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Abstract 

Hospitals are one of the key contributors of pharmaceutical contaminants of emerging 

concern to the sewer systems. Hospitals wastewaters contain concentrations of 

pharmaceutical compounds between 3 and 150, which are higher than urban wastewater 

streams. However, dedicated treatments of the hospital effluents before discharge to the 

sewer system are not compulsory. Besides, conventional wastewater treatment plants have 

not been designed to remove pharmaceutical compounds effectively, and consequently, 

these micropollutants can reach the aquatic ecosystems. The removal of pharmaceutical 

compounds in real hospital wastewater was gaged using three different microbial cultures 
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(white rot-fungus Trametes versicolor, microalga Isochrysis galbana, and a mixed culture of 

non-sulfur purple phototrophic bacteria). Before and after bioassays of the hospital 

wastewater, environmental hazard quotients were used to evaluate the biological treatment 

efficiency. Up to 45 out of the 79 compounds included in the analytical method were noticed 

in the hospital wastewater, with a predominance of analgesics/anti-inflammatories 

(acetaminophen, ibuprofen, ketoprofen, and naproxen). It was followed by antibiotics 

(azithromycin, ciprofloxacin, and ofloxacin, out of which the first two are included in the watch 

list of substances for monitoring in water in 2020) and anti-hypertensive drugs. Isochrysis 

galbana reached a reduction of 45% of the total concentration of pharmaceuticals, whereas 

Trametes versicolor and mixed culture of purple phototrophic bacteria improved the 

reductions up to 69% and 76%, respectively. Moreover, potential environmental risk 

compounds (antibiotics, particularly ciprofloxacin and ofloxacin) were removed by Trametes 

versicolor in higher extension, obtaining a total hazard quotient reduction higher than the 

other two cultures. Removal efficiency and environmental risk assessment of remaining 

PhACs were used to evaluate the performance of the new biological systems for the treatment 

of emerging pollutants. According to both criteria, T. versicolor seems the most capable 

alternative for removing pharmaceutical compounds in hospital wastewater effluents. 
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1. Introduction 

Pharmaceutical active compounds (PhACs) are contaminants of emerging concern, progressively 

polluting the environment. These chemicals have biological activity, and they can be potentially 

hazardous contaminants due to their persistence and ubiquity, provoking undesired effects in the 

aquatic environment [1]. Frequently identified PhACs include various substances such as hormones, 

active principles and their metabolites, neuroactive drugs, antibiotics, or iodinated contrast media, 

among other drugs. Currently, no legal requirements have been established for discharging these 

biologically active substances into the surface water bodies [2-4]. Though some PhACs were 

identified for the first time as contaminants of emerging concern in 2013 and they were included in 

the list of priority substances in the Directive 2013/39/EU [5]. Later, ten substances or groups of 

pharmaceuticals were included in the Commission Implementing Decision (EU) 2015/495, as part of 

a watch list of substances for Union-wide monitoring in the field of water policy [6]. This watch list 

comprised diclofenac, 17-β-estradiol, estrone, 17-α-ethynyl-estradiol, and macrolide antibiotics 

(erythromycin, clarithromycin, azithromycin). In 2018, the new Commission Implementing the 

Decision (EU) 2018/840 altered the substances, excluding diclofenac and including other antibiotics, 

such as amoxicillin and ciprofloxacin fluoroquinolone antibiotic [7]. The new Commission 

Implementing Decision (EU) 2020/1161 has newly retained amoxicillin and ciprofloxacin and 

replaced the other ones with sulfamethoxazole, trimethoprim, venlafaxine, and azoic compounds 

[8].  
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PhACs are detected in high sewage concentrations due to excretion and improper disposal of 

outdated or unused medication into the sewer system [9]. The Hospital and Medical Centre 

effluents show 150 times higher concentrations than urban wastewater [10-12]. Hence, they are 

high contributors of PhACs in the sewer systems. Dedicated treatment of hospital effluents before 

discharge to the sewer system is not compulsory [13]. The decentralized treatment would lessen 

the occurrence of PhACs in the sewer system, in centralized wastewater treatment plants (WWTP), 

and subsequently in the environment [3, 11].  

Several technologies and methods are proposed and used to decrease PhACs in the water cycle 

[14]. Physical processes such as adsorption efficiently remove PhACs, but they are non-destructive 

techniques that merely cause a phase transfer of contaminants [15, 16]. Advanced Oxidation 

Processes (AOPs), particularly ozonation and photochemical oxidation systems, are considered an 

interesting alternative for removing PhACs [17]. However, concerns related to the considerable 

energy and chemical consumption necessities are considered key obstacles to the commercial 

application of these processes [18]. Hence, the focus shifted from physical/chemical to novel 

biological systems to remove these pollutants.  

