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Abstract 

Inland water bodies are crucial for supporting human life in various parts of the world. 

Therefore, it is essential to accurately monitor its spatiotemporal variations for better water 

management. The main objective of this study is to investigate the application of remote 

sensing data for quantifying the surface area changes and the impact of climatological 

variabilities over Lakes Mead and Chapala. Historical time series of monthly surface area 

dynamics were developed using Landsat 1-8 scenes and the climate variability was analysed 

using evaporation rate and precipitation. Results show that estimated surface water changes 

from satellite data agree well with independent data. A significant decline in surface area of 

about 40% since 2000 was found over the Lake Mead region. The relationship between 

surface area, precipitation and evaporation indicate that climatological factors have 

contributed to the lake surface area reduction. Lake Chapala’s surface area, on the other hand, 

has not fallen significantly despite negative trends in precipitation. It was found that human 

interactions with the lake are likely the main cause of surface area variations. The information 

about water surface area variation in this study is valuable for monitoring and characterising 

the predictability of water availability of the regions. 
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1. Introduction 

Lakes are a major source of water for domestic and industrial uses and are vital for riparian zones 

which together support ecosystems and soil fertility. Water bodies have shown large surface area 

variations due to many factors including climate change and variability, and anthropogenic impacts 

such as municipal, irrigation and industrial water use (e.g., [1-4]). Where climatological factors 

significantly influence water volume, predictability metrics may be formed. For example, Lake Mead 

in Nevada-Arizona, U.S.A has net evaporation and precipitation fluctuations that are consistent with 

lake water volume variations [5]. For many lakes, the greatest threat to longevity is related to human 

factors as well as natural, as is the case for Lake Hulun in China [6]. For Haramaya Lake in Ethiopia, 

the main causes of surface area changes have been associated with the expansion of agriculture, 

poorly planned and managed human settlement and removal of vegetation [7]. The combination of 

these factors that affect surface water resources is expected to exacerbate water challenges making 

it increasingly difficult to meet water demand, leading to insufficient water for people and the 

environment. Thus, it is highly important to quantify historical changes in lake surface area in order 

to understand the sustainability of lakes for supply and demand. 

Water storage can be regularly quantified from traditional in situ based measurements. However, 

the extent of available gauge stations is very limited and in many cases has significantly reduced in 

the past 30 to 40 years. For example, in the pan-Arctic basins of Canada and Russia, there was a 40% 

decline of in situ discharge gauges which severely limits the available information for computing 

long-term hydrological characteristics [8]. Satellite remote sensing, on the other hand, offers high 

spatial and temporal resolution data with vast coverage [9-11]. In the last few decades, remote 

sensing techniques have advanced into an alternative measure for long-term regular Global 

monitoring of water resources [3, 12-15]. They have been successfully applied to study water 

resources in different parts of the words at various scales, e.g., for rivers and lakes, basin-scale areas, 

and continental studies (e.g., [9, 16-21]). 

The prime objective of this study is to use remote sensing data to (1) quantify water body surface 

area over Lake Mead (in the U.S.A) and Lake Chapala (Mexico) and (2) to investigate the impact of 

climatological variability on water surface area. To this end, the data collected by several is used to 

generate various time-series data. One of the main satellite platforms developed for such analyses 

is the Landsat satellite series, which ranges from 1972 to the present. Since 1 Oct 2008, these scenes 

are freely available from the United States Geological Survey (USGS), which allows access to the 

relevant timescale and historical duration free of cost [22]. Since Landsat-5, all Landsat missions are 

capable of a 30m spatial resolution which allows for the extraction of smaller features compared to 

Moderate Imaging Spectroradiometer (MODIS) which has a maximum band spatial resolution of 

250m [3]. The Landsat program provides the longest-running timeline of Earth imagery that is 

superior to another space land motoring mission of Sentinel constellation with less than 5 years. 

Therefore, in this effort, Landsat imagery was the preferred choice to quantify historical variations 

in water body surface area. 

To detect water body surface area from satellite imagery, image enhancement by spectral 

rationing is commonly used (e.g., [23-29]). Spectral rationing takes advantage of the contrast of two 
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or more bands from a multispectral raster dataset. By comparing an image obtained in one spectral 

band to one obtained in a different spectral band, certain features may be enhanced. Many water 

indices such as Normalized Difference Water Index [30], Modified Normalized Difference Water 

Index [31] and New Water Index [24], have been used over the past few decades with some 

variations. Using Landsat imagery applied to the Qaidam Basin, Tibetan Plateau, NDWI was 

successful in water feature extraction as well as mapping the patterns of lakes and glaciers [28]. 

Another study by Schwatke et al. [3] developed an approach for the extraction of land-water masks 

using a combination of NWI, MNDWI and three other indices and applied it to 32 case studies. 

Motivated by the successful implementation of the approach, it was adopted here to derive surface 

water change time series using Landsat data. 

In this study, surface water extent time-series developed, for the first time over Lake Mead and 

Lake Chapala using a scheme that comprises various steps including image enhancement and 

classification, surface water detection and area calculation, and analysing hydroclimate variability 

impacts. The first part of the process quantifies the surface area of the two study areas using 47 

years of Landsat 1-8 scenes in monthly time steps. Once the water surface area time series were 

developed, waterbody surface area variations were compared with meteorological data time series 

specifically, evaporation and precipitation. From comparison with meteorological data, the 

connection between the water surface area variations and climate variabilities for each water body 

was assessed, which provides a greater understanding of the causality of the quantified water 

surface area variations. 

