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Abstract 

Gaseous elemental mercury (GEM) was monitored in the atmosphere of a coastal site situated 

in the Northern Aegean Sea of Greece from August 2014 to January 2015. The selected 

sampling site is seldom impacted by human activities. Thus, it was possible to study the 

processes involved in natural terrestrial, aquatic, and atmospheric environments. The diurnal 

and monthly variations in the concentration of GEM as well as the factors influencing these 

variations were determined. The GEM concentrations were found to be in the range from 0.63 

to 4.44 ng m–3 during data acquisition. The mean GEM concentration was about 1.04 ±0.30 

ng m–3. Higher concentrations and variability were observed during the summer than in fall 

and winter. In addition, increased GEM concentrations were measured during midday. The 

diurnal and monthly variations in GEM were possibly affected by solar radiation, temperature, 

vegetation, and boundary layer height. Various peaks were observed for air masses of 

terrestrial origin, possibly due to the small extent of biomass burning as well as rainfall. The 

background concentrations of GEM in the studied coastal site were around 1.50 ng m–3. The 

sampling site is a complex environment as this coastal region has seasonal surface water in 

the mainland and extended areas of grassland and vegetated surfaces. All individual 

parameters of this area play significant roles in determining GEM concentrations. 
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1. Introduction 

Mercury is primarily found in two inorganic forms in the atmosphere, namely gaseous elemental 

mercury (Hg0 or GEM) and  reactive gaseous mercury (Hg2+ or RGM) such as HgO, HgCl2, HgBr2, and 

Hg(OH)2 [1]. Small concentrations of mercury exist in organic form in the atmosphere (e.g., 

monomethylmercury salts, and other organometallic complexes). Elemental mercury is the most 

abundant form of Hg (~95–99%) in the atmosphere [2], which has low reactivity, low solubility in 

water, and an atmospheric lifetime of ~1 year [3]. This form is mainly removed by its oxidation to 

Hg2+ ions. Thus, it can be transported over long distances. Hg2+ salts are less volatile than Hg0, exhibit 

solubility in water, lifetimes range from a few days to weeks [4], reactive, and are rapidly removable 

via wet and dry deposition. 

Atmospheric mercury originates from natural sources, such as volcanoes and evaporation from 

aquatic surfaces, in addition to anthropogenic sources, such as fossil fuel combustion, cement 

production, waste incineration, and other industrial processes [5, 6]. Forest fires and re-emission 

from land and surface water are also important sources of Hg. Elemental mercury is emitted from 

anthropogenic sources as well as natural surfaces [7]. Each of the primary sources, namely direct 

anthropogenic sources, natural sources, and re-emission of previously deposited anthropogenic 

emissions, contribute to about one-third of Hg in the atmosphere but with considerable 

uncertainties [8]. The concentration of atmospheric oxidized mercury is mainly attributed to the 

oxidation of elemental mercury and emission from anthropogenic sources to a limited extent [9]. 

The oceans are a source as well as a sink for atmospheric mercury in the context of global mercury 

cycling [10]. About 89% of the ocean emissions result from the re-emission of the previously 

deposited mercury in the ocean [10]. The emission of elemental mercury from surface water is 

affected by the solar radiation and temperature gradient in the air–water interface [11]. The 

increased solar radiation and temperature raise the evasion flux from water to the atmosphere [11]. 

In the previous studies conducted by the group on the biogeochemical cycles of Hg [12-16], a 

novel method for its environmental speciation was introduced [17-19]. The mercury cycle includes 

rapid oxidation of Hg0 to Hg2+ and Hg+ intermediates and their deposition on the oceans and 

biosphere. This is attributed to the more rapid deposition of oxidized mercury compared to 

elemental mercury [20]. The cycle also involves the photochemical reduction of dissolved Hg2+ to its 

elemental form and the subsequent removal through volatilization [21]. The oxidation of elemental 

mercury by bromine, acting as the main oxidant, and other oxidants, such as chlorine, O3, and OH, 

to oxidized mercury is the primary process that occurs in the marine boundary layer, polar regions, 

and coastal areas [4, 20, 22]. The seawater reduction of Hg2+ to Hg0 can also be the result of biotic 

transformations [23]. A part of Hg2+ is methylated and accumulated in the food chain [24] but also 

further demethylated to Hg0 [25]. 