Fungi exhibit a variety of strategies to remove toxic compounds, such as PhACs. Among them, 

the most common in literature are based on biotransformation or biodegradation mediated by 

different enzymatic systems and on the non-enzymatic process as bio-adsorption and bio-

precipitation [19]. Additionally, the other strategy, less reported in the literature, is the so-called 

advanced bio-oxidation process, which exhibited the ability of Trametes versicolor, a white-rot 

fungus (WRF), to drive Fenton-like reactions and produce highly oxidizing HO• radicals through 

extracellular quinone redox cycling mechanisms [20-22]. Combining all these mechanisms provides 

an integral view of the versatility of applying WRF to eliminate a broad spectrum of xenobiotics, 

including PhACs [23, 24].  

Various studies have established the efficacy of microalgae to remove PhACs, including analgesic 

(ibuprofen, naproxen, paracetamol, and ketoprofen)and antibiotics (ciprofloxacin, metoprolol, 

erythromycin, azithromycin, and amoxicillin) [25, 26]. Besides, microalgae show remarkably higher 

tolerance to antibiotics than bacterial species, as they are not targeted for these active chemicals 

[27]. Nevertheless, microalgae still exhibited a low efficiency for others, such as carbamazepine. 

Particularly, Isochrysis galbana has been assessed as a substitute for the biodegradation of organic 

pollutants in natural environments due to its high antibiotic resistance, even in complex mixtures. 

Thus, the capacity of Isochrysis galbana to grow and partially bio-transform synthetic combinations 

of PhACs (antibiotics and antidepressant) has been demonstrated in the literature [28], being able 

to survive in the presence of antibiotics when mixed cultures of microalgae and bacteria were 

exposed to those compounds [29]. Moreover, these microalgae are defined by their robustness in 

a wide range of environmental conditions, such as salinity, temperature, other contaminants, and 

nutrient deficiencies [30-32].  

The purple phototrophic bacteria (PPB) metabolism is highly complex. Several specific photo-

anaerobic metabolic pathways can degrade aromatic compounds like toluene, benzene [33], and 

heterocyclic aromatics [34]. Therefore, PPB can potentially be used as good microorganisms to 

bioremediate complex organic wastewaters bearing emerging contaminants, although no studies 

have been found for treating emerging contaminants so far [35]. Additionally, PPB has lower 

energetic requirements than traditional aerobic heterotrophs. PPB does not need oxygen and uses 

infrared sunlight as the energy source to assimilate organics and nutrients from the wastewater [36].  
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This work assesses three different biological cultures (white-rot fungus Trametes versicolor, 

microalga Isochrysis galbana, and a mixed culture of purple phototrophic bacteria) for the removal 

of PhACs in hospital wastewater. Besides, according to the European guidelines on risk assessment 

for new notified substances [37], the reduction of the environmental risk after each treatment was 

also estimated by calculating hazard quotient (HQ) indexes of each PhAC. 

2. Materials and Methods 

2.1 Hospital Wastewater Samples 

Wastewater samples were taken from a hospital in the south of Madrid (Spain) during a weekly 

monitoring program using a typical sampling protocol described elsewhere [38, 39]. The hospital 

generates three effluents coming from different therapeutic units. Three automatic water sampler 

systems were set up in each waste streamline to collect representative samples of the hospital's 

daily discharge. This system allowed taking 330 mL of wastewater every 10 min (110 mL of each 

streamline) for 24 h, and after that, all the samples were mixed to obtain a homogeneous volume 

of ca. 48 L. The samples were stored in polyethylene terephthalate (PET) reservoirs and preserved 

at four °C for 24 - 48 h until further characterization and preparation of the biological removal 

experiments. Table 1 shows the macroscopic definition of hospital wastewater. 

Table 1 Main average characteristics of hospital wastewater samples (triplicate). 