The remainder of this study is organized as follows. The study areas are described in Section 2. 

The data and method used for the analysis of surface water areal changes are presented in Sections 

3 and 4, respectively. The results are presented and discussed in Section 5. The study concludes with 

a summary of the main findings in Section 6. 

2. Study Areas 

The selected study areas, the Lake Mead region and Lake Chapala, are inland waters visible in 

Landsat scenes. The two sites have been chosen primarily based on their economic and ecological 

significance, along with technical considerations. The lakes have important roles in the local 

environment and climate, thus, essential to be monitored for sustained management. 

2.1 Lake Mead Region 

Lake Mead in Nevada-Arizona, U.S.A (36° 08' N and 114° 27' W), is the largest reservoir by volume 

within the U.S. [32]. Lake Mead with an area of 640 km2 (approximately 180 km long and 68 m depth) 

is impounded by Hoover Dam and relies on the Colorado River as the main tributary. Downstream 

of Lake Mead, connected by the Colorado River is Lake Mohave which is impounded by Davis Dam. 

The first case study here analysed the surface area variation of both Lake Mead and Lake Mohave 

as one region shown in Figure 1. For simplicity, this will be referred to as Lake Mead Region hereafter. 

The surface water temperature of Lake Mead ranges from 11°C to 31°C over the course of a year 

[33], and the average annual precipitation from 1979 to 2018 was 244±91 mm. Lake Mead is 

important economically as it supplies water to over 25 million people for household use, agriculture, 

and power generation across the U.S. Southwest [34] and supplying about 90% of municipal water 

needs in the Las Vegas Valley [33].  
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Figure 1 Showing Lake Mead region case study, with a red rectangular region defining 

study area. 

2.2 Lake Chapala 

Lake Chapala is located between Jalisco and Michoacán, Mexico (20° 15’ N and 103° 01’ W). Lake 

Chapala is the largest natural lake in Mexico having an average depth of 6 m, with a maximum depth 

near 11 m [35]. Lake Chapala (Figure 2) covers an area of circa 1161 km2; its length is over 79 km 

and has a width of circa 28 km. The annual temperature of Lake Chapala ranges between 8°C and 

30°C with annual precipitation of 750±195 mm [36]. Lake Chapala and water inbound from the 

Lerma River supply water for industry, drinking water and irrigation. On the riverside of Lake Chapala, 

considerable tourism, fishing, industrial, and agricultural activities are observed [35].  

 

Figure 2 Showing Lake Chapala case study, with red rectangular region defining study 

area. 
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3. Data 

In this study, imagery from Landsat missions was used to compute a monthly surface area time 

series of the Lake Mead region and Lake Chapala. Evaporation and precipitation time series were 

then compared with surface area variations. 

3.1 Landsat Imagery 

Level 1 Landsat images from Landsat missions 1-8 available from 1972 were downloaded through 

the USGS website in ‘EarthExplorer’ and ‘LandLook’ viewers. Landsat imagery was manually 

downloaded each month from 1972 to 2020 within limitations of cloud obstructions and scene 

coverage. Data from the Landsat program has been recorded since 1972 using different image 

sensors with different pixel sizes and number of spectral bands. The first five Landsat missions used 

the Multi-Spectral Scanner (MSS) [37]. The data from the MSS was processed to a 60-metre pixel 

size [38]. The Thematic Mapper (TM) used in Landsat 4-7, had significant improvements to 

resolution and captured additional bands to the MSS [37]. The latest Landsat mission at the time of 

writing this journal (26 July 2021) is Landsat 8, which uses the Operational Land Imager (OLI). The 

OLI featured additional spectral bands and the data is scaled to 16-bit greyscale which is a large 

improvement over the preceding 8-bit Landsat imagery. The Landsat spectral bands, wavelength 

and pixel size for all Landsat missions used in this project is presented in Table 1.  

Table 1 Landsat missions with relevant details including pixel size, band numbers and 

wavelength [38]. 

Spectral 

Band 

Landsat 1-5 

(MSS) 
Landsat 4 (TM) Landsat 5 (TM) Landsat 7 (TM) Landsat 8 (OLI) 

Wavel

ength 

Pixel 

Size 

Wavele

ngth 

Pixel 

Size 

Wavele

ngth 

Pixel 

Size 

Wavele

ngth 

Pixel 

Size 

Wavele

ngth 

Pixel 

Size 

(µm) (px) (µm) (px) (µm) (px) (µm) (px) (µm) (px) 

Band 1 n/a n/a 
0.45-

0.52 
30 

0.45-

0.52 
30 

0.45-

0.52 
30 

0.43-

0.45 
30 

Band 2 n/a n/a 
0.52-

0.60 
30 

0.52-

0.60 
30 

0.52-

0.60 
30 

0.450-

0.51 
30 

Band 3 n/a n/a 
0.63-

0.69 
30 

0.63-

0.69 
30 

0.63-

0.69 
30 

0.53-

0.59 
30 

Band 4 
0.5 to 

0.6 
60 

0.76-

0.90 
30 

0.76-

0.90 
30 

0.77-

0.90 
30 

0.64-

0.67 
30 

Band 5 
0.6 to 

0.7 
60 

1.55-

1.75 
30 

1.55-

1.75 
30 

1.55-

1.75 
30 

0.85-

0.88 
30 

Band 6 
0.7 to 

0.8 
60 

10.40-

12.50 
120 

10.40-

12.50 
120 

10.40-

12.50 
60 

1.57-

1.65 
30 

Band 7 
0.8 to 

1.1 
60 

2.08-

2.35 
30 

2.08-

2.35 
30 

2.08-

2.35 
30 

2.11-

2.29 
30 

Band 8 n/a n/a n/a n/a n/a n/a 
0.52-

0.90 
15 

0.50-

0.68 
15 
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Band 9 n/a n/a n/a n/a n/a n/a n/a n/a 
1.36-

1.38 
30 

Band 10 n/a n/a n/a n/a n/a n/a n/a n/a 
10.6-

11.19 
100 

Band 11 n/a n/a n/a n/a n/a n/a n/a n/a 
11.5-

12.51 
100 

Note: Values highlighted in grey indicate spectral bands not used for water classification in this 

study. 