In the present study, the atmospheric concentrations of gaseous elemental mercury in a coastal 

site in Northern Greece were determined. The main objectives of this study were (a) to determine 
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the diurnal and monthly variations in GEM and (b) to explore the factors influencing these variations. 

In this study, the elemental mercury concentrations alone were determined using the employed 

instrumentation. To date, there are no other experimental investigations on the ambient mercury 

concentrations in the atmosphere of Greece, except for a study on the mercury emissions from a 

Greek volcanic area [26]. 

2. Materials and Methods 

2.1 Site Description 

The measurements were taken from August 1, 2014, to November 9, 2014, and January 12–21 

2015 in the coastal area of Northeastern Greece (40°53'22.47"N, 24°51'0.43"E) as shown in Figure 

1a. The distance between the sampling site and coast was about 200 meters. The sampling site had 

a window toward the sea in the range of 50° to 180°. The city of Xanthi, having 70,000 inhabitants, 

is situated in the North at a distance of 30 km, and the delta of Nestos River is situated in the West 

at a distance of 5 km. The larger part of the sampling site within a radius of 1 km consisted of 

grassland, which turns into a coastal wetland during winter. Furthermore, there are agricultural 

activities and minor industrial areas within a radius of 30 km. 

 

Figure 1 a) Google map illustrating the position of the sampling site among the larger 

part of Europe. b) Google map illustrating the sampling site surrounded by the four 

0.205° x ~0.204° grid points (A, B, C, D) whose planetary boundary layer heights (in 

meters) were obtained, and the HNMS meteorological station. The coordinates of the 

grid points are (A) lat 40.988 N and long 24.75 E, (B) lat 40.988 N and long 24.95 E, (C) 

lat 40.784 N and long 24.75 E, (D) lat 40.784 N and long 24.95 E. Our site was situated 

at lat 40.889 N and long 24.85 E. 
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The sampling area was part of a protected area (Natura 2000, SCI code: GR1150010) consisting 

mainly of Mediterranean salt meadows (Juncetalia maritimi), Mediterranean tall humid grasslands 

of Molinio-Holoschoenion with tall grasses and rushes, areas covered with various plant species, 

coastal lagoons, and dunes. The average vegetation height in the extended sampling area was about 

2 m. The normalized difference vegetation index (NDVI) of the sampling site is presented in [27], 

ranging from 0.4 to 0.7 for the selected sampling period. 

The Aegean Sea is a semi-closed marine system as it is situated in the Eastern Mediterranean 

basin. The coastal waters of the North Aegean Sea tend to accumulate the pollutants originating 

from the Black Sea waters, especially during summer and autumn, according to the numerical 

models on the dispersion and accumulation of pollutants from the Black Sea [28]. In addition, two 

main rivers discharge to the Thracian Sea, namely the Evros River in the East at a distance of about 

100 km from the sampling site and the Nestos River 5 km due West. These rivers have their sources 

in Bulgaria. The Thracian Sea may be influenced by the natural and anthropogenic load of Hg carried 

by the two rivers although two earlier studies confirmed that they do not carry a large mercury load 

[29, 30]. 

2.2 Sampling Instrumentation 

In the sampling site, a Tekran 2537B Mercury Vapor Analyzer (Tekran, Inc., Toronto, ON, Canada) 

was employed to continuously measure the GEM concentration. A six-meter long Kynar® 

polyvinylidene fluoride (PVDF) tubing with 1/4" I.D. and 3/8" O.D. was used for sampling purposes, 

and the sampling inlet was placed at a height of 5 m. The trapped mercury was adsorbed by two 

gold cartridges. The role of these two cartridges was reversed during sampling/adsorption processes 

and thermal desorption/analysis. Cold vapor atomic fluorescence spectrometry (CVAFS) was used 

to detect Hg0. This method detects quantities in the range from 0.10 to 2000 ng m–3. The sample 

inlet filter, a Teflon filter membrane (0.20 µm, 47 mm diameter), which was used to prevent the 

entry from particulate matters into the measuring system was changed according to the 

maintenance instructions. The selected sampling time was 10 min at a sampling flow rate of 1 L min–

1. The detection limit was estimated to be ~0.10 ng m–3 [31]. The mercury analyzer attached to the 

sampling tubing was calibrated externally using the lab-constructed Calibration Gas Generator and 

a mercury permeation tube (VICI Metronics, Inc., Poulsbo, WA, USA). 