Parameter Average  

pH 8.70 ±0.04  

Soluble Chemical Oxygen Demand (CODsoluble, mg L-1) 651 ±88 

Total solids (TS, mg L-1) 852 ±42 

Volatile solids (VS, mg L-1) 590 ±87 

Phosphorous as Phosphate (P-PO4
3-, mg L-1) 5.8 ±0.3 

Total Kjeldahl Nitrogen (TKN, mg L-1) 79 ±4 

Nitrogen as ammonium (N-NH4+, mg L-1) 50 ±5 

2.2 Cultures Preparation 

2.2.1 White-Rot Fungus Trametes versicolor 

Trametes versicolor (T. versicolor CECT 20817) was bought from the Colección Española de 

Cultivos Tipo (CECT). This culture was maintained by sub-culturing on 2% malt extract agar plates at 

pH 4.5 and room temperature (ca. 25 °C) every 30 days [22]. Further, a mycelial suspension and 

pellets of T. versicolor were prepared following the procedure described by [40]. Briefly, the mycelial 

suspension was obtained by inoculating four pieces of 1 cm2 area of T. versicolor/agar plugs to a 500 

mL Erlenmeyer flask containing 150 mL of malt extract medium (MEM) (20 g L -1 malt extract) 

adjusted to a pH of 4.5. The Erlenmeyer flasks were incubated on an orbital shaker at 80 rpm and 

room temperature. - The MEM was removed by filtration after 7-9 days, and the dense mycelial 

mass was mixed with a homogenizer to obtain a mixed mycelial inoculum. Pellets were prepared by 

inoculating the fine mycelial inoculum into 250 mL of MEM in a 1 L Erlenmeyer flask, shaken for 5-



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104027 

 

Page 5/19 

6 days at the same conditions as above. The subsequent pellets were then washed with a 

Phosphate-Buffered Saline (PBS) solution (8 g L-1 NaCl, 0.2 g L-1 KCl, 1.42 g L-1 Na2HPO4, 0.24 g L-1 

KH2PO4 at pH 4.5) and blended together with a homogenizer to obtain fine particles that were finally 

used for the wastewater treatment experiments.  

2.2.2 Microalga Isochrysis galbana 

The Isochysis galbana (I. galbana, SAG 13.29) microalga strain was found at the University of 

Gottingen, Germany. The microalga was injected and cultivated in artificial seawater (33.3 g L-1 of 

Coral Marine Easy Mix, GroTech GmbH, Germany) and enriched using Walne medium (Aqualgae SL, 

Spain) for 14 days in a photo-bioreactor. The growth was obtained in a 5:45 volume ratio of 

microalga: culture medium, in alkaline conditions (pH 9-10) and at room temperature (18-20 °C). At 

12:12 h light, darkness photoperiod was provided by artificial illumination with 12 V white LED lamps 

under a photon flux of 108 µmol·photon·m-2ּ s-1 (23.6 Wm-2 for radiation from 400-700 nm). During 

the light periods, a 3.5 L h-1 of CO2 flow was supplied. 

2.2.3 Purple Phototrophic Bacteria (PPB) 

Mixed PPB culture was improved from domestic wastewater obtained from the pilot-scale 

wastewater treatment plant (WWTP) located at Universidad Rey Juan Carlos at Móstoles, Madrid 

(Spain), in a 10 ISO L bottle. The wastewater was supplemented with two gCOD L-1 of a mixture of 

acetate, propionate, butyrate, ethanol, and yeast extract with a COD ratio of 1:1:1:1:0.1. 

Ammonium chloride and sodium dihydrogen phosphate were then added to a COD: N:P ratio of 

100:7.5:1.5. The culture was cultivated for seven days in anaerobic conditions at a pH value of 7.5, 

the stirring velocity was 120 rpm, and the temperature was 33 °C. The reactor was well-lit by 150 W 

infrared lamps and covered with specific Vis/UV absorbing foil [41], giving an average irradiance of 

28 Wm-2. 

2.3 Biological Removal Experiments 

2.3.1 White-Rot Fungus Trametes versicolor 

Biological fungus experiments were done batch-wise in a 1 ISO L Erlenmeyer flask using 500 mL 

of non-sterile raw hospital wastewater adjusted to a final pH of 4.5 (2 N H2SO4). The bottles were 

injected with 100 mgVSS L-1 of fungal pellets prepared as described previously. Similarly, 0.145 g L-1 

Fe3+-oxalate hexahydrate, 0.085 g·L-1 gallic acid, and 0.0197 g·L-1 Mn2+-nitrate monohydrate were 

added as advanced bio-oxidation promoters [20-22]. Lastly, flasks were incubated for five days at 

300 rpm and controlled temperature of 25 °C, as per the previous results obtained in literature [40]. 