3.2 Evaporation and Precipitation Data 

The effects of climatological changes in evaporation and precipitation on surface area variation 

of the Lake Mead region and Lake Chapala was investigated. Evaporation and precipitation data 

were obtained at a monthly temporal resolution in the Lake Mead region and Lake Chapala from 

ERA5-Land monthly data (by the European Centre for Medium-Range Weather Forecasts (ECMWF)). 

The spatial resolution of the dataset is 0.1° × 0.1° grid-distributed, which was averaged over the 

lakes for comparison with the surface extent time series.  

3.3 Validation Data 

The surface area time series data determined in this study was validated against independent 

time series data obtained from the Database for Hydrological Time Series of Inland Waters (DAHITI: 

https://dahiti.dgfi.tum.de/en/).  

Volume variations time series of Lake Mead between 1984 to 2020 derived using water levels 

from satellite altimetry was downloaded from DAHITI [39]. While in this study, the Lake Mead region 

included Lake Mead and Lake Mohave, the Lake Mead volume variation alone is expected to show 

a high correlation with the Lake Mead region. Lakes connected by the Colorado River have been 

shown to mirror volume variations, such as Lake Mead and Lake Powell [40]. Therefore, as Lake 

Mohave and Lake Mead are part of the Colorado River, using correlation analysis between Lake 

Mead region surface area variations and Lake Mead volume variations can provide insights into the 

performance of the proposed approach in accurately determining surface area variations. 

Water level time series acquired from satellite altimetry over Lake Chapala for the years 2002 to 

2010 and 2013 to 2020 was downloaded from DAHITI [41]. Correlation analysis was again applied 

between Lake Chapala water level time series and the respective surface area time series to 

evaluate the results.  

4. Method 

4.1 Image Processing 

The following general workflow (Figure 3) was performed to calculate the water surface area 

from Landsat imagery. The methodology of calculating the water surface area of the Lake Mead 

region differed from Lake Chapala by image enhancement. The main reason for this refers to the 

regions’ different topography and land cover. The availability of snow and shadowed regions from 

mountains around Lake Mead makes it difficult to apply a similar enhancement strategy over Lake 
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Mead as that of Lake Chapala. Therefore, Landsat images used to classify Lake Chapala were 

enhanced using spectral rationing, whereas to classify water in the Lake Mead region a threshold 

was applied directly to multiple raw image bands (see details in Sections 4.1.1-4.1.3). 

 

Figure 3 Schematic of the water classification method used in this study. The Landsat 

data are first pre-processed using the Image Stitching algorithm. The results are then 

enhanced by Spectral Rationing and Thresholding methods. Afterwards, a post-

processing step is applied to eliminate shadows from the images. These are ultimately 

used to derive the area of surface water within the case studies. 

4.1.1 Pre-Processing 

Image Stitching Using Point Feature Matching. For many months in the Landsat imagery time 

series, two Landsat images were required, which should be merged for full coverage of the water 

body being analysed (see, e.g., [20, 29]). In these months, two images within the same month were 

stitched together using an object feature detection and matching scheme [42]. Using point feature 

matching the position of one image was identified in the second image. With the position of overlap 

known, the two images were stitched to create an image composite that covered the whole water 

body. 

Rectification of Landsat-7 SLC error. On May 31, 2003, the Landsat-7 Scan Line Corrector (SLC) 

failed which resulted in diagonal zig-zagged black lines covering 22% of every scene. This was 

addressed by interpolating nearby values to replace missing values in sampled data. 

4.1.2 Image Enhancement 

For the water classification of Lake Chapala, image enhancement by spectral rationing was used. 

This was essential to achieve a better contrast between water and land. The spectral ratio was 

calculated by subtracting an infrared wavelength band by the shortest visible wavelength band. For 

example, for Landsat-8 Eq. 1 displays how two spectral bands were used to calculate the spectral 

ratio. 

𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙 𝑅𝑎𝑡𝑖𝑜 𝐿08 =  
(𝐵𝑎𝑛𝑑 1 − 𝐵𝑎𝑛𝑑 7)

(𝐵𝑎𝑛𝑑 1 + 𝐵𝑎𝑛𝑑 7)⁄ (1) 

where, 

Band 1 = Visible band with wavelength 0.43 - 0.45 µm, 

Band 7 = Short Wave Infrared with wavelength 2.11 - 2.29 µm. 
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Water was then segmented from images by thresholding to create binarised images containing 

water as white pixels and other features black. The raw Landsat images in Figure 4 (a) and Figure 4 

(b) were enhanced using Eq 1 over Lake Chapala. A threshold value between 0 and 1 was chosen to 

separate water from other features. The enhanced image in Figure 4 (c) shows water occupied the 

upper pixel intensity range. The threshold value of 0.984 was chosen due to its better outcomes 

using these image bands to produce the classified binary image in Figure 4 (d). The final result of 

water classification is shown in Figure 4 (e) with post-processing applied as per Section 4.1.3. 

