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Abstract 

This article summarizes some surprising palladoreactions occurring in a transition metal 

environment, discovered by our team, and the proposed corresponding mechanisms. 
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мΦ LƴǘǊƻŘǳŎǘƛƻƴ 

My interest in palladium in organic chemistry came from the reading of the 1977 Trost review 

*1+ during my postdoctoral research in Corey’s laboratory. Back to my Alma matter in late 1978, I 

was looking for new research subjects. My knowledge in photochemistry, acquired during my 

doctoral thesis *2+, urged me to study the photoreactivity of η3-allylpalladium complexes. Having 

obtained 1,5-dienes from the UV light-mediated coupling of the allyl fragments in MeCN under the 

argon atmosphere *3+, I undertook the preparation of squalene from 9,9-farnesol *4+. This work led 
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to my first observation of the critical role of an unreactive remote ethylenic bond in a 

palladoreaction. This unexpected observation was an incident of serendipity − that is by 

accident *5+. 

These studies were the outcome of forty-year research largely focused on palladium in organic 

chemistry. The initial topic was chosen, as I, unfortunately, was not aware of older papers from 

Hojabri who only observed the decomposition of the η3-allylpalladium complex of b-pinene under 

UV irradiation in EtOH, without dimerization of the allyl ligands or effect of oxygen *6, 7+. Actually, 

we observed, under an oxygen atmosphere, the oxidation of the allyl moieties into conjugated 

carbonyl compounds *8, 9+ even in EtOH *10+. 

The above role of a remote ethylenic bond and other unexpected results due to the Pd 

environment, which we observed over the years, are the matter of this short review.  

нΦ wŜƳƻǘŜ 9ǘƘȅƭŜƴƛŎ .ƻƴŘ 

нΦм !ƭƭȅƭǇŀƭƭŀŘƛǳƳ LǎƻƳŜǊƛȊŀǘƛƻƴ  

Using the preparation procedure of bis(m-chloro)bis(η3-allyl)dipalladium complexes *11-13+, I 

treated 9,9-farnesyl chloride (м) with substoichiometric amounts of Pd2(dba)3
.CHCl3 in benzene at 

room temperature. Surprisingly, a 1:1 mixture of syn- and anti-η3-allylpalladium complexes1 нŀ and 

нō was isolated (Figure 1) *4+. Suspecting the possible role of one of the remote C=C bonds of м in 

the formation of the mixture, geranyl (о), neryl (п), and phytyl (р) chlorides were treated under the 

same conditions. A 1:1 mixture of сŀ and сō was obtained from о and п, while тŀ (тŀ/тō > 9)2 was 

selectively produced from р. RMN studies of the excess of allylic chlorides о and п recovered at the 

end of the reactions showed that they were not isomerized under the experimental conditions. 

Stirring the solution of тŀ with a large amount (≈1000 equiv.) of cyclohexene or 2-methylbut-2-ene 

led only to very poor isomerization at room temperature. Then, a 6:4 mixture of тŀ and тō was 

isolated from the reaction of р with Pd2(dba)3
.CHCl3 in the presence of 100 equiv. of 2-methylbut-

2-ene.  

 

CƛƎǳǊŜ м Allylic chlorides and corresponding η3-allylpalladium complexes. 

                                                           
1
 For the meaning of syn- and anti-η

3
-allylpalladium complexes, see [14, 15]. 

2
 Mistake in [4]: the 8a/8b value is > 9 instead of 0.9. In the present review, 7a and 7b correspond to 8a and 8b of the 

original paper. 
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According to the above experiments, the formation of the syn and anti mixtures is promoted by 

the intra- or intermolecular participation of an isolated C=C bond. Isomerization preceding the 

formation of the dimeric complex is suspected. This could occur via the η3-η1-η3 equilibrium of 

monomeric allylpalladium intermediates *16+ having an ethylenic bond as a ligand (Figure 2). 

 

CƛƎǳǊŜ н The η3-η1-η3 equilibrium. 

Subsequently, Åkermark‘s team rediscovered the formation of the isomeric η3-allylpalladium 

complex mixture from geranyl and neryl chlorides *17, 18+, while Rovis and Johnson provided an 

overview of olefins influencing the outcome of various reactions *19+. 