2.3.2 Microalga Isochrysis galbana 

The microalga was injected in a 500 ISO mL glass bottle with aeration for seven days, following 

previous studies evaluating the efficiency of high rate algal ponds in removing ciprofloxacin spiked 

at high concentrations in domestic wastewater [42]. The bottle was filled with a 5:45 vol. (100 mgVSS 

L-1) microalga:hospital wastewater ratio and 50 mg L-1 of NaNO3 were added to provide the 



Adv Environ Eng Res 2021; 2(4), doi:10.21926/aeer.2104027 

 

Page 6/19 

necessary nutrients for microalgae growth. The rest of the experimental conditions (pH, 

temperature, photoperiod, and CO2 flow) were similar to those used for culture preparation. 

2.3.3 Purple Phototrophic Bacteria (PPB) 

The experiments with a mixed culture of PPB were carried out in a 500 ISO mL glass bottle in 

anaerobic conditions inoculated with 100 mL of 100 mg VSS L-1 of PPB mixed culture and then filled 

with hospital wastewater to a total volume of 500 mL. Initial pH was fixed at 7.0, the stirring velocity 

was 120 rpm, and the temperature was set at 30 °C. The orbital incubator shaker was illuminated 

for five days as described for this culture preparation. The reaction time was designated as per the 

previous works reporting reactors with hydraulic retention times of 2-10 days for the degradation 

of organic pollutants using mixtures of different PPB microbes, R. blasticus, R. adriaticus, Rhodo 

pseudomonas capsulatus, R. palustris, and Rhodovulum strictrum [43]. 

2.4 Analytical Methods 

Chemical oxygen demand (COD) analysis was carried out by digestion of the sample with a 

commercially available solution containing potassium dichromate, sulfuric acid, and mercuric 

sulfate (II) (Test Spectroquant, Germany), following standard procedures [44]. The concentration of 

ammonia nitrogen was further examined following a photometric method with a commercial 

solution test (Test Spectroquant, Germany) at 690 nm using a UV/Vis spectrophotometer, 

analogous to the standard phenate method APHA 4500-NH3, in which indophenol (blue color) is 

obtained by the reaction of ammonia, hypochlorite, and phenol catalyzed by sodium nitroprusside 

[44]. Total Kjeldahl nitrogen (TKN) was recorded according to the titrimetric 4500-Norg B method, in 

which nitrogen contained in organic compounds is transformed in ammonium nitrogen by reaction 

with H2SO4, potassium sulfate (K2SO4), and cupric sulfate (CuSO4) as the catalyst. Then it is titrated 

together with the existing ammonium nitrogen of the sample using a standard mineral acid [44]. P-

PO4
3- and total phosphorous were measured using the colorimetric method (Phosphate Cell Test 

Spectroquant, Germany) analogous to the common ascorbic acid method APHA 4500-PE. The pH 

was measured using a pH/ion-meter (Metrohm781, Herisau/Switzerland). Total solids (TS) and 

volatile solids (VS) were then analyzed according to standard methods [44] by drying at 105 °C for 

24 h to determine the TS and calcination in a furnace at 550 °C for 2 h to determine VS.  

2.5 Pharmaceuticals Analysis 

The analysis of pharmaceuticals was performed by ultra-high-performance liquid 

chromatography-tandem mass spectrometry (UHPLC-ESI-MS/MS) after solid-phase extraction (SPE) 

of the PhACs in the samples [45]. The analytical method includes 79 PhACs of 19 various therapeutic 

groups (Table S1). The accuracy of the SPE method was assessed according to the recovery values 

obtained after spiking the samples with a standard mixture of the PhACs at 50 ngL-1 in triplicate [46]. 

Quantification was carried out based on the internal standard approach by the addition of the 

corresponding deuterated standards to all the samples and aqueous standards for preparing the 

calibration curve at a concentration of 0.01 ngL-1 [45]. For quality assurance, three replicates per 

sample were examined to determine the analytical variability. Limits of detection (LODs) and 

quantification (LOQs) ranged from 0.1 to 25 ngL-1 and 0.2 to 85 ngL-1, respectively (Table S2).  
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2.6 Environmental Risk Assessment 

The environmental risk of water samples was projected using the hazard quotient (HQ) method. 

HQs were calculated for each target compound according to European guidelines [37] as shown in 

equation 1 [47]:  

𝐻𝑄 =
𝑀𝐸𝐶

𝑃𝑁𝐸𝐶
(1) 

Where MEC is the measured environmental concentration and PNEC accounts for the predicted 

non-effect concentration for the PhACs. In this research, the measured concentration of the PhACs 

in the different samples (raw wastewater and after treatment) was used as MEC [39, 48]. If the 

quantified concentration was below the limit of detection (LOD) or the limit of quantification (LOQ), 

half of the LOQ was considered as MEC [13]. PNEC was attained following equation 2. The calculated 

PNEC values can be seen in Table S3. 

