creating a classified map of GBR, the 

health of coral reef ecosystems and the coral bleaching of the GBR can be also monitored. The 
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methods applied to this study allowed for an accurate classification of the GBR. The Maximum 

Likelihood classification that was performed also allowed for a relatively efficient and accurate 

supervised classification of bleached coral reefs, coral reefs, submerged reefs, zooxanthellae, and 

ocean. 
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