The meteorological data, such as temperature, humidity, wind velocity, wind direction, and 

barometric pressure, were measured at 1 Hz in the same site, as described in the previous studies 

[27, 32]. The additional meteorological data were provided by the Hellenic National Meteorological 

Service (HNMS). The nearest station (Figure 1b) is located at the Kavala airport of Chrysoupoli 

(40°54'47.90"N, 24°37'09.20"E) at a distance of about 20 km from the sampling site. The HNMS 

station provided data on wind velocity, wind direction, temperature, humidity, barometric pressure, 

visibility, total cloudiness, precipitation, and hours of sunlight in the region. 

2.3 Back Trajectory Modeling 

The air mass backward trajectories were computed using the NOAA Hybrid Single-Particle 

Lagrangian Integrated Trajectory model [33,34] based on the Global Data Assimilation System 

(GDAS) meteorological data (archived from 2006 to present). The trajectories were initialized every 

6 h at the starting heights of 100, 500, and 1500 m. The starting location of the back trajectories 
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was the sampling site. The start time of each back trajectory was selected according to the processes 

undergone by GEM. The back trajectories were used to identify the origin of the air masses in each 

peak episode, no peak episode, and minimum concentration events. 

2.4 Planetary Boundary Layer Height 

The data for the Planetary Boundary Layer (PBL) height were obtained using the NCEP Climate 

Forecast System Version 2 (CFSv2) [35] and treated with Matlab (MATLAB and Statistics Toolbox 

Release 2010b, The MathWorks, Inc., Natick, MA, USA). The selected grid was 0.205° x ~0.204° to 

produce the gridded products in a 1h forecast. The vertical level was defined above the ground or 

water surface. Four closest grid points were selected (Figure 1b), which surround the sampling site. 

3. Results and Discussion 

3.1 Summary of GEM Concentrations 

The measurements of GEM concentrations were performed in a coastal area impacted by human 

activities only to a small extent. The sampling was conducted from August to November 2014 and 

January 2015, with a total of 14,907 GEM concentration values. In this study, the GEM 

concentrations ranged from 0.63 to 4.44 ng m–3 during the whole period of measurement with a 

mean concentration of 1.04 ±0.30 ng m–3. The highest concentration was measured during a night 

in summer with rain and a wind velocity of 12 m s–1. The lowest concentration was measured during 

one of the nights in October. The mean concentration of the sampling period is not a typical annual 

mean value as there had been no data for a whole year. The statistics of GEM concentrations and 

other meteorological parameters for all data are presented in Table 1. The time series of daily mean 

GEM concentration is presented in Figure 2, and the time series with hourly mean and maximum 

concentrations of each hour is given in Figure S1. 

Table 1 Statistics of the gaseous elemental mercury (GEM) concentrations and other 

meteorological parameters. 

Time Period 
 

Statistical Parameters of GEM 

in ng m−3 

Meteorological Parameters 

Month na Mean ±Std Median Min Max WVb 

(m s−1) 

Temp.c 

(°C) 

RHd 

(%) 

August 2014 4205 1.38 ±0.35 1.31 0.99 4.44 2.30 ± 

0.51 

24.73 ± 

1.50 

69.04 ± 

9.27 

September 2014 3828 0.92 ±0.13 0.89 0.67 2.73 2.22 ± 

0.38 

19.91 ± 

3.03 

71.72 ± 

10.33 

October 2014 4376 0.88 ±0.11 0.86 0.63 1.73 2.66 ± 

1.42 

15.26 ± 

3.15 

76.51 ± 

10.73 

November 2014 1213 0.94 ±0.10 0.92 0.73 1.53 1.67 ± 

0.49 

11.85 ± 

2.04 

81.62 ± 

9.83 

January 2015 1285 0.98 ±0.07 0.97 0.76 1.78 1.86 ± 

0.49 

5.88 ± 

2.59 

82.15 ± 

11.35 
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all data 14907 1.04 ±0.30 0.95  
    

an: number of determinations, bWV: wind velocity, cTemp.: ambient temperature, dRH: 

relative humidity. 