𝑃𝑁𝐸𝐶 =
𝐸𝐶50/𝐿𝐶50

𝐴𝐹
(2) 

The numerator accounts for the toxicity concentration (EC50 or LC50) to the most sensitive 

microorganism among three trophic levels (Fish, Daphnia, and Algae). In contrast, AF is an 

Assessment Factor established by European Commission [37]. In this study, the toxicity 

concentration (EC50/LC50) for each PhAC was attained from the literature review, where the U.S. EPA 

Ecological Structure-Activity Relationships (ECOSAR) software was used for calculation in case of 

non-available data [13, 47, 49]. The assessment factor (AF) depends on the available data's 

uncertainty. It is inversely proportional to toxicity data availability and quality, ranging from 1 to 

1000 [37]. Yet, this study has carefully chosen the most restrictive value (AF = 1000), which is usually 

employed with acute LC50 toxicity values [13]. Therefore, PNEC is a value 1000 times lower than the 

toxicity concentration found for the most sensitive microorganism among Fish, Daphnia, and Algae. 

3. Results and Discussion 

3.1 Compositional Distribution of PhACs in the Hospital Wastewater  

Analysis of PhACs showed that 45 out of the 79 analyzed compounds were noticed in the hospital 

wastewater (Table S4). The distribution of the key therapeutic groups of the hospital wastewater is 

depicted in Figure 1a. Antibiotics, analgesics, and anti-inflammatories were the most abundant 

therapeutic groups with percentages ranging from 22 to 33% and concentrations between 20-30 

µgL-1. Compounds of these families correspond to the main types of drugs used in hospitals [12, 13]. 

Anti-hypertensives and diuretics also had relevant contributions ranging between 17 and 13%, 

followed by β-blockers with ca 5%. This distribution is quite like others reported in the literature for 

hospital wastewaters [12, 48, 50, 51]. It must also be pointed out that some PhACs detected in the 

hospital wastewater are currently included in the watch list of substances in the field of water policy 

by the Commission Implementing Decision (EU) 2018/840 [7]. It is the case of antibiotics, 

azithromycin, and erythromycin, with concentrations of 3647 and 0.94 ngL-1, respectively, as well 

as ciprofloxacin, included in 2018 and 2020’ watch lists, with a concentration upper 4000 ngL-1, and 
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sulfamethoxazole, included by Commission Implementing Decision (EU) 2020/1161 [8], with a 

concentration of ca. 1900 ngL-1. Diclofenac, an analgesic omitted from the current watch list but 

included initially in the Commission Implementing Decision (EU) 2015/495, [6], also appeared in a 

concentration of 311 ngL-1.  

Anti-inflammatories are one of the most commonly used therapeutic groups in Spain. However, 

their consumption has reduced between 2013 and 2016 from 43.1 to 37.9 DHD, calculated as the 

total defined diary dose (DDD) of drug for each day per 1000 inhabitants [52]. In contrast, analgesic 

compounds grew their consumption between 2013 and 2020 from 24.9 to 37.5 DHD. 

Acetaminophen ( > 4000 ngL-1), ibuprofen ( > 4000 ngL-1), ketoprofen (8742 ngL-1), and naproxen 

(12723 ngL-1) were the PhACs of this group with the highest concentrations. These results agree 

with the predominant consumption of ibuprofen and naproxen as  the main analgesic drugs in 

Spain [52].  

Antibiotics are also extensively used in hospitals, being one of the groups with higher loads in 

hospital wastewaters [51]. This therapeutic group is particularly critical as it can promote antibiotic-

resistant bacteria (ARB) propagation into public wastewaters, breeding with the negative 

consequence of curative effects of antibiotics against humans and animals pathogens [53]. In Spain, 

the consumption of antibiotics ranged from 22 DHD in 1992 to 19.7 DHD in 2009, with an 

extraordinary increase in fluoroquinolones [54]. In this way, ciprofloxacin and ofloxacin, 

fluoroquinolones with similar characteristics, were the foremost antibiotics detected in the hospital 

wastewater, with concentrations higher than 4000 ngL-1, followed by azithromycin and 

metronidazole. 