 

Figure 4 (a) Landsat-8 Band-1 image. (b) Landsat-8 Band-7 image. (c) Showing enhanced 

image of Lake Chapala. (d) Binary image created from a threshold of 0.984. (e) Final 

classified image of Lake Chapala after post-processing. Landsat-8 images from 25 March 

2020 and bands 1 and 7 reflect visible and shortwave IR. 

The water classification method applied to the Lake Mead region did not use image enhancement. 

Accurate segmentation of water from other features was difficult with snow and shadowed regions 

from mountains around Lake Mead occupying similar intensity ranges to water. The difficulty of 

water classification was further increased with the region having both deep and shallow water, 

which can increase the pixel intensity range of water. To classify water from Landsat images in the 

Lake Mead region, threshold values were applied based on trial and error using the histograms of 

Landsat images. An example of water classification applied to Landsat-8 bands is shown in Figure 5. 

A pixel intensity threshold was applied to Band-7 and from the band ratios, a threshold was also 

applied to Bands 1-6 to produce the binary image shown in Figure 5(b). The final result of water 

classification is shown in Figure 5(c) with post-processing applied as per Section 4.1.3. 
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Figure 5 (a) Landsat-8 Bands 1-7 used for water classification. (b) Binary image created 

from threshold values. (c) Final classified Lake Mead region with post-processing 

applied.  

4.1.3 Post Processing 

After water classification, inevitably there were localised misclassified pixel areas. It was found 

that areas commonly misclassified were due to shadows of clouds and valleys. Shadows made by 

mountains and overshadow from cloud cover often shared the same pixel intensity range as water. 

For example, Figure 6 shows misclassified regions up to 40 pixels in area, resultant of mountain 

shadow. The segregated misclassified regions were removed (see also [21, 26]). This was done by 

removing all objects in the classified binary image less than a specified area. The specified area was 

dependant on the size of misclassified objects which ranged from circa 100-2000 pixels in Landsat 

images with 30 m pixel size. 

 

Figure 6 Classified binary image overlayed on Landsat image within the yellow 

rectangular region, showing misclassified pixels outlined in red (left) and image noise 

removed (right). 

4.2 Surface Area Calculation 

The area of the water body was then calculated using Eq. 2 from the total number of white pixels 

classified in the binary image. 
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𝑊𝑎𝑡𝑒𝑟 𝐵𝑜𝑑𝑦 𝐴𝑟𝑒𝑎 = 𝑁 × 𝑆2, (2) 

where 𝑁 is the number of white pixels and 𝑆 is the pixel size. The pixel size in Landsat images used 

for water classification was either 30 m or 60 m, depending on Landsat mission and image band as 

shown in Table 1. 

4.3 Climate Variability 

To investigate the impact of climate variability on the lakes surface water changes, ERA5-Land 

monthly data was used. The gridded data with 0.1°× 0.1° spatial resolution were used for the same 

period of Landsat products. For every month, the gridded precipitation and evaporation products 

were averaged over the lakes, which led to a monthly time series of precipitation and evaporation. 

These were compared to surface area change time series calculated from Landsat visually and also 

using the correlation analysis. 

4.4 Correlation Analysis 

The cross-correlation was calculated to derive the degree to which two series are correlated 

considering a potential existence delay between time series. For this, the cross-correlation (𝑅) of 

two series 𝑥𝑛 and 𝑦𝑛(n = 0,1,2. . . N − 1) with delay d is given by, 

𝑅(𝑑) =
∑ [(𝑥𝑛 − 𝜇𝑥) ∗ (𝑦𝑛−𝑑 − 𝜇𝑦)]𝑛

√∑ (𝑥𝑛 − 𝜇𝑥)2
𝑛 √∑ (𝑦𝑛−𝑑 − 𝜇𝑦)

2
𝑛

(3)
 

where 𝜇𝑥 and 𝜇𝑦 are the means of 𝑥𝑛 and 𝑦𝑛, respectively. If the above is computed for all delays 

then d = 0,1,2. . . N − 1 and a cross-correlation series of twice the length as the original series is 

calculated (see details in [43]). Here, 𝑥𝑛 time series represent surface water area changes and 𝑦𝑛 

refer to different variables such as precipitation and evaporation. 

4.5 Trend Analysis 

To better explore the time series variations, specifically for surface water area changes, we 

estimated trends at different time spans within time series. To this end, the time periods with 

considerable trends were identified visually and then a 1-degree line was fitted to each period. This 

was done by calculating a  and b  in a linear equation 𝑧 = 𝑎𝑡 + 𝑏 , with 𝑡  being the time and 𝑧 

corresponding values of the variable (e.g., surface area). a and b can be calculated by solving the 

following matrix equation. 

(

𝑡1 1
𝑡2 1
⋮ ⋮

𝑡𝑁 1

) (
𝑎

𝑏
) = (

𝑧1

𝑧2

⋮
𝑧𝑁

) (4) 
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5. Results 

The surface areas of the Lake Mead region and Lake Chapala were calculated at a monthly 

temporal resolution from the Landsat images. Some intermediate months along the surface area 

time series were excluded due to excessive cloud cover or lack of image availability. As a result, 

there were gaps in the discrete time series of surface area. The very limited missing data was then 

linearly interpolated. Comparison against validation data indicated that the applied linear 

interpolation did not degrade the entre water surface area results. 