 

Figure 2 Time series of (a) the daily mean gaseous elemental mercury (GEM) 

concentrations, minimum and maximum GEM concentrations of each day, (b) 

temperature and relative humidity, (c) barometric pressure and hours of sunlight per 

day, and (d) wind velocity, along with rainy events during the months of measurements. 

The level of GEM concentrations in the atmosphere may be primarily affected by the local 

emissions and not as much by the advection from other areas. In this case, there were no 

surrounding continental intensive and permanent emission sources in the sampling area, and no 

strong influence from coal combustion that offers remarkably high anthropogenic mercury 

emissions but only a few episodes, as discussed in Section 3.4. We considered as natural background 

GEM concentrations those values which remain at lowest level for a long duration, such as a whole 

day or days. In this study, days with constant low concentration, showing no fluctuations until the 

end of the day, were recorded. In August, all concentrations during the days and nights were greater 

than 1 ng m–3, whereas the concentrations were either below or greater than 1 ng m–3 for other 

months. The air masses with low GEM levels originated either from the sea or land. As the wind 

originates from the sea, the GEM concentrations were less than 1.50 ng m–3. For the coastal 

environment in the sampling area, the background concentrations were determined in the range of 

0.63 to 1.50 ng m–3.  
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3.2 Other Studies in Literature 

According to [36], the annual median concentrations of TGM are higher in the Northern 

Hemisphere (between ∼1.40 and 1.80 ng m–3) than in the Southern Hemisphere (from ∼0.80 to 

1.40 ng m–3). In the Mediterranean area, total gaseous mercury concentrations varied between 1.30 

and 2.40 ng m–3 according to [37], and the higher values were the result of the influence of major 

sources. According to another study, the TGM average values extended from 0.80 to 8.71 ng m–3 at 

the coastal sites in the Mediterranean, and the overwater TGM values ranged from 0.2 to 15.7 ng 

m–3 in the Eastern Mediterranean and from 0.1 to 32 ng m–3 in the Western Mediterranean during 

the Mediterranean cruises, with seasonal variations arising from minimum values during the winter 

and maximum values during the summer [38]. This seasonality is the opposite of that observed in 

Northern Europe and results from the meteorological and climatic conditions that dominate the 

Mediterranean Basin (i.e., warmer climate, high temperature, and strong solar radiation). In 

addition, the measurement sites in the literature are limited. Also, the previous studies in the 

literature were mainly focused on contaminated areas [39]. 

An example of the low levels of GEM concentration was presented in [40], where monthly 

median TGM concentrations in the Kejimkujik National Park and National Historic Site (Nova Scotia, 

Canada) were below or around 1 ng m–3 for a few months during 2000–2009, although the mean 

TGM concentration was 1.38 ±0.33 ng m–3 for all these years despite high concentrations of 

methylmercury observed in this area. The monthly median GEM concentrations were measured to 

be around or below 1 ng m–3 in the U.S. and Canada as well, which was reported in [41]. Various 

cases of monthly mean GEM concentrations around or below 1 ng m–3 due to the vegetation uptake 

in the European, North American, and Asian monitoring sites are summarized in [42]. 

3.3 Diurnal and Monthly Variations in GEM Concentrations: The Contributing Factors 

3.3.1 Diurnal Cycles 

The GEM concentration was found to be higher around midday (Figure 3), mostly in August and 

to a smaller extent in September and October for a short time. This result was also reported by other 

studies [43]. The main factors that affect the increased levels of GEM concentration around midday 

are the enhanced ambient temperature and solar radiation during the day that prevail especially 

during August, and enhance the release of Hg0 from surface water [11]. The enhanced evasion is 

linked to the increased photoreduction and biological activity [44]. The diurnal patterns of 

temperature and wind velocity (Figure 3) predominantly during August follow similar variations as 

that of GEM concentrations. The correlation of the August GEM concentrations with ambient 

temperature was strong, as shown in Table S1. In addition, the correlation with wind velocity was 

moderate and with relative humidity was negative and also significant. According to the literature 

the seawater-to-air mercury vapor transfer is facilitated by the strong water-to-air temperature 

gradient and moderate wind speed [45]. It is obvious in Table S1 that the effects of wind velocity, 

temperature, and relative humidity on the diurnal concentration variation of August are significant. 