The consumption of anti-hypertensive medications, including diuretics and beta-blocking agents, 

amplified from 185 DHD to 301 DHD in OECD countries from 2000 to 2020 [55]. In Spain, the use of 

anti-hypertensive medications tripled from 1992 (80.8 DHD) to 2020 (301 DHD), mainly valsartan, 

hydrochlorothiazide, furosemide, and atenolol [56]. The concentration of these PhACs in the 

hospital wastewater was among the highest of individual compounds. Therefore, the anti-

hypertensive valsartan, the diuretics furosemide, and hydrochlorothiazide were present at 13559, 

8173, and 3707 ngL-1, respectively, whereas the β-blocker atenolol reached a concentration of 4744 

ngL-1.  

Lastly, although the consumption of histamine H2 receptor antagonist has halved from 2000 

(10.4 DHD) to 2012 (4.9 DHD) in Spain (AEMPS 2014), it is extraordinary the presence of ranitidine, 

a PhAC of this group with a concentration of 4038 ngL-1.  
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Figure 1 Distribution of the main therapeutic groups of PhACs for the (a) hospital 

wastewater and samples after experiments with the three tested microorganism’s 

cultures (b), (c), and (d). Group of others includes drugs for prostatic hyperplasia, treat 

asthma, an anthelmintic, synthetic glucocorticoid, and calcium channel blockers. 

3.2 Performance of Biological Cultures for Removal of PhACs  

 The distribution of the total amount of PhACs in the hospital wastewater samples after the 

biological treatment grouped by the main therapeutic families is displayed in figures 1b, 1c, and 1d. 

A remarkable removal of PhACs of the hospital wastewater was obtained for the experiments done 

with Trametes versicolor as fungal microorganism and mixed culture of purple phototrophic bacteria, 

attaining total reductions of ca. 70 and 77% of the initial concentration of PhACs. These results are 

owing to the high elimination of compounds belonging to the most abundant therapeutic groups 

such as analgesics/anti-inflammatories, antibiotics, and anti-hypertensives (84%, 51%, and 80% for 

Trametes versicolor and 93%, 49%, and 76% for purple phototrophic bacteria, respectively).  

The fungus T. versicolor attained a remarkable removal of analgesics and anti-inflammatories in 

agreement with the results of previous studies [23]. Simultaneously, this culture achieved a COD 

removal of 35% and a fungus growth from 0.1 to 0.56 gL-1 of VS. The removal of total PhACs is higher 

than that found in other studies under similar conditions. Other authors have stated a significant 

decrease of 83% for the total concentration of pharmaceutical compounds in hospital wastewater 

but working under sterile conditions [50]. Still, the efficiency decreased to ca. 53% when non-sterile 

conditions were used. In that study, 51 pharmaceuticals over 99 analyzed were detected in the 

initial hospital wastewater, and high elimination degrees were attained for analgesic/anti-

inflammatories and antibiotics (ca. 99 and 86%, respectively) [50]. The potential capacity of T. 

versicolor for removing PhACs is associated with their ability to generate hydrogen peroxide by their 

unspecific extracellular oxidative enzymatic system that can promote highly oxidizing hydroxyl 
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radicals through subsequent Fenton-like reactions. These oxidizing radicals can oxidize and break 

down the bonds of PhACs, which makes them vulnerable to enzymatic attack and bio-oxidation 

mechanisms of fungal transformation [19]. The production of hydroxyl radicals is improved by 

adding quinone-like mediators in the presence of chelated ferric ions. The same has been done in 

this work in the so-called advanced bio-oxidation process.  

The non-adapted purple phototrophic bacteria culture seems to catabolize the organics present 

in the wastewater, as can be deduced by the COD consumption (36%) and high PhACs removal but 

their growth (from 0.1 to 0.19 gL-1 of VS) is limited in this study. The purple phototrophic bacteria 

metabolism is highly diverse and includes aromatics breakdown [34], as well degradation of toxic 

substituents from organic compounds like azo-dyes and halogenated substituents [57]. This 

suggests that an adaptation period could promote the mechanisms of bactericides degradation, 

giving rise to the improvement of biomass growth and specific activities, as previously reported for 

other toxic wastewater [58, 59]. These results represent a promising eco-friendly alternative that 

should be explored in more detail in the future, considering the lack of works using this 

microorganism in the bioremediation of hospital effluents. 