5.1 Lake Mead Region Surface Area 

The monthly surface area variation of the Lake Mead region is shown in Figure 7. Indicated by 

the high water surface area from 1972 to 1988, the Lake Mead region was at high capacity. From 

1988 to 1992 a surface area decline occurred circa 17% which was recovered between 1993 and 

1998. Significant surface area loss occurred from 2000 to 2011 of circa 40% due to extended drought 

and increasing water demands by population growth [32]. NASA Earth Observatory [44] reported 

an above-average inflow of melting snow from the Rocky Mountains from late 2010 to early 2012. 

The inflow of melting snow and high rainfall in late 2010 to early 2011, caused an increase in water 

surface area in 2011. The surface area then reduced in 2014, and since 2015 the Lake Mead region 

surface area has varied between circa 420 km2 to 430 km2.  

 

Figure 7 Surface area of the Lake Mead region from September 1972 to January 2020. 

5.2 Lake Chapala Surface Area 

The monthly surface area variation of Lake Chapala using Landsat imagery between 1973 and 

2020 is shown in Figure 8. Before 1993, the availability of Landsat imagery of Lake Chapala was low 

mainly due to cloud cover obstructions, resulting in long periods void of surface area data. A 

negative downward trend of water surface area in Lake Chapala is visible between 1993 and 2003 

as shown in Figure 8. The downward trends in water volume in Lake Chapala from 1979 to 2001 has 

been due to excessive water extraction for agricultural and municipal needs [45]. Lake Chapala was 

named Threatened Lake of the Year in 2004 by the Global Nature Fund. This, along with the applied 
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new policy to control water withdrawals from the lake has helped to rebound the water surface 

area since 2004. The effect can be clearly seen from the results of the water surface area shown in 

Figure 8 and further justified in Figure 9. 

 

Figure 8 Lake Chapala surface area determined from Landsat imagery from February 

1973 to March 2020. 

 

Figure 9 Showing change in surface area (circa 180 km2) of Lake Chapala from May to 

October 2003. 

Lake Chapala has a shallow depth allowing high variations in surface area between months to 

occur. By 2003 Lake Chapala had reduced water volume to circa 20% of its capacity [45]. Between 

May 2003 and October 2003 heavy rainfall substantially increased the water volume in Lake Chapala. 

The sharp increase in surface area between May 2003 and October 2003 seen in Figure 8 is shown 

by Landsat-7 false colour composites in Figure 9. 

5.3 Climate Variability Impacts 

The cause of surface area variations was investigated through correlating surface area variation 

with evaporation and precipitation. The cross-correlation (determined between -1.0 and +1.0) 

between discrete-time series was calculated to measure maximum similarity at a lagged position.  
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5.3.1 Lake Mead Region 

For the Lake Mead region, the correlation coefficient between evaporation and surface area was 

0.76. This shows a good agreement between the two time series over the study area. The monthly 

surface area was plotted with precipitation and evaporation from ERA5-Land monthly data to 

examine comparison with water surface area, precipitation and evaporation fluctuations in the Lake 

Mead region. Both evaporation and precipitation show negative downward trends. From 1979 to 

2019, from linear approximation, precipitation trends downward circa 0.2 mm per year. There was 

19% less precipitation and 13% less evaporation from 1999-to-2014 than from 1984-to-1999 which 

has contributed to the decline in water surface area shown in Figure 10. This shows that climate 

variabilities have the biggest contribution to the lake’s water change. A high correlation value 

between the surface area change and evaporation time series, as well as with precipitation (0.65) 

also indicate this. It is found that the water area changes and trends follow the evaporation and 

precipitation pattern demonstrating the major role of climate over the region.  

 

Figure 10 Showing the surface area precipitation and evaporation variations in the Lake 

Mead region. 

5.3.2 Lake Chapala 

For Lake Chapala, the correlation coefficient between evaporation and surface area was 0.86 and 

between evaporation and surface area was 0.62, which indicate that surface area variations largely 

follow the climate variability between 1993 and 2019. The monthly surface area was plotted with 

precipitation and evaporation from ERA5-Land monthly data to examine the reasons for water 

surface area fluctuations of Lake Chapala (Figure 11). The spikes in evaporation correspond to 

troughs in surface area which supports the strong numerical correlation, thus, the great impact of 

climate variability of the lake’s area changes. From linear approximation, precipitation trends 

downward circa 0.85 mm per year. However, the surface area of Lake Chapala does not reflect the 

negative trend in precipitation as shown in Figure 11. As explained, this can be explained by the 

impact of water management policies, especially after 2003 (cf. Section 5.2). Similar impacts can be 

observed prior to 2003, where a considerable negative trend in surface area changes is less 

pronounced in precipitation. Such an anthropogenic impact can clearly be seen after 2003 when the 

lake’s area increases significantly. The effect, however, declines over time from the better match 
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between the precipitation time series and that of surface area. It can also be seen that precipitation 

rises in 2009 and 2013 cause water area increases. Overall, it is found that in addition to the climate, 

anthropogenic impacts are also important players over Lake Chapala influencing its area on various 

occasions, e.g., before and after 2003. 

 

Figure 11 Showing the surface area precipitation and evaporation variations in Lake 

Chapala. 

5.4 Results Validation 

The surface area variation time series of the Lake Mead region and Lake Chapala was evaluated 

against hydrological time series data. To this end, independent time series data of water level and 

volume variations obtained from DAHITI were used. These observations were acquired at a monthly 

timescale. Correlation analysis was then applied to calculate correlation values. Gaps in the discrete 

hydrological time series data were again linearly interpolated.  