нΦн hȄƛŘŀǘƛƻƴ LƴƘƛōƛǘƛƻƴ 

In 1995, we disclosed the oxidation of alcohols using catalytic amounts of both PdCl2 and 

Adogen 4643 in 1,2-dichloroethane (DCE) containing sodium carbonate *20+. The insoluble 

palladium dichloride reacts with ammonium salt to yield the soluble palladium salt *PdCl4+
2- *21+, 

which further oxidizes the alcohol. The resulting reduced Pd species gets inserted into a C-Cl bond 

of DCE. Subsequent elimination of ethylene regenerates the active catalyst *20, 22+. Using the 

procedure for the lactonization of 1,4- and 1,5-diols, we surprisingly obtain the formation of lactol 

фǳŜȄƻ from Ŏƛǎ-ŜƴŘƻ-2,3-bis(hydroxymethyl)bicyclo*2.2.1+hept-5-ene (уǳ) although Ŏƛǎ-ŜƴŘƻ-2,3 

bis(hydroxymethyl)bicyclo*2.2.1+heptane (уǎ) provided lactone млǎ (Figure 3) *23, 24+. 

Furthermore, фǳŜȄƻ was almost unchanged under the same experimental conditions without 

production of млǳ, whereas the latter was effectively produced from фǳŜȄƻ using pyridinium 

dichromate in CH2Cl2 (Figure 3) *25, 26+ or by the Swern oxidation method *27+. Moreover, our Pd 

procedure led to the effective oxidation of lactol мм into the corresponding lactone *24+. 

                                                           
3
 Adogen 464 is a registered trademark of Ashland Chemical Co. for methyltrialkyl(C8-C10)ammonium chloride. 
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CƛƎǳǊŜ о Oxidation of уǳ, уǎ, фǳŜȄƻ, мм and мо. 

The above results clearly demonstrated that the lack of formation of млǳ from уǳ under Pd-

conditions was attributable to the C=C bond. In order to explain this unusual role, we considered 

the plausible intermediates of the process (Figure 4; the absence of a juxtaposed u or s letter as 

suffix to compound numbers of Figure 4 and corresponding text means that these numbers 

correspond indifferently to either the unsaturated or the saturated substrate.). Hydroxyaldehyde 

I!Ř may be in equilibrium with lactols фŜȄƻ and фŜƴŘƻ and may react with *PdCl4+
2- to give 

alkoxypalladium aldehyde t!Ř. The low reactivity of aldehyde мо under the reaction conditions 

(Figure 3) is not in favor of the formation of hydroxyacid I!Ŏ from IŀŘ4. Furthermore, unsaturated 

I!Ŏǳ is expected to spontaneously generate lactone млǳ *29, 30+, which, in fact, was not produced 

from the Pd-catalyzed reaction of уǳ. The pallado-intermediates, tфŜȄƻ and tфŜƴŘƻΣ may be 

produced from фŜȄƻ and фŜƴŘƻ (path ō) or tŀŘ (path ŀ). Subsequent b-H elimination would afford мл, 

but this only occurs for the formation of млǎ. 

 

CƛƎǳǊŜ п Oxidation of уǳ and уǎ; plausible intermediates. 

                                                           
4
 Formation of ester 14 from 13 involves the acid as intermediate *28+. 



ACR 2020; 2(1), doi:10.21926/acr.2001003  
 

Page 5/14 

The analysis of the literature led us to reject some hypotheses5 and to propose that (i) 

palladation of I!Ř (path ŀ) is preferred over that of lactols (path ō), and (ii) the intramolecular 

reaction of t!Ř occurs through the stereoselective approach of the alkoxypalladium moiety to one 

face of the aldehyde to afford tфŜƴŘƻ. When the latter is obtained from уǎ, the b-H elimination 

easily occurs to deliver млǎ. In contrast, tфǳŜƴŘƻ obtained from уǳ undergoes a ligand exchange 

leading to palladacycle t/ǳ (Figure 5). The syn relationship between O-Pd and C-H bonds, which 

would allow the b-H elimination leading to the carbonyl unit *31, 32+, is prevented in t/ǳ. That 

favors alkoxyde exchange with diol уǳ to afford фǳŜƴŘƻ. The latter evolves towards фǳŜȄƻ which is a 

more stable isomer *33-35+.  

 

CƛƎǳǊŜ р Role of the C=C bond in the formation of lactol фǳŜȄƻ. 

The apparent absence of фǳŜȄƻ evolution under the aforementioned Pd-catalyzed reaction 

conditions is a “no reaction” reaction *36, 37+, which involves I!Řǳ, фǳŜƴŘƻ, t/ǳ, alcoholysis and 

equilibration regenerating the starting substrate. 