This unique pattern was not observed in any of the other months. It is worth mentioning that 

November and January seemed to have similar patterns in their diurnal concentration variations, 

which showed a moderate negative correlation of GEM concentrations with temperature and 

moderate positive correlation with relative humidity. According to [44], factors such as surface and 
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local emissions, Hg photochemistry, boundary layer dynamics, dry deposition, and sequestering by 

dew affect the diurnal patterns. 

 

Figure 3 Plots for the diurnal variations in (a) gaseous elemental mercury (GEM) 

concentrations, (b) temperature, (c) relative humidity, and (d) wind velocity. 

3.3.2 Monthly Variations 

A high level of GEM concentration was observed during August 2014, whereas a lower level was 

found during September, October, November 2014, and January 2015, which are in agreement with 

the patterns observed in other western Mediterranean sites [46]. This is mainly explained by the 

high solar radiation, humidity, and temperature in the Mediterranean Basin during summer, 

resulting in higher emission of Hg from the sea surface [37]. During summer, the depth of the 

thermocline and temperature gradient in the surface water increased from the Western to the 

Eastern Basin of the Mediterranean [37]. The high water temperature may affect the biotic and 

abiotic processes that contribute to the evasion of Hg to the atmosphere [11]. In addition, the 

release of Hg0 from the surface water is facilitated by solar radiation [11]. According to [45], the 

coastal waters and especially shallow waters act as significant sources of gaseous mercury during 

summer. The vegetated surfaces may also contribute to the variations, as discussed further in 3.3.4. 

3.3.3 The Role of the Coastal Area 

The photochemical gas-phase oxidation of Hg0 to HgII affects the level of GEM concentration. The 

Ο3 concentrations in the Mediterranean coastal areas are higher during summer than winter, 

causing a strong atmospheric oxidative potential. Additionally, according to the literature Hg0 is 

oxidized by bromine (Br) to form HgII, and this oxidation rate decreases with higher air temperatures 
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[47], increasing the GEM during summer. The atomic bromine (Br) from the marine organobromine 

compounds emitted by phytoplankton is the main atmospheric Hg0 oxidant that contributes to 97% 

of total oxidation, resulting in a chemical lifetime of 2.7 months for the tropospheric Hg0 against 

oxidation [48]. The fact that there was no obvious decrease in GEM during summer was further 

explained by the simultaneous evasion of Hg by the surface water to a greater extent than the 

deposition or transfer of Hg with the air masses. It is a fact that the total evasion of Hg in the 

Mediterranean Basin is far greater than the total deposition [49]. All photochemical processes of 

gas-phase oxidation and evasion of GEM from the surface water probably enhanced the GEM 

concentration in the coastal area, mainly during the summer, but keeping the GEM concentration 

at low levels during the other months. 

3.3.4 The Role of Vegetation 

Another factor that can strongly affect both the diurnal and seasonal variations in GEM is the 

vegetation. Enhanced diurnal GEM concentration variation was observed for high vegetation 

photosynthetic activity [42]. A possible reason for the increase in GEM concentration during midday 

could be attributed to the enhanced daytime photochemical Hg0 re-emission from the foliage and 

soils under the presence of solar radiation and other influencing parameters, such as soil water 

content, temperature, atmospheric oxidants, and atmospheric Hg concentrations [50]. 

Grassland covers a major portion of the sampling site (see Section 2.1), which is largely covered 

by vegetated surfaces. The characteristics of the sampling area change during autumn and winter 

as a part of the grassland is flooded with brackish water resulting in a coastal wetland. These 

characteristics of the sampling site may play a key role in determining the GEM concentration and 

its monthly variation. Low GEM concentration was observed during autumn and winter. According 

to the literature the dry deposition of GEM on vegetated surfaces and wetlands is stronger and more 

significant than that over non-vegetated surfaces (e.g., bare soil) and water bodies that are very low, 

suggesting that the vegetation acts as a sink for atmospheric GEM [51]. In the same previously 

mentioned study, it is also noted that the ecosystem is one of the largest sinks for atmospheric Hg, 

as the uptake of GEM through the stomata of the plant leaves is significant, although less known as 

a contributing process [52]. In [53], it is emphasized that Juncus maritimus, which abundantly exists 

in the sampling area, acts as a sink, even in the case of a mercury-contaminated salt marsh. 