5.4.1 Lake Mead Region 

Correlation between the Lake Mead region surface area variations and Lake Mead volume 

variations (derived from DAHITI) was calculated for the period of 1984 to 2020. The correlation 

coefficient of the time series shown in Figure 12 for the Lake Mead region surface area variations 

(blue) with Lake Mead volume variations (orange) was 0.89. Note that this is the maximum 

calculated correlation value without the impact of lag between the two times series (lag calculated 

to ~ 1 month). The surface area variation of the Lake Mead region included Lake Mead and Lake 

Mohave, while the volume variation time series included only Lake Mead. Because lakes connected 

by the Colorado River tend to show mirrored volume variations, the peaks of water volume and 

surface area tend to correspond. It can be seen from Figure 12, between 1986 and 1990 the peaks 

of surface area variation occur after the volume variations, while between 2007 and 2010 the peaks 

coincide. Despite small differences between the two time series that are expected to arise from 

comparing two different study areas, the two time series achieved a high correlation of 0.89. This 

shows a good performance of the applied approach for calculating surface water areas. 
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Figure 12 Lake Mead region surface area variations (blue) and Lake Mead volume 

variations (orange). 

5.4.2 Lake Chapala 

Correlation between Lake Chapala surface area variations and Lake Chapala water depth 

variations were calculated separately for the periods of 2002 to 2010 and 2013 to 2020. This is due 

to the discrepancy in the water depth observations derived from DAHITI. The average correlation 

for the two periods of 2002 to 2010 and 2013 to 2020 was 0.97 (with ~ 1 month lag). The high 

correlation coefficient is consistent with variations of the two time series shown in Figure 13. Apart 

from one low water depth reading in December 2004, water depth readings show variations that 

closely resemble surface area variations. This further proves the accuracy of the applied 

methodology for measuring the variations of lakes’ surface area even at a small scale in the presence 

of images noises (cf. Section 4). 

 

Figure 13 Lake Chapala surface area variations (blue) and Lake Chapala depth variations 

as Global MSL (orange). 

6. Conclusion 

With satellite imagery providing long-term time series free of cost, there is an opportunity to 

calculate predictability metrics of water body surface area changes. From the analysis in this study, 
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both the Lake Mead region and Lake Chapala show large surface area variations between 1972 and 

2020. The methodology of water classification used in this study was shown to be successful with 

image enhancement. The time series of surface area variations for both sites were validated against 

independent time series data. The surface area variations determined in this study had an average 

0.92 correlation with the independent data used for validation. Using the generated water surface 

area time series, we were able to detect multiple trends and strong anomalies over the lakes. It was 

also found that climatological variability impacts were a significant cause for water surface area 

variations in both study areas. The data correlation of water surface area with evaporation and 

precipitation extracted meaningful information regarding the degree of predictability of water 

surface area changes. The water surface area variation quantified in this project can be used with 

water depth values to estimate water volume changes by Landsat-bathymetry-volume or altimetry-

Landsat-volume methods. Furthermore, with the new Sentinel-2 Earth observatory missions and 

future Landsat missions the temporal and spatial resolution of remote sensing data available will 

improve surface area estimations and allow for better study of water surface area variability on 

Earth.  

Author Contributions 

M. Khaki and H. Murray conceived the presented study. H. Murray acquired data and 

implemented the numerical analysis. M. Khaki assisted with the data and method. H. Murray 

prepared the initial draft of the manuscript, which was improved due to contributions of M. Khaki. 

Competing Interests 

The authors have declared that no competing interests exist. 

References 

1. Bates BC, Kundzewicz ZW, Wu SH, Palutikof J. Climate change and water: Technical Paper VI. 

Geneva, Switzerland: IPCC; 2008. Available from: https://archive.ipcc.ch/pdf/technical-

papers/climate-change-water-en.pdf. 

2. You QL, Min JZ, Kang SC, Pepin N. Poleward expansion of the tropical belt derived from upper 

tropospheric water vapour. Int J Climatol. 2015; 35: 2237-2242. 

3. Schwatke C, Scherer D, Dettmering D. Automated extraction of consistent time-variable water 

surfaces of lakes and reservoirs based on landsat and sentinel-2. Remote Sens. 2019; 11: 1010. 

4. The distribution of water on, in, and above the Earth [Internet]. Reston, Virginia: USGS; 2020 

[cited 2020 March 12]. Available from: https://www.usgs.gov/media/images/distribution-

water-and-above-earth-0. 

5. Singh A, Seitz F, Eicker A, Güntner A. Water budget analysis within the surrounding of prominent 

lakes and reservoirs from multi-sensor earth observation data and hydrological models: Case 

studies of the Aral Sea and Lake Mead. Remote Sens. 2016; 8: 953. 

6. Liu Y, Yue H. Estimating the fluctuation of Lake Hulun, China, during 1975-2015 from satellite 

altimetry data. Environ Monit Assess. 2017; 189: 630. 

https://archive.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf
https://archive.ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf
https://www.usgs.gov/media/images/distribution-water-and-above-earth-0
https://www.usgs.gov/media/images/distribution-water-and-above-earth-0


Adv Environ Eng Res 2021; 2(3), doi:10.21926/aeer.2103019 

 

Page 17/19 

7. Gebrehiwot KA, Bedie AF, Gebrewahid MG, Hishe BK. Analysis of surface area fluctuation of the 

Haramaya Lake using remote sensing data. Momona Ethiopian J Sci. 2019; 11. doi: 

10.4314/mejs.v11i1.9. 