Regarding the I. galbana microalga, this culture showed a lower removal of the initial 

concentration of PhACs (ca. 45%). The reduction of most large therapeutic groups, analgesics/anti-

inflammatories, antibiotics, and anti-hypertensive, were 41%, 45%, and 47%, respectively. In 

particular, naproxen and ibuprofen displayed a low reduction, predominant PhACs of the group of 

analgesics and anti-inflammatories in the raw hospital wastewater (see Table S4). These results 

agree with the low removal observed with a mixed microalgae culture for this therapeutic group in 

the treatment of toilet waters, achieving a naproxen removal of ca. 10% [60]. Nevertheless, other 

microalgae cultures such as Chlorella vulgaris and Scenedesmus obliquus from lagoon water 

demonstrated higher removal efficiencies with ibuprofen removals of ca. 60% [61] or almost 

complete removal using C. sorokiniana (99%) from anaerobically treated black water and synthetic 

urine [62] or a mixed microalgae culture taken from a real lake (98.5%) [60]. Here, the lower 

efficiency of the microalgae in terms of PhACs removal is in contrast with the microalgae growth 

(from 0.1 to 0.65 gL-1 of VS) and COD removal (43%) in this study. I. galbana can grow under 

mixotrophic conditions using organic matter as a carbon source [63]. Moreover, the literature has 

reported that antibiotics can partially inhibit the biological activity of marine microalgae [32]. Still, 

at the same time, some microalgae can activate a self-defense mechanism consisted of increasing 

their carotenoid content as the protective process for the photosynthetic system and concomitant 

algal growth and survival [25]. This mechanism seems to be predominant in the case of I. galbana, 

as this microalga proves a high resistance to PhACs compared to other marine microalgae [32].  

It is also interesting to show that overall removal degrees of the antibiotic therapeutic group 

were alike for the three cultures (ca. 50%). Still, the individual elimination of each antibiotic 

compound was significantly different depending on the culture. Thus, T. versicolor allowed a 

remarkable reduction of ciprofloxacin (50%), a PhAC included in the watch list in 2018 and 2020, 

which was refractory to I. galbana and purple phototrophic bacteria. The high efficiency of T. 

versicolor for ciprofloxacin removal has already been reported in the literature, but operating with 

a longer incubation time (15 days) [47]. Azithromycin and ofloxacin, also included in the watch list, 

were almost eliminated with I. galbana (88% and 99%, respectively), being less efficient for purple 

phototrophic bacteria (65% and 6%, respectively) and T. versicolor (22% and 63%, respectively). The 

results of microalgae and purple phototrophic bacteria are under a preliminary comparative study 
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between photo-bioreactors of both types of microorganisms, where non-sterile Chlorella vulgaris 

culture was more effective than bacteria in the removal of detected antibiotic drugs [64]. 

Concerning T. versicolor, previous studies have also reported a variable removal rate of ofloxacin 

ranging from 46 to 99%, but working under favorable conditions for the culture such as sterile 

conditions, the addition of external nutrient sources (glucose and ammonium tartrate), continuous 

aeration and longer incubation times of 12 and 15 days [47, 65].  

The removal of PhACs determined in this work could not distinguish between biodegradation 

and bio-absorption of the different microorganism cultures. However, in the case of Trametes 

versicolor, note that recent results have demonstrated that only between 3 and 13% of PhACs 

elimination can be attributed to sorption processes [40, 66]. 

3.3 Environmental Risk Assessment of PhACs 

The hazard quotients (HQ) of individual and grouped PhACs detected in the hospital wastewater 

and samples after treatment with the three cultures are shown in Figure 2. HQs of all individual 

compounds are briefed in Table S5. The initial ∑HQ value of the raw hospital wastewater was 1884. 

The remaining PhACs for samples after the treatment with the different cultures were 1289, 1273, 

and 951 for I. galbana, purple phototrophic bacteria, and T. versicolor, respectively. As per these 

results, T. versicolor attained the highest environmental risk reduction (ca. 50%), whereas 

microalgae and purple phototrophic bacteria accomplished a lower reduction of ca. 32% in both 

cases.  

 

Figure 2 Contribution of therapeutic groups (a) and more hazardous PhACs (HQ>10) (b) 

to the total HQ of the hospital wastewater and the treated samples. 

The comparison of HQs by therapeutic groups (Figure 2a) reveals a key contribution of antibiotics 

to the total HQ in all the samples. Thus, the role of antibiotics to the total HQ accounts for 85% of 

the hospital wastewater, a value of 1611 over the total HQ of 1884. Other studies examining entire 

hazardous quotients for real hospital wastewaters have already reported this high contribution of 

antibiotics. This therapeutic group represented between 85 and 92% of the total HQ [39, 67].  