оΦ hȄƛŘŀǘƛƻƴ ±ŜǊǎǳǎ 9ǘƘŜǊƛŦƛŎŀǘƛƻƴ 

The above catalytic Pd procedure is efficient for the oxidation of 1-indanol (мр) into 1-indanone 

(мс) *20+. We obtained a similar result using the soluble palladium salt synthesized from PdCl2 and 

ƴ-Bu4NCl instead of the PdCl2/Adogen 464 association (Figure 6, path ŀ) *21, 38+. Surprisingly, 

soluble (RCN)2PdCl2 produced di(1-indanyl) oxide (мт) at a high yield, even in the absence of the 

base (Figure 6, path ō) *38+. 

 

CƛƎǳǊŜ с Influence of the Pd environment on the reaction pathways of 1-indanol. 

                                                           
5
 See discussion and references in [24]. 
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We rationalized the formation of мс and мт through two competitive pathways catalyzed by 

L2PdCl2 (L = Cl
- or RCN), i.e., with *PdCl4+

2- and (RCN)2PdCl2, respectively (Figure 7) *38+. In contrast 

to the anionic catalyst (L = Cl-), the neutral catalyst (L = RCN) is electrophilic *39-42+. The exchange 

of ligand between L2PdCl2 and мр affords 
т!. The evolution of т! depends on the electrophilicity of 

L2PdCl2. Transition metals having Lewis acid properties mediate the formation of ethers from 

alcohols *43, 44+. Consequently, т! formed from the anionic catalyst evolves toward мс via the 

ketonization pathway *20, 22+, while т! formed from (RCN)2PdCl2 undergoes heterolytic cleavage 

of the C-OH bond leading to the ionic species т.. The latter reacts with мр to give ether мт, water 

and the starting catalyst. 

 

CƛƎǳǊŜ т Pathways leading to either oxidation or etherification of 1-indanol. 

пΦ {ƻƭǾŜƴǘ-aŜŘƛŀǘŜŘ tŀǘƘǿŀȅǎ  

пΦм IŀƭƛŘŜ 9ȄŎƘŀƴƎŜ ±ŜǊǎǳǎ !ƭƪȅƭŀǘƛƻƴ 

As pointed out in the introduction of the present discourse, the irradiation of a bis(m-

chloro)bis(η3-allyl)dipalladium complex in deoxygenated MeCN leads to the allyl coupling. Thus, 

the L-carvone complex му provided мф (Figure 8, path ŀ) *3+. Then, we looked for different 

photoreactions *45+. Having observed the lack of photoreactivity of му in CH2Cl2 in the absence of 

additive, this solvent was firstly chosen for reactions in the presence of organic halides. Halogen-

exchanged complexes нл were thus isolated (Figure 8, path ō). Changing CH2Cl2 for DMF
6, the 

reaction with benzyl bromide led to a 1:1 mixture of allylic alkylation and allyl coupling products нм 

and мф, respectively (Figure 8, path Ŏ). These results showed that the species able to temporarily 

coordinate to palladium, such as MeCN or DMF, are required to form the C-C bonds under these 

irradiation conditions. In fact, we obtained the results similar to those in DMF when the photolysis 

in CH2Cl2 was carried with PPh3 as an additive (Figure 8, path Ŏ). The analysis of these reactions by 

EPR (electron paramagnetic resonance) *51+ and CINDP (chemically induced dynamic nuclear 

polarization) *52+ spectroscopies demonstrated their radical character. 

                                                           
6
 For the multi-roles of DMF in chemistry, see *46-50+. 
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CƛƎǳǊŜ у Dependence of the photoreactivity of η3-allylpalladium complex му on the 

environment. 

пΦн ʹм- ±ŜǊǎǳǎ ʹо-!ƭƭȅƭǇŀƭƭŀŘƛǳƳ  

Our synthesis of enantiopure vinylmorpholines by the Pd0-catalyzed diastereoselective 

disubstitution of (½)-1,4-diacetoxy-2-butene (нн) with chiral amino alcohols in THF *53+ urged us to 

examine the isomerization of the substrate *54+. Golding’s team briefly reported that treatment of 

нн with catalytic Pd(PPh3)4 in PhH at room temperature gave (9)-1,4-diacetoxy-2-butene (но) *55+. 

At 70-72°C in THF, we obtained a mixture of но and 1,2-diacetoxy-3-butene (нп). The two 

compounds were also produced in DMF. Monitoring these reactions by 1H NMR resulted in 

unexpected observations. While но and нп were produced in DMF at a constant но/нп ratio, the 

latter varied with time in THF (Figure 9). After 15 min, the amount of но decreased to afford the 

но/нп equilibrium, indicating that, in THF, нп was mainly produced from но rather than from нн. 

Subsequent treatments of но and нп with Pd(PPh3)4 in THF showed an equilibrium between them. 