8. Shiklomanov AI, Lammers RB, Vörösmarty CJ. Widespread decline in hydrological monitoring 

threatens pan‐Arctic research. EOS Trans Am Geophys Union. 2002; 83: 13-17. 

9. Anyah RO, Forootan E, Awange JL, Khaki M. Understanding linkages between global climate 

indices and terrestrial water storage changes over Africa using GRACE products. Sci Total 

Environ. 2018; 635: 1405-1416. 

10. Awange J, Hu KX, Khaki M. The newly merged satellite remotely sensed, gauge and reanalysis-

based multi-source weighted-ensemble precipitation: Evaluation over Australia and Africa 

(1981–2016). Sci Total Environ. 2019; 670: 448-465. 

11. Khaki M, Franssen HJ, Han S. Multi-mission satellite remote sensing data for improving land 

hydrological models via data assimilation. Sci Rep. 2020; 10: 1-23. 

12. Verpoorter C, Kutser T, Seekell DA, Tranvik LJ. A global inventory of lakes based on high‐

resolution satellite imagery. Geophys Res Lett. 2014; 41: 6396-6402. 

13. Khaki M, Forootan E, Sharifi MA, Awange J, Kuhn M. Improved gravity anomaly fields from 

retracked multimission satellite radar altimetry observations over the Persian Gulf and the 

Caspian Sea. Geophys J Int. 2015; 202: 1522-1534. 

14. Sichangi AW, Makokha GO. Monitoring water depth, surface area and volume changes in Lake 

Victoria: Integrating the bathymetry map and remote sensing data during 1993-2016. Model 

Earth Syst Environ. 2017; 3: 533-538. 

15. Zheng WZ, Zhan XW, Liu JC, Ek M. A preliminary assessment of the impact of assimilating 

satellite soil moisture data products on NCEP Global Forecast System. Adv Meteorol. 2018; 2018. 

doi: 10.1155/2018/7363194. 

16. Awange J, Sharifi M, Baur O, Keller W, Featherstone W, Kuhn M. GRACE hydrological monitoring 

of Australia: Current limitations and future prospects. J Spat Sci. 2009; 54: 23-36. 

17. Lettenmaier DP, Alsdorf D, Dozier J, Huffman GJ, Pan M, Wood EF. Inroads of remote sensing 

into hydrologic science during the WRR era. Water Resour Res. 2015; 51: 7309-7342. 

18. Sheffield J, Wood EF, Pan M, Beck H, Coccia G, Serrat‐Capdevila A, et al. Satellite remote sensing 

for water resources management: Potential for supporting sustainable development in data‐

poor regions. Water Resour Res. 2018; 54: 9724-9758. 

19. Khaki M, Hoteit I, Kuhn M, Forootan E, Awange J. Assessing data assimilation frameworks for 

using multi-mission satellite products in a hydrological context. Sci Total Environ. 2019; 647: 

1031-1043. 

20. Li XH, Feng RT, Guan XB, Shen HF, Zhang LP. Remote sensing image mosaicking: Achievements 

and challenges. IEEE Geosci Remote Sens Mag. 2019; 7: 8-22. 

21. Li XH, Wang LY, Cheng Q, Wu PH, Gan WX, Fang LN. Cloud removal in remote sensing images 

using nonnegative matrix factorization and error correction. ISPRS J Photogramm Remote Sens. 

2019; 148: 103-113. 

22. A landsat milestone: One hundred million downloads [Internet]. Reston, Virginia: USGS; 2020 

[cited 2020 March 10]. Available from: https://www.usgs.gov/center-news/a-landsat-

milestone-one-hundred-million-downloads?qt-news_science_products=1-qt-

news_science_products. 

https://www.usgs.gov/center-news/a-landsat-milestone-one-hundred-million-downloads?qt-news_science_products=1-qt-news_science_products
https://www.usgs.gov/center-news/a-landsat-milestone-one-hundred-million-downloads?qt-news_science_products=1-qt-news_science_products
https://www.usgs.gov/center-news/a-landsat-milestone-one-hundred-million-downloads?qt-news_science_products=1-qt-news_science_products


Adv Environ Eng Res 2021; 2(3), doi:10.21926/aeer.2103019 

 

Page 18/19 

23. Zeinelabdeina KA, Albiely AI. Ratio image processing techniques: A prospecting tool for mineral 

deposits, Red Sea Hills, NE Sudan. Int Arch Photogramm Remote Sens Spat Inf Sci. 2008; 37: 

1295-1298. 

24. Ding F. Study on information extraction of water body with a new water index (NWI). Sci Surv 

Mapp. 2009; 34: 155-157. 

25. Ali E, Khidir SE, Babikir IA, Abdelrahman EM. Landsat ETM+ 7 digital image processing 

techniques for lithological and structural lineament enhancement: Case study around Abidiya 

Area, Sudan. Open Remote Sens J. 2012; 5: 83-89. 

26. Candra DS, Phinn S, Scarth P. Cloud and cloud shadow removal of landsat 8 images using 

Multitemporal Cloud Removal method. Proceedings of the 6th International Conference On 

Agro-Geoinformatics; 2017 August 7-10; Fairfax, VA, USA. New York: IEEE. 

27. Mwaniki M, Kuria DN, Boitt M, Ngigi T. Image enhancements of Landsat 8 (OLI) and SAR data 

for preliminary landslide identification and mapping applied to the central region of Kenya. 