3.3.5 Temperature, Duration of Sunlight, and Humidity 

The calculation of the Pearson correlation coefficients (r) between GEM concentrations and 

meteorological parameters showed a moderate linear relationship with the temperature equal to 

0.53 (p=0) and a minor correlation with the duration of sunlight equivalent to 0.28 (p=0.0046). The 

low correlation between the GEM concentration and duration of sunlight does not exactly mean 

that the contribution of the sun is negligible. The GEM concentrations were high during cloudy days 

corresponding to low boundary layer height. During August, the sunny days and hours were more 

than in the other months. Combined with the high temperatures reported throughout August, it 

may explain the increased GEM concentration. The solar radiation and temperature contributed to 

the enhanced GEM concentration as the air masses originated either from the sea or the vegetated 

surfaces but did not exhibit any peaks. 
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On the arrival of September, the hours of sunlight decreased remarkably, and the temperature, 

as well as the GEM concentrations, decreased, as seen from Figure 2. Furthermore, the relative 

humidity increased from summer to winter. The presence of water in the atmosphere may facilitate 

the oxidation of Hg0 [4, 54] and, therefore, the removal of mercury from the atmosphere, in addition 

to the unfavorable circumstances for the evasion of mercury from the water surface, such as strong 

solar radiation and high temperature. According to [51], low O3 concentration and high relative 

humidity (RH) may enhance the uptake of GEM by foliage, especially at night. 

3.3.6 Boundary Layer Height 

The diurnal and seasonal variations in GEM appear to be influenced by the boundary layer 

processes, and so far, the studies reported different patterns for the diurnal variation [55]. As seen 

from Figure 4, the terrestrial boundary layer height decreased with months until the lowest level 

was attained in January. The increased solar radiation, mainly during summer, enhances the 

turbulence and increases the depth of the boundary layer. The lowest nocturnal heights were 

observed during November and January. The marine boundary layer (MBL) height was increased in 

September and its lowest level was noticed in August and January. According to the literature, there 

is a difference in the boundary layer heights in the coastal sites, where the land meet the water 

surfaces and the transition zone between the different boundary layers is complicated [56]. In 

addition, in the same previously mentioned study, the atmospheric phenomenon of the Iand–sea 

breeze system influences the coastal circulation and mixing, which, in turn, affects the diurnal 

variation in GEM concentration [56]. 
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Figure 4 Diurnal mean variations in the Boundary Layer Height of each month for the 

four grid points indicated in Figure 1b and their averages. 
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The MBL height was predominantly low in the range of 100 to 200 m during midday 

corresponding to elevated GEM concentration. In these mentioned cases with increased 

concentration during midday, the boundary layer height above the ground for the midday duration 

was also low, with depth lower than this observed the other days. The concentration increased in a 

smaller volume of air over a shallow boundary layer. Low MBL heights were observed on the midday 

of August than any other months. The highest MBL heights were observed at the midday of 

September. The sharp change in the MBL from August to September may explain the decrease in 

the GEM concentration during these months.  

In the case of a shallow nocturnal planetary boundary layer (PBL) observed during the cold season, 

the transport of air masses and vertical mixing are limited, and the plant uptake of GEM contributes 

to its depletion. The role of vegetation described in Section 3.3.4 and the lower boundary layer 

height along with other contributing factors mentioned in previous paragraphs contribute to the 

low concentration observed during the cold season instead of summer. In contrast, the slightly 

higher concentration observed during November and January as opposed to October may be 

explained by the combination of low boundary layer height and domestic combustion for heating 

purposes, as mentioned in 3.4.3. This was more obvious as the concentration increased after 20:00 

(Figure 3a) under intense heating demands. In addition, the moderate negative correlation of 

diurnal variations between GEM concentrations and temperature reinforces the fact that the lower 

temperatures lead to domestic combustion for heating and subsequently to increased GEM 

concentrations. 

3.4 Factors Affecting the Maximum GEM Concentrations 

The possible factors that contribute to the occurrence of maximum concentrations are presented 

in the following sections. Most of the peaks of GEM concentration were observed in the absence of 

sunlight, with high cloudiness or rain, and in some cases at night. 

3.4.1 Wind Direction and Origin of Air Masses  

The meteorological conditions during the sampling periods are presented in Table 1 and Figure 

2. During the campaign, the prevailing wind direction was from the Northeast, i.e., the mainland. 

The back-trajectory analysis (Figures S2, S3, and S4) and rose plot in Figure 5 showed that the 

majority of high mercury concentrations were measured as the air masses originated from the land. 