The PhACs can be classified into four groups as per their environmental risk using the criteria of 

Stockholm County Council [13], [68]: insignificant (HQ less or equal 0.1), low (HQ between 0.1 and 

1), moderate (HQ between 1 and 10) and high (HQ greater than 10). Figure 2b shows the 10 PhACs 

with high environmental risk according to their HQ > 10 in the hospital wastewater. All the 
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antibiotics are PhACs with high ecological hazards due to their low PNEC values, such as 

ciprofloxacin, ofloxacin, azithromycin, and sulfamethoxazole with values as low as 0.005, 0.0016, 

0.002 or 0.027 µgL−1, respectively (see Table S3). Among antibiotics, ciprofloxacin embodies a 

significant contribution to all wastewater samples, 42% in the hospital wastewater (HQ = 800 over 

a total HQ value of 1884). Its low reduction with I. galbana and purple phototropic bacteria makes 

its contribution in the treated samples quite relevant (ca. 62% in both samples and HQ values 

around 800). In the case of T. versicolor, the HQ reduced significantly due to the higher removal of 

ciprofloxacin. However, the contribution of all antibiotics to the total HQ was still significant (44%). 

Regarding PhACs of other therapeutic groups, diclofenac and fluoxetine also have HQs > 10 (about 

16 and 14, respectively). However, their potential risk becomes low or insignificant after the 

treatments. In terms of citalopram, a psychiatric drug with an initial HQ value in the hospital 

wastewater of 90, only the treatment with I. galbana allows an almost complete reduction, 

achieving a final HQ of ca. 0.2. In the treated samples with T. versicolor and purple phototrophic 

bacteria, final values of 54 and 40, respectively, were estimated. Conversely, the environmental risk 

of ranitidine with an HQ of 100 in the raw hospital wastewater was only reduced after treatment 

with T. versicolor. At the same time, values of 63 and 16 remained after treatment with I. galbana 

and purple phototrophic bacteria.  

3.4 Overall Assessment of Biological Cultures for Treatment of the Hospital Wastewater 

The efficiency in removing PhACs and reducing the hazard quotient after the experiments of the 

three cultures is summarized in Figure 3. Interestingly, I. galbana and purple phototrophic bacteria 

displayed distinct elimination ratios of the overall PhACs (45% and 76%, respectively) but similar HQ 

reduction (ca. 32%) in both cases. This fact indicates that removing particular drugs of high 

environmental risk is quite important in evaluating the feasibility of the biological culture for 

potential future implementation. In this sense, T. versicolor achieved a major removal of PhACs and 

a higher reduction of the environmental risk, mainly due to the HQ reduction of ciprofloxacin (ca. 

50%). Nevertheless, this reduction was not as high as that reported in the literature for treating 

hospital wastewater using fungi (80-90%). Still, it must be noted that the treatment incubation in 

that study was eight days [67] instead of the five days of this work.  

 

Figure 3 Comparison of the efficiency of the three cultures in terms of chemical 

elimination (PhACs) and environmental risk reduction (HQ). 
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These results demonstrate that novel wastewater treatments technologies for the elimination of 

emerging pollutants like PhACs, cannot be only evaluated from a removal point of view for PhACs. 

A complementary analysis of indicators regarding the potential environmental risk of remaining 

compounds after tested treatments, such as the HQ index, is necessary because it depends not only 

on the overall pharmaceutical loading but also on the presence of hazardous compounds with high 

environmental risk. 

4. Conclusions 

The hospital wastewater contains various pharmaceutical residuals, some of them characterized 

by high risk to aquatic organisms (HQ > 10), particularly the antibiotic ciprofloxacin (HQ = 800). The 

three studied microbial cultures produce a substantial reduction of the PhACs content of the 

hospital wastewater. Remarkable PhACs removals were accomplished for T. versicolor and purple 

phototrophic bacteria cultures (70 and 77%, respectively), whereas the microalgae culture showed 

a lower elimination (45%). Moreover, T. versicolor allowed an HQ reduction of ca. 50%, as compared 

to values of ca. 32% of both I. galbana and purple phototrophic bacteria cultures. This fact is mainly 

due to the higher removal of T. versicolor for ciprofloxacin, one of the most hazardous compounds 

in the HQ. According to the removal of PhACs and the reduction of the hazard quotients of the 

remaining PhACs, the white-rot fungus, T. versicolor, seems to be the more promising biological 

culture for the treatment of hospital wastewater. However, the performance of a biological system 

based on white-rot fungi needs to be optimized to improve its efficiency for eliminating PhACs with 

low values of PNEC and high environmental risk potential.  
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