Geomorphology. 2017; 282: 162-175. 

28. Li HY, Mao DH, Li XY, Wang ZM, Wang CZ. Monitoring 40-year lake area changes of the Qaidam 

Basin, Tibetan Plateau, using Landsat time series. Remote Sens. 2019; 11: 343. 

29. Yuan YT, Fang FM, Zhang GX. Superpixel-based seamless image stitching for UAV images. IEEE 

Trans Geosci Remote Sens. 2021; 59: 1565-1576. 

30. Gao BC. NDWI—A normalized difference water index for remote sensing of vegetation liquid 

water from space. Remote Sens Environ. 1996; 58: 257-266. 

31. Xu HQ. Modification of normalised difference water index (NDWI) to enhance open water 

features in remotely sensed imagery. Int J Remote Sens. 2006; 27: 3025-3033. 

32. Holdren GC, Turner K. Characteristics of lake mead, Arizona–Nevada. Lake Reserv Manag. 2010; 

26: 230-239. 

33. Beaver JR, Kirsch JE, Tausz CE, Samples EE, Renicker TR, Scotese KC, et al. Long-term trends in 

seasonal plankton dynamics in Lake Mead (Nevada-Arizona, USA) and implications for climate 

change. Hydrobiologia. 2018; 822: 85-109. 

34. Rosen MR, Turner K, Goodbred SL, Miller JM. A synthesis of aquatic science for management of 

Lakes Mead and Mohave. Reston, VA, USA: US Geological Survey; 2012; 1381. 

35. Avalos-cueva D, Filonov A, Tereshchenko I, Monzón CO, Velázquez-muñoz FÁ. Thermal 

structure and circulation in Lake Chapala, Mexico. J Limnol. 2016; 75: 137-143. 

36. Cueva DA, Monzón CO, Filonov A, Tereshchenko I, Covarrubias PL, González JR. Natural 

frequencies of seiches in Lake Chapala. Sci Rep. 2019; 9: 1-11. 

37. Bryant R, Moran MS, McElroy S, Holifield C, Thome K, Miura T. Data continuity of Landsat-4 TM, 

Landsat-5 TM, Landsat-7 ETM+, and Advanced Land Imager (ALI) sensors. Proceedings of the 

IEEE International Geoscience and Remote Sensing Symposium; 2002 June 24-28; Toronto, ON, 

Canada. 

38. Landsat satellite missions [Internet]. Reston, Virginia: USGS; 2020 [cited 2020 June 19]. 

Available from: https://www.usgs.gov/land-resources/nli/landsat/landsat-satellite-

missions?qt-science_support_page_related_con=2-qt-science_support_page_related_con. 

39. Schwatke C, Dettmering D, Seitz F. Volume variations of small inland water bodies from a 

combination of satellite altimetry and optical imagery. Remote Sens. 2020; 12: 1606. 

40. Bhagwat T, Klein I, Huth J, Leinenkugel P. Volumetric analysis of reservoirs in drought-prone 

areas using remote sensing products. Remote Sens. 2019; 11: 1974. 

https://www.usgs.gov/land-resources/nli/landsat/landsat-satellite-missions?qt-science_support_page_related_con=2-qt-science_support_page_related_con
https://www.usgs.gov/land-resources/nli/landsat/landsat-satellite-missions?qt-science_support_page_related_con=2-qt-science_support_page_related_con


Adv Environ Eng Res 2021; 2(3), doi:10.21926/aeer.2103019 

 

Page 19/19 

41. Schwatke C, Dettmering D, Bosch W, Seitz F. DAHITI–an innovative approach for estimating 

water level time series over inland waters using multi-mission satellite altimetry. Hydrol Earth 

Syst Sci. 2015; 19: 4345-4364. 

42. Object detection in a cluttered scene using point feature matching [Internet]. Natick, 

Massachusetts, USA: MathWorks; 2020 [cited 2020 March 23]. Available from: 

https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-

using-point-feature-matching.html. 

43. Stoica P, Moses RL. Spectral analysis of signals. Upper Saddle River, NJ: Prentice Hall; 2005. 

44. World of change: Water level in lake powell [Internet]. NASA Earth Observations; 2020 [cited 

2020 June 15]. Available from: https://earthobservatory.nasa.gov/world-of-

change/LakePowell. 

45. Molden D. Water for food, water for life: A comprehensive assessment of water management 

in agriculture. London, UK: Earthscan; 2007. 

 

 

Enjoy AEER by:  

1. Submitting a manuscript  

2. Joining in volunteer reviewer bank 

3. Joining Editorial Board 

4. Guest editing a special issue 

 

For more details, please visit:  

http://www.lidsen.com/journals/aeer 

 

AEER 

 

https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html
https://www.mathworks.com/help/vision/examples/object-detection-in-a-cluttered-scene-using-point-feature-matching.html
https://earthobservatory.nasa.gov/world-of-change/LakePowell
https://earthobservatory.nasa.gov/world-of-change/LakePowell
http://www.lidsen.com/account-login
mailto:aeer@lidsen.com
mailto:aeer@lidsen.com
http://www.lidsen.com/journals/aeer/aeer-editorial-board
http://www.lidsen.com/journals/aeer/aeer-editorial-board
http://www.lidsen.com/journals/aeer/aeer-special-issues
http://www.lidsen.com/journals/aeer/aeer-special-issues
http://www.lidsen.com/journals/aeer
http://lidsen.com/journals/aeer