The backward trajectories presented in Figures S2, S3, and S4 refer to the first three maximum GEM 

concentrations dated 1/8/2014, 2/8/2014, and 7/8/2014, respectively, which was the common 

pattern observed for high concentrations. The concentrations of these peaks were 3.49, 4.31, and 

4.44 ng m–3, respectively. The concentration corresponding to the second peak (4.31 ng m–3) was 

sampled under the rainfall of 79.2 mm and that of the third peak (4.44 ng m–3) was measured under 

the rainfall of 2.6 mm. High GEM concentrations were also observed as the air masses came from 

the sea and a habitable island, but only for a minor percentage of the cases.  



Adv Environ Eng Res 2021;2(2),doi:10.21926/obm.aeer.2102007 

 

Page13/19 

 

Figure 5 Gaseous elemental mercury (GEM) rose plot for GEM concentrations and the 

measurements of wind direction in the sampling site. The GEM concentrations are 

divided into the following classes: Blue for 0−1 ng m–3, green for 1–1.5 ng m−3, and 

yellow for concentrations greater than 1.5 ng m–3. 

3.4.2 Rain Events 

The rain events enhanced the mercury concentration, also contributing to a few peaks, as 

presented in Figure 2 and supported by Figure S1. This could be attributed to the GEM evasion from 

the soil. According to [57], the emission of mercury from the local anthropogenic sources are further 

removed by precipitation. In addition, the boundary layer height above the ground was lower than 

the marine boundary layer height during the rain events and periods corresponding to the observed 

peaks. In August, the two highest GEM concentrations were measured during the rainy days, where 

the air masses originated from the land (see Section 3.4.1 and Figures S2, S3, and S4). However, not 

all rain events contributing to the peaks corresponding to the air masses originating from the land. 

The emission of Hg0 from the soil was probably enhanced after the transition of the soil from the 

dry to the wet situation due to rain events [58, 59]. The GEM emissions from the soil were also 

facilitated by the incoming solar radiation and soil temperature [60]. 

3.4.3 Anthropogenic Emissions 

A few of the GEM concentration peaks occurred due to anthropogenic Hg emissions, such as fires 

on the beach in the summer and a small extent of biomass burning for agricultural land clearing in 

September and October. During the cold season, the GEM concentrations were slightly higher than 

those in September and October, probably due to domestic combustion for heating purposes in the 

nearby villages and cities, as seen in Figure 2 [61]. 
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4. Conclusions 

The strong diurnal and monthly variations in the GEM concentration were demonstrated and the 

possible contributing factors were investigated in this study. The main factors contributing to the 

increased levels of GEM concentration during midday, mainly in August, were the high temperature 

and strong solar radiation. The above parameters and other influencing conditions possibly 

enhanced the release of Hg0 from the surface water, vegetation, and soils. These processes and the 

elevated number of hours of sunlight in August compared to the other months further explained 

the increased GEM concentrations prevailing in summer. The difference in the level of GEM 

concentration between August and other months may be further explained by the boundary layer 

height. Furthermore, the Hg photochemistry in the coastal area and evasion of GEM from the 

surface water increased the GEM concentrations mainly during summer but reduced the GEM 

concentrations during the cold season. The GEM concentrations in the cold season were slightly 

higher than those in September and October, probably due to domestic combustion for heating 

purposes and shallow boundary layer. 

Solar radiation and temperature influence the enhanced level of GEM concentration, as the air 

masses originated either from the sea or vegetated surfaces but did not exhibit any peaks. Various 

GEM concentration peaks were observed for the air masses of terrestrial origin, which was 

attributed to anthropogenic emissions, such as biomass burning and rain. The air masses 

corresponding to low GEM concentrations were also found to originate either from the sea or land. 

The background concentrations in the selected sampling area were below 1.50 ng m–3. The low 

levels of GEM concentrations measured during the entire sampling period and especially during fall 

and winter, compared to those reported in the literature on the Mediterranean and Northern 

Hemisphere, are attributed to the low anthropogenic influence on the site, meteorological 

parameters, special characteristics of the site, and the role of the vegetated surfaces. 
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