According to these results, the isomerization of нн occurs as depicted in Figure 10 *54+.  

 

CƛƎǳǊŜ ф Isomerization of нн (dark line) into но (red line) and нп (blue line) using 

Pd(PPh3)4 (0.05 equiv.) at 70 72°C in DMF or THF. 
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CƛƎǳǊŜ мл Formation of но and нп according to monitoring analysis. 

Allypalladium intermediates with the η3-η1-η3 mechanism were proposed for the ½/9-

isomerization and the 1,3-transposition of allylic acetates *56+. The proposed reaction pathways of 

нн was based on the demonstration given by Amatore and Jutand about the influence of solvent 

on the species formed from allyl acetate, Pd(dba)2 and PPh3: ‘‘in THF, the acetate ion sticks on the 

palladium(II) complex (ion pair)’’ while ‘‘in DMF (free ions), the acetate is located far from the 

cationic η-allylpalladium(II) center’’ *57, 58+. The reaction of нн with the catalyst leads to cationic 

η3-allylpalladium intermediate мм! that is in equilibrium with the η1-allyl palladium species мм. 

(Figure 11). The rotation around the AcOC-C(allyl)Pd bond gives мм/ that may afford either но by 

nucleophilic addition of the acetate anion to the external terminus of the allyl group, or η3-

allylpalladium complex мм5. The latter may also be formed from но. мм/ being a tight ion-pair in 

THF, the close proximity of the acetate anion with the allyl moiety favors the efficient addition 

leading to ноΦ Whereas in DMF, the separation of the two entities favors the formation of мм5. The 

latter evolves toward но and нп.  

 

CƛƎǳǊŜ мм Dependence on the solvent of isomerization intermediates. 

Pd(PPh3)4-catalyzed isomerization of (½)-1-(ǘ-butyldimethylsilyloxy)-4-acetoxy-2-butene and (½)-

1-(ǘ-butyldiphenylsilyloxy)-4-acetoxy-2-butene led to similar results *59+. Different intermediates 

have been proposed for the PdII-catalyzed isomerization of нн, но and нп, and the role of the 

environment of palladium due to THF or DMF on the reactivity has also been highlighted *60+. 
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пΦо {ŜƭŜŎǘƛǾƛǘȅ 

While only allyl alcohol нр and allyl ether нс were obtained in the presence of acetylacetonate 

(ŀŎŀŎI) from the reaction of 1-acetoxy-1,3-diphenylpropene (нт) in MeOH under basic conditions, 

the addition of H2O provided a 55:40 mixture of нс and the cross-coupling product ну (Figure 12, 

paths ŀ and ō, respectively) *61+. Thus, water may promote a Tsuji-Trost-type reaction under metal-

free conditions. The selectivity in ну was strongly increased (Figure 12, path Ŏ) *62+ by catalytic 

amounts of both (MeCN)2PdCl2 and the highly hydrophilic ligand [I (Figure 13) that we previously 

used for Cu-catalyzed allylic acetoxylations in water *63+. Repeating the reaction in the absence of 

water dramatically decreased the yield of the Tsuji-Trost adduct with the production of the 

compounds obtained in MeOH under metal-free conditions (Figure 12, path Ř). Thus, water also 

promotes the Pd catalyzed addition of ŀŎŀŎI to нт. 

 

CƛƎǳǊŜ мн Dependence of selectivity on the presence of water. 

 

CƛƎǳǊŜ мо A water-soluble ligand. 

ESI-MS (electrospray ionization mass spectrometry) analysis of these reactions led us to assume 

the possibility of in situ formation of palladium acetylacetonate complex нф and the absence of η3-

allylpalladium intermediates (Figure 14) *62+. As a result, it was proposed that нф, which would be 

a more effective nucleophile than acacK and MeOK, reacts with the water-activated substrate. The 

efficient recycling of the catalyst *62+ showed that a PdII complex is truly immobilized in water, and 

led to assume the production of water-coordinated palladium species such as ол as intermediates 

of the catalytic cycle. 
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CƛƎǳǊŜ мп Formation of a Tsuji-Trost product without η3-allylpalladium intermediate. 

рΦ /ƻƴŎƭǳǎƛƻƴ 

The above examples highlight the unexpected observations made in the course of our studies, 

on the effect of the palladium environment on the outcome of reactions. Of course, several critical 

roles of the palladium environment have also been documented in the literature. These influences 

on the reactivity have attracted tremendous attention toward palladium in organic chemistry. New 

reactions and mechanisms are often serendipitously discovered but nevertheless, in most cases, 

they are the outcomes of deep investigations and reflections rather than good fortune *5+. 
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